IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN CYBERSECURITY

Received May 9, 2019, accepted June 7, 2019, date of publication June 19, 2019, date of current version July 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2923640

An Adaptive Ensemble Machine Learning
Model for Intrusion Detection

XIANWEI GAO ™, CHUN SHAN~, CHANGZHEN HU, ZEQUN NIU™, AND ZHEN LIU

Beijing Key Laboratory of Software Security Engineering Technology, School of Computer Science and Technology, Beijing
Institute of Technology, Beijing 100081, China

Corresponding author: Chun Shan (sherryshan @bit.edu.cn)

This work was supported in part by the National Key R&D Program of China under Grant 2016YFB0800700, and in part by the National
Natural Science Foundation of China under Grant U1636115.

ABSTRACT In recent years, advanced threat attacks are increasing, but the traditional network intrusion
detection system based on feature filtering has some drawbacks which make it difficult to find new attacks
in time. This paper takes NSL-KDD data set as the research object, analyses the latest progress and existing
problems in the field of intrusion detection technology, and proposes an adaptive ensemble learning model.
By adjusting the proportion of training data and setting up multiple decision trees, we construct a MultiTree
algorithm. In order to improve the overall detection effect, we choose several base classifiers, including
decision tree, random forest, kNN, DNN, and design an ensemble adaptive voting algorithm. We use
NSL-KDD Test+ to verify our approach, the accuracy of the MultiTree algorithm is 84.2%, while the final
accuracy of the adaptive voting algorithm reaches 85.2%. Compared with other research papers, it is proved
that our ensemble model effectively improves detection accuracy. In addition, through the analysis of data,
it is found that the quality of data features is an important factor to determine the detection effect. In the
future, we should optimize the feature selection and preprocessing of intrusion detection data to achieve
better results.

INDEX TERMS Intrusion detection, ensemble learning, deep neural network, voting, MultiTree, NSL-KDD.

I. INTRODUCTION

As the main approach to defend advanced threat attacks,
network intrusion detection is facing more and more chal-
lenges. The traditional intrusion detection system based on
feature detection has been used for a long time. Be limited
by the scale and refresh rate of the database of predefined
signatures, signature based intrusion detection system is not
able to detect all types of attacks especially new attack
variants. In order to solve this problem, researchers have
paid much attention to introduce other techniques in intru-
sion detection, and one way is to use machine learning
techniques.

In recent years, Decision tree, random forest, SVM, neural
network and other machine learning algorithms have been
used in the field of intrusion detection, and some improve-
ments have been achieved.

Howeyver, as it is well known that there is no free lunch,
each algorithm has its own advantages and disadvantages.
Some algorithms may perform well on one type of attack,

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Quan.

82512

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

but show poor performance on other types. Through the
analysis of some past research papers, no matter what the
deep learning or feature selection methods is, there are still
some disadvantages. In addition, many studies only focus on
the overall detection accuracy, but the detection effect for
small-scale data is often very low. The proportion of real
attack events in all data is imbalanced, so we need to focus
on the detection ability of malicious attack data with small
proportion.

The present paper proposes an adaptive ensemble learning
model, which can integrate the advantages of each algorithm
for different types of data detection, and achieve optimal
results through ensemble learning. The advantage of ensem-
ble learning is to combine the predictions of several base
estimators in order to improve generalizability and robust-
ness over a single estimator. This paper uses NSL-KDD
data set and some common algorithms such as decision tree,
random forest and deep neural network to train our model.
The MultiTree and adaptive voting algorithm are proposed
which obviously improve the effect of intrusion detection.
By comparison, they are superior to many previous research
results and have good application prospects.

VOLUME 7, 2019

https://orcid.org/0000-0002-3133-6012
https://orcid.org/0000-0002-1090-026X
https://orcid.org/0000-0003-2915-4575

