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ABSTRACT Power consumption signals of household appliances are characterized by randomly occurring
events (e.g. switch-on events), making timeseries modeling a demanding process. In this paper, we propose
a convolutional neural network (CNN)-based architecture with inputs and outputs formed as data sequences
taking into consideration an appliance’s previous states for better estimation of its current state. Furthermore,
the proposed model endows CNN models with a recurrent property in order to better capture energy signal
interdependencies. Using a multi-channel CNN architecture fed with additional variables related to power
consumption (current, reactive, and apparent power), additionally to active power, overall performance,
robustness to noise and convergence times are improved. The experimental results prove the proposed
method’s superiority compared to the current state of the art.

INDEX TERMS Convolutional neural network (CNN), deep learning, energy disaggregation, load monitor-
ing, NILM, power, recurrent neural networks, tapped delay line, sequence to sequence modeling.

I. INTRODUCTION
Non-Intrusive Load Monitoring (NILM) estimates individ-
ual appliance power usage from aggregate measurements,
thereby contributing to energy conservation through changing
of consumers behavior, waste minimization, carbon footprint
reduction, efficient network load handling and financial sav-
ings. The significance of the application has attracted the
interest of an increasing number of researchers, leading to
the proposal of a wide range of machine learning and signal
processing techniques for energy disaggregation.

A number of recently proposed methods are based on
deep learning, thus aiming to leverage the increased rep-
resentational capabilities of models such as Convolutional
Neural Networks (CNN), Long Short-TermMemory (LSTM)
networks and Stacked Denoising Autoencoders. In this
work, we present a novel scalable CNN-based approach
for energy disaggregation, called Multi-Channel Recurrent
Tapped Delay Line CNN (MR-TDLCNN) which introduces
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three innovative aspects to address respective challenges in
NILM. Firstly, since disaggregation of total consumption
includes inherently recurrent elements, our approach endows
CNNs with a recurrent property that takes into consideration
past estimation outputs. Secondly, the majority of proposed
approaches only use active power as input measurement, thus
disregarding potentially valuable information residing within
other components, such as reactive power, apparent power
and current. The proposed model is appropriately adapted
to incorporate all four components; as is proven by the
experimental results, the derived multi-channel model yields
better performance compared to its single-channel counter-
parts. Finally, we propose a two-CNN architecture to increase
robustness to noise. In particular, the architecture employs
a second CNN, which utilizes the same inputs, along with the
disaggregated signal of the first CNN. This approach allows
for further noise reduction resulting in better overall disag-
gregation performance. The proposed approach goes beyond
traditional event-based or state-based approaches. It provides
refined outputs close to the actual appliance’s patterns and
exploits multiple channels of information than just the active
power.
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The remainder of the paper is organized as follows:
Section II provides a brief discussion on the taxonomy of
applied disaggregation techniques. In Section III, we explain
in detail the contribution of our approach compared to the
related work. Section IV provides a detailed description of
the proposed approach and of the related techniques, used for
comparison purposes. Section V presents the experimental
results, and Section VI concludes this work.

II. RELATED WORK AND PAPER CONTRIBUTION
Over the last few years deep learning has been applied to var-
ious application fields and scenarios, ranging from computer
vision to natural language processing (NLP). In many cases
deep learning outperformed previous work. The emergence
of deep learning techniques in energy disaggregation dates
back to 2015, when the first attempt to face NILM problem
through deep learning techniques was made [1]. In that study,
three neural network architectures on domestic loads are com-
pared exploiting the most significant deep learning schemes:
Convolutional Neural Networks (CNN), Long Short-term
Memory (LSTM) networks, and Stacked Denoising Autoen-
coders. Since then, deep learning has gradually captured
NILM researchers’ interest [2], [3]. LSTM networks often
outperform other deep learning schemes, due to their ability
to handle lags of unknown duration between important events
in a time series. Thus, LSTM networks have a comparative
advantage among other deep learning methods in detecting
changes in power consumption. Relevant studies have been
carried out in the past ( [4], [5]). Particularly, [4] proposes an
LSTM model and additionally a novel signature to improve
classification performance. Mauch and Yang use a generic
two-layer bidirectional LSTM architecture [5]. In a previous
work of ours we have also proposed a Bayesian optimized
bidirectional LSTM regression model for NILM [6].