X. Gao et al.: Adaptive Ensemble Machine Learning Model for Intrusion Detection

IEEE Access

Il. RELATED WORK

In the field of intrusion detection, many scholars have tried
machine learning algorithms and used public NSL-KDD data
set for research in order to improve the detection effect [9].
Hodo et al. [4] reviewed machine learning techniques and
their performance in detecting anomalies. Feature selection
which influences the effectiveness of machine learning (ML)
IDS is discussed to explain the role of feature selection in
the classification and training phase of ML IDS. Nathan
Shone presented a novel deep learning technique for intrusion
detection [5], which addressed some concerns and proposed
nonsymmetric deep autoencoder (NDAE) for unsupervised
feature learning. Tao et al. [7] proposed a novel approach
called SCDNN, which combines spectral clustering (SC) and
deep neural network (DNN) algorithms. KEHE WU et al. [8]
used CNN to select traffic features from raw data set auto-
matically, and set the cost function weight coefficient of each
class based on its numbers to solve the imbalanced data set
problem. Simone [23] designed IDS with a neural network
ensemble method to classify the different attacks. The neu-
ral network ensemble method comprises autoencoder, deep
belief neural network, deep neural network, and an extreme
learning machine. To improve the performance of network
intrusion detection systems, Xu C applied deep learning
theory to intrusion detection and developed a deep network
model with automatic feature extraction [14]. Deep learn-
ing techniques were used for training and achieved good
performance.

Several studies have suggested that by selecting relevant
features for intrusion detection system, it is possible to con-
siderably improve the detection accuracy and performance
of the detection engine [10]. Shrivas [13] proposed ANN-
Bayesian Net-GR technique that means ensemble of Arti-
ficial Neural Network (ANN) and Bayesian Net with Gain
Ratio (GR) feature selection technique. Ambusaidi et al. [17]
proposed a mutual information based algorithm that ana-
lytically selects the optimal feature for classification. This
mutual information based feature selection algorithm can
handle linearly and nonlinearly dependent data features.
MAJJED AL-QATF [18] proposed an effective deep learn-
ing approach, self-taught learning (STL)-IDS, based on the
STL framework. The proposed approach is used for feature
learning and dimensionality reduction. It reduces training
and testing time considerably and effectively improves the
prediction accuracy of support vector machines (SVM) with
regard to attacks. Jaber et al. [30] used principal compo-
nent analysis and linear discriminant analysis with a hybrid,
nature-inspired metaheuristic algorithm called Ant Lion opti-
mization for feature selection and artificial neural networks
to classify and configure the cloud server, in order to prevent
DDoS attack in cloud computing.

Majd et al. [12] proposed a 5-level hybrid classification
system based on flow statistics in order to attain an improve-
ment in the overall accuracy of the system. For the first
level, they employ the k-Nearest Neighbor approach (KNN);

VOLUME 7, 2019

for the second level, use the Extreme Learning Machine
(ELM). To prevent the cyberattack irreversible damage,
Zhou et al. [19] proposed a framework, called DFEL, to detect
the internet intrusion in the IoT environment. Through the
experimental results, authors presented that DFEL not only
boosts classifiers’ accuracy to predict cyber attack but also
significantly reduce the detection time. Wahba et al. [22]
applied adaptive boosting using naive Bayes as the weak
(base) classifier. The key point in the research is that they
are able to improve the detection accuracy with a reduced
number of features while precisely determining the attack.
Zhao et al. [25] proposed a transfer learning-enabled frame-
work and approach, called HeTL, which can find the common
latent subspace of two different attacks and learn an opti-
mized representation, which was invariant to attack behav-
iors’ changes.

Generally speaking, previous studies mainly focus on the
optimization of neural networks and some machine learning
algorithms to improve the overall detection effect. The main
optimization methods are feature selection and ensemble
learning. However, there is still much room to improve the
results of these studies.

IlIl. PROPOSED APPROACH

A. ADAPTIVE ENSEMBLE LEARNING MODEL

The adaptive ensemble learning model designed in this paper
chooses common machine learning algorithms such as deci-
sion tree, SVM(support vector machines), logical regression,
kNN(k-nearest neighbors) [27], Adaboost, random forest
and deep neural network as alternative classifiers. Five vot-
ing classifiers are selected through comparative tests. Then,
by adjusting the proportion of samples, setting data weights,
multi-layer detection and other combined method to boost the
detection effect of each algorithm. Finally, the adaptive voting
algorithm with different class-weights is used to obtain the
optimal detection results.

The adaptive ensemble learning model showed in
Figure 1 mainly includes the following processes:

1) Input the NSL-KDD training data set.

2) The preprocessing module converts the character-type
features such as label and service into numbers, standardizes
the data, and deletes unnecessary features.

3) Ensemble training of candidate algorithms using pre-
processed data.

4) All the algorithms are trained by cross validation using
training data, and the algorithm with better detection accu-
racy and operation performance is selected to be voted, and
each algorithm is boosted to further improve the detection
accuracy. The boosting methods include feature selection,
unbalanced sampling, class weight, multi-layer detection, etc.
In this paper, the decision tree algorithm is optimized and the
MultiTree algorithm is proposed.