CNNs traditionally attain very good results in a variety of
pattern recognition problems ( [7], [8]), and they are popular
for a wide variety of other applications as well. However,
the usage of CNNs in the field of energy disaggregation is
not straightforward mainly due to the difficulty of matching
a traditional pattern recognition problem of 2D data with
1D data of power timeseries. Nonetheless, remarkable and
worth mentioning studies are presented here, leading the
way for a new era in energy disaggregation through deep
learning techniques. Reference [9] presents a causal 1D
CNN examining in parallel the effect of other variables that
are related to the power, such as current, reactive power
and apparent power. Reference [10] proposes a sequence to
point CNN architecture underlying the importance of sliding
windows to handle long-term timeseries. Barsim et al. devel-
oped a generic disaggregation model based on data-driven
learning [11].

Apart from deep learning-based methods for NILM, there
are various other machine learning approaches that are
very popular in the field of energy disaggregation. These
methods are either supervised or unsupervised. In cases of

supervised learning, problems can be further grouped into
regression or classification problems.

Event-based NILM approaches leverage edge detection
techniques for an optimal clustering of state transitions
events [12]. Different classification tools are used, including
Support Vector Machines (SVM) [13], Neural Networks,
Decision Trees (DT) [14], and hybrid classification meth-
ods [12], [15]. Hart was the first to propose a method for
disaggregating electrical loads based on combinatorial opti-
mization (CO) through the clustering of similar events based
on appliances characteristics [16]. Dynamic Time Warping
(DTW), although with limited success in classifying multi-
state appliances, nevertheless has been used for identifying
unique load signatures for simpler appliance patterns [17].
Graph Signal Processing (GSP) [12] adopts a concept based
on signal processing to correlate signals in time and space
domain by embedding the structure of signals onto a graph.
Recently, a Modified Cross-Entropy method for events’ clas-
sification has been proposed [18], a method based on combi-
natorial optimization formulating NILM as a Cross-Entropy
problem.

On the contrary, state-based NILM approaches require an
a-priori knowledge or a large training dataset, to achieve
good performance [19]. Hidden Markov models (HMM) and
various extensions of this model were proposed to examine
the different combinations of appliances’ state sequences
[20]–[23]. In this light, HMMs are state-based and so the
studied appliances should have discrete states in their signa-
tures [5]. As the number of appliances increases, the number
of combinations of states sequences increases exponentially,
thus increasing problem’s complexity [5]. In addition to this,
time complexity is also increased leading to the reduction
of model’s classification performance [4]. Makonin et al.
proposed a super-state hidden Markov model and a sparse
Viterbi algorithm in order to avoid unnecessary calculations
and reduce complexity [24]. Another limitation is that this
approach does not detect the presence of unknown appli-
ances [5]. Rahimpour et al. proposed a matrix factoriza-
tion technique for linear decomposition of the aggregated
signal using as bases of this learned model the appliances’
signatures resulting in an efficient estimation of the energy
consumption per appliance [25].

Compared to the above approaches, our proposed method-
ology (Fig. 1) has a manifold contribution: a) provides
detailed information on an appliance’s consumption for a
predefined time period (as a multi-output regression prob-
lem), b) exploits multiple input features (multi-channel CNN)
and c) uses a secondary deep-learning approach for autocor-
rection and output refinement. In the following, we briefly
summarize the standing point of our approach compared to
existing state of the art.

A. REGRESSION VS CLASSIFICATION PROBLEM
NILM is often addressed in the literature as a classification
problem, i.e., estimates the operational states of an appliance
(e.g. ON/OFF ormulti-state). However, such approaches have
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FIGURE 1. The proposed non-linear pipelined recurrent CNN structure.

the drawback that significant signature information regarding
the electricity load is lost. Facing energy disaggregation as a
regression problem helps us retain all the necessary knowl-
edge regarding an appliance’s signature.

B. CURRENT STATE VS HISTORY OF STATES
To reveal accurate appliance’s operation state, knowledge
gained from its previous operation is necessary, in order to
detect time-dependent signature patterns. Tapped delay line
model transfers relevant information, forming a sequence
chain-like structure as input to feed the CNN network
(see Section III.A).

C. SIMPLE VS RECURRENT CNN MODEL
Deep learning structures such as LSTM can be used to
address NILM problem through a mechanism which passes
the previous hidden state to the next step of the sequence and
updates the new hidden state. On the contrary, our approach
updates directly the output sequence, using a consecutive
deep learning model. This approach is extremely beneficial:
the first CNN focuses on the disaggregation part and the sec-
ond CNN focuses on the correction of the signal. Taking
into consideration previous regression output introduces a
recurrent behavior to our proposed model (see Section III.B).

D. SINGLE-VARIABLE VS MULTI-VARIABLE APPROACH
Most of the aforementioned approaches employ active power
as the sole electrical parameter for NILM. However, some
approaches have adopted additional features, such as reactive
power [26]. The use of reactive power has been employed
initially by Hart [16]. Many NILM methods are based on
active power and reactive power ( [27]–[29]), while other
approaches rely on harmonics [30], voltage and current wave-
form [31], or the voltage - current (V - I) trajectory anal-
ysis [32]. In Section III.C, we introduce a multi-channel
approach to strengthen the model’s performance.

III. THE PROPOSED MR-TDLCNN MODEL FOR NILM
The proposed methodology deals with the disaggrega-
tion problem by utilizing consecutive deep learning multi-
input/multi-output regression models.

LetM be the number of household appliances and p(tn) be
the measured aggregate active power over all appliances at a

FIGURE 2. The convolutional sequence to sequence NILM model. Time
windows progress incrementally in time. The output is derived as the
average of the different overlapping output values.

TABLE 1. Notation used in this paper.

time instance tn. Considering a discrete time sampling, we can
express p(tn) as p(tn) = p(nT ) = p(n), where T = tn − t(n−1)
is the sampling interval. Similarly, we denote pj(n) the active
power load of the j-th appliance out of theM available. Then,
the aggregate signal p(n) can be given as [14]

p(n) =
M∑
j=1

pj(n)+ e(n) (1)

where e(n) denotes the additive noise of the measurements.
In a NILM modeling framework, the measurements pj(n) are
not available, since there are no smart plugs installed. Instead,
only p(n) is given. Therefore, the problem is to estimate
pj(n) from p(n). Let us note hereby that Table 1 includes the
notations used in the paper.
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A. TDLCNN MODEL: DESIGNING A BASELINE
CNN FOR NILM
Each appliance has a unique spectral signature. This is the
main principle we exploit to decompose the aggregate signal
p(n) into its components pj(n). Aggregate signal is actually
derived as an integration of individual appliances’ power
consumption values over time. Thus, in order to get the
estimates p̂j(n) of pj(n), we need to assemble measurements
of the aggregate signal p(n) over a time window [p(n)p(n−1)
. . . p(n − k)]T . Variable k expresses the number of previous
samples that should be considered for estimating the pj(n).
The time window of the aggregate measurements (sequence)
covers the mean appliance’s operational duration in order
to provide the full information regarding appliance’s opera-
tional states for optimal feature maps selection later. Output
sequences are created considering the same length T as in the
input sequences, respectively (Fig. 2).

According to the already implemented approaches [6],
sequence to sequence learning for NILM maps the input
sequence of the aggregate signal to a same length output
sequence of appliance’s active power via LSTM networks.
Here, we introduce an architecture based entirely on 1D
convolutional neural networks that incorporates time series
data. At instant n, the set of input to the module is a sequence
of k most recent measurements of aggregate power values
which can be represented as vector p(n) given by:

p(n) = [p(n) p(n− 1) . . . p(n− k)]T (2)

proposing a Tapped Delay Line CNN model (TDLCNN).
The purpose of the convolutional layer is to apply non-linear
transformations on the input data to maximize regression
performance. A set of parameterizable filters (e.g., learnable
kernels) is convolvedwith the input data selecting appropriate
feature modalities and estimating kernel parameters, so that
performance error on a labeled training set is minimized.
The L feature maps, say f1, f2, . . . , fL , optimally selected by
the convolutional layer, will be used as input to the final
regression layer. The output is a sequence of the j-th appliance
active power data, formed as:

p̂0j (n) = [p̂0j (n) p̂
0
j (n− 1) . . . p̂0j (n− k)]

T (3)

Therefore, we have that:

p̂0j (n) = g(p(n))+ e(n) (4)

where g(·) is a nonlinear relationship modeled by the learning
process. As derived in this section, the first step to suitably
decompose the aggregate signal to its components pj(n), is to
consider several previous observations of the aggregate signal
over a time window, in a way to maximize model’s perfor-
mance.