82513

IEEE Access

X. Gao et al.: Adaptive Ensemble Machine Learning Model for Intrusion Detection

S5
() [®

[Preprncessing} [Encoding]

@)

[StandardScaler] [Feature Select]

[Validate] [Selecting]

=3

®)]
Class weight Voting

- [Classfier1][Classfier3]

Classfier2 Classfierd
(8)

Ensemble
Training

FIGURE 1. Adaptive ensemble learning model.

5) According to the training accuracy of each algorithm,
the classification weights of each algorithm are set and the
adaptive voting algorithm model is generated.

6) Input the data of the whole NSL-KDD test set and
preprocess it in step 2.

7) Each algorithm selected is used to detect the test set, out-
put the preliminary predict classification, and then calculate
the final voting results using the adaptive voting algorithm.

B. DATASET INTRODUCTION

The famous public KDD99 [1] data set has two important
issues which highly affect the performance of evaluated sys-
tems. One of the most important deficiencies is the huge
number of redundant records [2] which causes the learning
algorithms to be biased towards the frequent records, and
thus preventing them from learning fewer records which are
usually more harmful to networks such as U2R and R2L
attacks. In addition, the existence of these repeated records
in the test set often causes the evaluation results to be biased
by the methods which have better detection rates on the
frequent records. Tavallaee ef al. [3] proposed a new data set
NSL-KDD, which consists of selected records of the com-
plete KDD data set but does not suffer from any of mentioned
shortcomings. Table 1 shows the data set contains five types
of data, including Normal, DOS, Probe, R2L, and U2R.

The analysis by Revathi [6] shows that NSL-KDD data
set is very ideal for comparing different intrusion detection
models. Therefore, this paper chooses the data set as the
research object.

82514

TABLE 1. NSL-KDD introduction.

Class

Subclass

Description

Normal

Normal

benign record

DOS

apache2,back,mailbomb,pro
cesstable,snmpgetattack,tear
drop,smurf,land,Neptune,po
d,udpstorm

denial-of-service, e.g.
syn flood;

Probe

Nmap, Ipsweep, Portsweep,
Satan, Mscan, Saint

surveillance and other
probing, e.g., port
scanning.

R2L

ftp_write,guess _passwd,snm
pguess,imap,spy,warezclient
,warezmaster,multihop,phfi
map,named,sendmail,xlock,
XSNOOp,worm,

unauthorized access from
a remote machine, e.g.
guessing password;

U2R

Ps,buffer_overflow,perl,root
kit,loadmodule,xterm,sqlatta
ck,httptunnel,

unauthorized access to
local superuser (root)
privileges, e.g., various
“buffer overflow”

attacks;

NSL KDD DataSet

Tota orma Dos Frobe R2L UzZR

FIGURE 2. Proportional statistics of NSL-KDD train and test.

According to the statistical analysis of various types of data
in Figure?2, it is found that the distribution of various types of
data is imbalanced. Normal has the highest proportion of total
data, accounting for about 53% of the total data, while U2R
type sample data is very few, which may lead to inadequate
training and under-fitting. In fact, Probe, R2L and U2R are
often used by hackers as advanced threat attack, so we should
try our best to improve the classification accuracy of these
types of data.

C. DATA PREPROCESSING

There are 42 fields in the original data set, among which
label, protocol and flag fields are character types. Those
fields cannot be directly used as input of machine learning
algorithm, so preprocessing operations are needed. Firstly,
label tag columns in the original data are converted into five
types, Normal: 0, DOS: 1, Probe: 2, R2L: 3, U2R: 4. The
protocol_type field takes TCP, UDP and ICMP as its values.
We use one-Hot-Encoding to process its text values, which
converts all classification features into binary ones, such
as [1,0,0] representing TCP protocol. After transformation,
122 data features are included. Through the analysis of train-
ing set data, it is found that num_outbound_cmds data value

VOLUME 7, 2019

X. Gao et al.: Adaptive Ensemble Machine Learning Model for Intrusion Detection

IEEE Access

is 0, so this feature is removed. In the original data, the range
of values of many feature fields varies greatly, which has
a great impact on the training results. Therefore, Standard
Scaler method is used to standardize the data. Standardized
data is transformed by subtracting the mean and dividing
it by variance (or standard deviation). The normalized data
conforms to the standard normal distribution, that is, the mean
is 0 and the standard deviation is 1.