B. R-TDLCNN MODEL: INTRODUCING A RECURRENT
CHARACTER TO CNN FOR NILM
It is intuitively clear that the active power signal observa-
tions per appliance are not independent over time. A widely

FIGURE 3. Schematic illustration of the proposed hybrid model in
conjunction to a simple feedforward and a recurrent neuron.

accepted way to model this dependence and dealing with
these inherently recursive data is through recurrent neural
networks (RNN). RNNs can use the feedback connection
to store information over time in form of activations, suc-
cessfully handling sequential data and time series. On the
other hand, CNNs capture patterns through non-linear rela-
tionships allowing weights to be dynamically updated in a
complicated way. An approach based entirely on CNN is not
adequate (see Section III.A), since significant variations in
the disaggregated signal are observed that should be taken
into consideration.

Thus, a hybrid CNN model is hereby introduced that
incorporates RNNmodel’s characteristics into the basic CNN
structure, leading to a novel CNN model with a recurrent
character, as illustrated in Fig.3. The difference is that in
the case of RNN model the update occurs in the hidden
state, whereas in our approach the update is carried out
directly to the output. Except for matching sequence inputs
with sequence outputs, as introduced in the previous step
(Section IV.A), the model incorporates an a posteriori state
estimation per appliance, at time n, given observations up to
and including time n.
Thus, based on (4) and given (2) and (3), we form an

updated non-linear framework:

p̂1j (n) = f (p(n), p̂0j (n))+ e(n) (5)

where:

p̂1j (n) = [p̂1j (n) p̂
1
j (n− 1) . . . p̂1j (n− k)]

T (6)

The main difficulty in (5) is that the non-linear relationship
f (·) is actually unknown. To address the fact, machine learn-
ing methods can be applied to approximate f (·) in a way that
minimizes error e(n).

C. M-TDLCNN MODEL: INTRODUCING A MULTI-CHANNEL
CNN ARCHITECTURE FOR NILM
An important benefit of using CNNs is that they can sup-
port multiple inputs. In the literature, the majority of the
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TABLE 2. Performance metrics (MAE, RMSE, NRMS) for AMPds dataset.

FIGURE 4. The power triangle.

proposed methods adopt a solution that uses only active
power measurements. However, power utility companies are
generally concerned about both active power (P) loads (W )
and reactive power (Q) loads (VAR). In active power loads
(e.g., an electric stove) dissipation of the performed worked
takes place, whereas reactive power loads (e.g., a capacitor)
store the power received from the grid, and release it back
in the opposite direction later without dissipation. Loads
can often be both active and reactive, as for example an
air conditioning unit. Mathematically, active power results
from in-phase voltage and current, whereas reactive power
results from out of phase voltage and current [33]. Apparent
power S, sometimes referred to as total momentary power,
can also be a useful cue for disaggregation. Apparent power is
conventionally expressed in volt-amperes (units inVA). These
quantities are related as (Fig. 4):

s = IV ; p = s cos θ; q = s sin θ (7)

where I is current, V is voltage, and θ is the phase of voltage
relative to current (i.e., the phase angle).

The s, p, q, and I are inserted in the CNN model as
multi-variable timeseries in order to strengthen the model’s
reliability, resulting in a non-linear regression problem.
In correspondence to Section IV.A, each variable (p, s, q, I )
adopts the tapped delay line structure in order to be feed in
the model. Each input sequence ({p}, {s}, {q}, {I }) is then,
passed as a separate channel, in correspondence to different
channels of an image (e.g. red, green and blue), forming a
multi-channel CNN structure. As a result, a fused input that
resembles a tensor is created. The tensorized input ensures
that the model encapsulates all necessary information to pro-
duce the output, using a M-TDLCNN model.

D. MR-TDLCNN MODEL: LEVERAGING M-TDLCNN AND
R-TDLCNN MODELS INTO A NOVEL NILM MODEL
The architecture, as shown in Fig. 1, consists of a pipelined
recurrent structure. As shown in the figure, it is composed of
two modules in parallel, TDLCNN Module-1 and TDLCNN
Module-2, in such a manner that the output of Module-2 is
used as an input to Module-1. MR-TDLCNN model com-
bines simple recursive approach with CNN architecture in
order to allow learning meaningful data-dependent weights.
Furthermore, it exploits multiple input features succeeding
high performance.

IV. EXPERIMENTAL EVALUATION
In this section, wewill experimentally validate the superiority
of the proposed MR-TDLCNN method in comparison
to (i) the basic TDLCNN model, (ii) individual updates
(R-TDLCNN and M-TDLCNN models) and, more impor-
tantly, (iii) other state of the art methods. Among them an
LSTM network [5] and a hybrid CNN-LSTM method [1]
are included. LSTM has been selected as a typical net-
work for timeseries processing. Furthermore, an improved
hybrid CNN-LSTM model is used with CNN layers for
feature extraction on input data combined with LSTMs to
support sequence prediction. We also compare the afore-
mentioned results with the state-of-the-art NILM algo-
rithms i.e., FHMM-based and CO-based methods from
NILMTK [34], a Python-based extension which is widely
used in energy disaggregation research. We evaluate the
model’s accuracy and convergence speed across different
models and different appliances. RMSE error of training was
selected as a frequently used measure of accuracy in order to
keep track of the performance measure of our model during
training.

A. DATASET DESCRIPTION AND EXPERIMENTAL SETUP
The evaluation of the proposed method is conducted on the
public AMPds dataset [24]. The AMPds contains active,
reactive and apparent power values as well as current mea-
surements from aCanadian house, at one-minute interval over
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FIGURE 5. Comparison of the proposed method (green solid line) with ground truth (in gray) for selected appliances in AMPds dataset.

a 2-year period. The selected appliances are of multi-state
type, making difficult their respective power load estimation
(see Fig. 5 with grey filled color).

B. PERFORMANCE EVALUATION AND COMPARISONS
We trained our models using adam (adaptive moment esti-
mation) optimization with a learning rate of 1e-4. Model
weights and coefficients are updated using a mini-batch size
of 50 at each training iteration. The maximum number of
epochs for training is selected to be 400. Training period starts
at 18 August 2012 and ends at 13 April 2013; 30 days were
used as test sample (17 May 2013-17 June 2013). This split
is representative of the problem and in addition, the testing
period is a transitional period, so we can evaluate the ability
of the model to adapt to seasonal variations.

Deep learning performance is improved through data bal-
ance and normalization to 0-1 for each channel. The proposed
MR-TDLCNN model, along with TDLCNN, M-TDLCNN,
R-TDLCNN and LSTM are implemented using MATLAB
software. CNN-LSTM algorithms have been trained and
deployed using Python with Tensorflow and Keras libraries.
CO and FHMM methods have implemented in NILMTK.
Regarding the dataset, training and testing splits have already
been pre-split and pre-normalized, to ensure that the condi-
tions are the same and the results are comparable.

The proposed MR-TDLCNN regression model satisfies a
set of crucial characteristics making it superior than the other

existing methods in literature, for NILM. Its modularity is
one of its main advantages in comparison to FHMM and
CO approaches, in which dimensionality is a major issue.
In addition, the introduction of deep learning as part of the
solution of NILM problem is also a comparative advantage.
Furthermore, model’s performance strengthens with the use
of all four components (current, active power, reactive power,
and apparent power) available in AMPds dataset, achieving
faster convergence and higher performance than state-of-the-
art results for the same dataset.

Table 2 presents the comparative results based on objec-
tive metrics of (i) Mean Absolute Error (MAE), (ii) Root
Mean Square Error (RMSE) and iii) Normalized RMSE
(NRMS), which are commonly used metrics for the evalu-
ation of energy disaggregation. In this experimental setup,
four appliances for AMPds dataset are presented. Particu-
larly, we have used clothes’ dryer (CDE), dishwasher (DWE),
heat pump (HPE) and wall oven appliance (WOE) of single
AMPds house. Our proposed MR-TDLCNN method gener-
ally performs best mainly due to its capability to effectively
model time dependencies and its ability to incorporate dif-
ferent data observations (p, s, q, I) strengthen model’s per-
formance. R-TDLCNN and M-TDLCNN models proved to
have better performance compared to basic TDLCNNmodel.
Here, it is worth mentioning that, CNN-LSTM model’s per-
formance is quite high and is a good alternative as a proposed
solution to solve NILM problem. It should be mentioned that
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FIGURE 6. Comparison of loss curves between the basic TDLCNN (orange line) and R-TDLCNN (green line) models.

FIGURE 7. Comparison of loss curves between the basic TDLCNN (orange line) and M-TDLCNN (green line) models.

the model for detecting the HPE appliance (AMPds) is not so
accurate mainly due to seasonal signal’s changes caused by
external contextual conditions / parameters. It should be men-
tioned that for all scenarios the metrics have been calculated
over all the examined time period, in which the appliances
can be either in operation or not.