In order to understand the distribution of data intuitively,
we reduce the dimensions of NSL-KDD from 42 to 2, and
hope the 2 dimensions data set represents the original data
set as much as possible. Principal component analysis (PCA)
is used to find out the most important aspect of the data.
We can see the distribution of data sets intuitively on a
two-dimensional graph.

o

s 4 = o 2

FIGURE 3. PCA analysis of NSL-KDD training data set.

As can be seen from the PCA chart of the training data set
in Figure 3, the data of Normal (green), DOS (red), Probe
(yellow) are relatively centralized, and the overlap with other
types of data is not much, so they are easy to be classified. The
R2L (blue) and U2R (black) data overlap with other data, and
they are not centralized enough, so it is difficult to classify.
However, the data of the two types are relatively small, and
they are sensitive to the detection results, which can easily
lead to a large number of false positives. After the training
data set is preprocessed, machine learning algorithm can be
used for training. The test set uses the data in the KDDTest+
file and uses the same pre-processing measurements as the
training set. Classification algorithm should not only consider
the overall detection accuracy, but also try to improve the
accuracy of small ratio data.

D. MULTI TREE ALGORITHM

According to the previous research, we choose the CART
(Classification and Regression Tree) to classify the sample
data. In the classification problem, if there are K classes and
the probability of sample points belonging to k class is py,
then the Gini exponent of probability distribution is defined
as follows: Gini(p) = 1 — Z]f p,%, for a given sample set D,
its Gini index is: Gini(D) = 1 — YK | (@m)z, C, is the
sample subset of class K in D, and K is the number of classes.
Gini index is the difference between the sum of probability

squares of class Cx and 1, which reflects the uncertainty of
sample set. The sample set corresponding to the parent node

VOLUME 7, 2019

NSL KDD
Train_D1

r r
r r
@m Train_D3

|| e — (o | e J—o o]
Test_ D

DTree2(2)]

1 1 x
=) ‘

FIGURE 4. MultiTree algorithm process.

is D, and CART chooses feature A to split into two sub-
nodes, corresponding set is D1 and D2. The split Gini index
is defined as follows:

Gini(D, A) |D1|Gini (D1) + |D2|Gz';11'(D2)
’ D D
The greater the Gini index, the higher the uncertainty of the
sample set. The essence of classification learning process
is the reduction of sample uncertainty (i.e. the process of
entropy reduction), so the feature splitting of the minimum
Gini index should be chosen.

Due to the serious imbalance in the proportion of various
types of data in the data set, Normal and DOS types account
for a higher proportion of data, resulting in higher accuracy of
these types, while the accuracy of U2R type is lower. In this
paper, an ensemble algorithm is designed to train several
CART classifiers by adjusting the proportion of different
types of samples to solve the imbalance of sample proportion.

Cross
Entropy

XBWyos

Output Layer= y
Multi-class

Input Layer

Hidden Layers

FIGURE 5. Deep neural network.

E. DEEP NEURAL NETWORK ALGORITHM
This paper also takes DNN as the base classifier algorithm
and improves its detection effect. The structure of DNN
designed in this paper is shown in Figure 5. The deep neural
network consists of input layer, hidden layer and output layer.
Layers are fully connected with each other. Any neuron in
layer i must be connected with any neuron in layer i + 1.
Although DNN seems complex, it is the same as perceptron in
small local models, that is, a linear relationship z = > w;x; +
b with an activation function o (z). The forward propagation
algorithm of DNN uses several weight coefficient matrices
w, bias vector b and input value vector x to carry out a
series of linear and activation operations, starting from the
input layer, backward calculation from one layer to the output
layer.

In multi-classification scenarios, we use ReLLU (Rectified
Linear Unit) as the activation function:

o (x) = max(0, WT + b)