Fig. 5 shows the comparison among the predicted sig-
nal and the ground truth for clothes dryer (CDE), heat
pump (HPE) and wall oven appliance (WOE) of single
AMPds House. Fig. 5 is representative of the MR-TDLCNN
method’s superiority against the remaining TDLCNN,
M-TDLCNN and R-TDLCNN methods that have been pre-
sented before. Thus, the integratedMR-TDLCNNmodel suc-
ceeds better performance in comparison to the results that the
basic model architecture succeeds. Particularly, the baseline
TDLCNN model presents the worst results among others
for all the presented appliances. Also, we can notice the
existence of false detections, especially in HPE and WOE
appliance. M-TDLCNN and R-TDLCNN models’ have ade-
quate performance, whileMR-TDLCNNpresents high-levels
of performance and additionally, false detections have been
eliminated.

A way to get insight into the model’s learning behavior is
through evaluation on the training dataset. Thus, a model’s

learning rate can be described using performance/epochs
diagram. Fig. 6, 7, 8 illustrate loss curves for the four
aforementioned models, namely are TDLCNN, R-TDLCNN,
M-TDLCNN and MR-TDLCNN, in pairs.

Fig. 6 shows TDLCNN and R-TDLCNN models’ loss
progress during training using RMSE error and considering
60000 iterations per appliance for each of the presented CNN
based models. In general, the loss function is being min-
imized during training. As observed, R-TDLCNN model’s
performance is slightly better than TDLCNN model’s, as the
former has a lower loss than the latter. It is worth mentioning
that the training loss for HPE and DWE appliances present
considerably lower values in R-TDLCNN than the values
deriving from TDLCNNmodel. The loss curve, as illustrated
with green for R-TDLCNN model, has lower starting point
value, decreases with a smaller rate and is smoother than
TDLCNN model’s loss curve (with orange line).

Fig. 7 shows loss progress for basic TDLCNN and
M-TDLCNN models during training. In general, the loss
function is being minimized during training. In most cases,
M-TDLCNN losses are lower compared to TDLCNNs ones.
DWE appliance presents intense slope with high starting
point values (3 for TDLCNN and 1.5 for M-TDLCNN) that
converge at values <1. Finally, the loss curve forM-TDLCNN
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FIGURE 8. Comparison of loss curves between the basic M-TDLCNN (orange line) and MR-TDLCNN (green line) models.

FIGURE 9. Elapsed convergence time for TDLCNN, R-TDLCNN, M-TDLCNN
and MR-TDLCNN models of WOE appliance.

and MR-TDLCNN models is presented with orange and
green color line, respectively, as Fig. 8 shows.

Taking as example WOE appliance, the box plot has been
used to display the distribution of RMSE error reduction
during training in conjunction to elapsed time, based on
the five-number summary: minimum, first quartile, median,
third quartile, and maximum. Furthermore, surprisingly high
and low values called outliers, are illustrated by dots. The
central rectangle spans the first quartile to the third quartile.

A segment inside the rectangle shows the median and
‘‘whiskers’’ above and below the box show the locations
of the minimum and maximum. Comparing TDLCNN and
R-TDLCNN in Fig.9, we notice an increase in convergence
speed leading to the reduction of needed time for training in
comparison to the time needed for TDLCNN, even though
the initial RMSE error (0.9) is greater than RMSE error of
the simple CNN single channel model (0.8). Furthermore,
TDLCNN succeeds RMSE error 0.2 while R-TDLCNN
reaches the value of 0.1. Also, the presence of RMSE error
value 0.1 starts early (the first minute of training time), even
though as an ‘‘outlier’’. As regards the other two models, M-
TDLCNN model reaches the value of 0.1 RMSE error, while
MR-TDLCNN reaches the same value earlier and the training
phase stops 10 minutes earlier.

V. CONCLUSION
In this paper, we introduce a novel deep learning based
method for energy disaggregation. The proposed recur-
rent deep-learning multi-input/multi-output regression model
based on CNN leverages the recurrent property to effectively
model the temporal interdependencies of the power signals.
Moreover, the incorporation of multiple channels, each for
a different signal (active, reactive, apparent power and cur-
rent), offers additional streams of information resulting in
a more accurate model. Experimental results suggest higher
performance and faster convergence times compared to state
of the art approaches. As future work, we will consider
Bayesian optimization techniques for hyperparameter fine-
tuning, as well as investigating the applicability of transfer
learning for improving generalization in other power con-
sumption scenarios.
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