82515

IEEE Access

X. Gao et al.: Adaptive Ensemble Machine Learning Model for Intrusion Detection

Algorithm 1 MultiTree Algorithm
Input: Training Set Data Train_D, Test_D
Output: Output integrated test results
Process:
step 1 Training the first decision tree
rus =
RandomUnderSampler(ratio
= {1/16x%10,r1,12,r3,14})
Reduce the ratio of Normal types to 1/16 to
solve the problem of sample imbalance.
Train_rus = rus.fit_sample(Train_D)
Dtreel fit(Train_rus)
pred_y1 = Dtreel.predict(Test_D)
step 2 Training Normal and Abnormal Decision Trees
ConvertBinary(Train_D, Test_D)
Converting training set and test set into two
categories.
rus = RandomUnderSampler(ratio = {1/8xr0,r1})
Adjusting normal/abnormal sample ratio.
Train_rus2 = rus.fit_sample(Train_D)
DTree2.fit(Train_rus2)
y_normal = DTree2.predict(Test_D)
error_index = list(pred_y1 == 0).isin
(list(y_normal == 1))
Records with inconsistent statistical
classifications. Records identified as 0 in the
first step and 1 in the second step.
step 3:The data identified as Normal in Step 1 and
abnormal in Step 2 are further classified into (1,2,3,4)
categories.
rus =
RandomUnderSampler(ratio = {r1,r2,r3,r4})
Training attack type decision tree only
Train_rus3 = rus.fit_sample(Train_D)
DTree3.fit(Train_rus3)
error_y_ = clf_evil.predict(Test_D[error_index])
pred_yl[error_index] = error_y_
Re-assignment of appraisal results
return pred_yl

A loss function should be used to measure the output loss
of training samples, and then the loss function is optimized
to minimize the extreme value. We use cross-entropy as loss
function:

1
C= - ; [ylIny + (1 — y)In(1 — y)]

A series of linear coefficient matrices W and bias vector b
are our final training results. After designing the DNN model,
we adjust the weights of the training data, set class_weight =
0:1, 1:2, 2:20, 3:40, 4:200}, and increase the weight of the
type data with small sample proportion, so as to improve the
detection effect of this type. The class weight will be helpful
to the detection effect. Finally, we use the softmax function

82516

2096102337760

nput: (None, 118)

dense_1: Dense
(None, 1024)

mput: | (None, 1024)
(None, 1024)

dropout_1: Dropout

output:

mput: | (None, 1024)

dense_2: Dense
(None, 512)

output:

mput: | (None, 512)

dropout_2: Dropout
(None, 512)

output:

mput: | (None, 512)
(None, 256)

dense_3: Dense

output:

mput: | (None, 256)
(None, 256)

dropout_3: Dropout

output:

mput: | (None, 256)
(None, 128)

dense_4: Dense

output:

mput: | (None, 128)
(None, 128)

dropout_4: Dropout

output:

mput: | (None, 128)
(None, 5)

dense_5: Dense

output:

mput: | (None, 5)

activation_1: Activation
- (None, 5)

output:

FIGURE 6. DNN model parameter.

to decide which class the record should be. The network
structure and parameters of DNN can be seen in Figure 6.

F. ADAPTIVE VOTING

In order to synthesize the advantages of each algorithm,
we propose an adaptive voting algorithm. The algorithm
showed in Figure 7 trains different classifiers (weak clas-
sifiers) for the same training set, and then assemble these
weak classifiers to form a stronger final classifier. The core
thoughts of the algorithm is to determine the weight wj; of a
classifier algorithm for a certain type of data which expresses
the credibility (possibility) of obtaining the detection value
in this scenario. Because the characteristics of each data set

VOLUME 7, 2019

X. Gao et al.: Adaptive Ensemble Machine Learning Model for Intrusion Detection

IEEE Access

4 Classifierl yl \
X \\
-‘ Classifier2 y2)
E /// Voting y
N~ /
~ /
'{ Classifier3 y3 /
/
/
Classifier4 1 ya

FIGURE 7. Adaptive voting algorithm.

are different, the voting weight can also be set manually by
referring to the weight value to achieve the best results.
The adaptive voting algorithm is as follows:

Algorithm 2 Adaptive Voting Algorithm

Input:
T={x1y) X2, ¥2), -+, Ko, Y} xi € X,y €Y
Y = {17 ooy C}a F = {flvaﬂ tt 7fm}a
Out:H(x)
1) Initialize the class weights:
wil Wic
w=| ...

Wm1 Wme

wij=1;i={1,....m};j={1,.c}

2) Forifrom 1 tom
(a) Fit a classifier fj(x) to the training data
(b) Calculite possibility for f; (x|c = j), w; =
220 (Fi0)==0)&&(y==))

3) Using]2\1,11 classifiers to
fier.predict(Test_x),

4) Calculate possibility for one record to belong class c,
pi = 21 wii(fi () = ¢)

5) Output:

H (x) = argmax (ZZ pilfi () == &)

predict: classi-

Algorithmic description:

1) Optimize the machine learning algorithms (classifiers)
in F, then use training sets and verification sets to train and
evaluate them.

2) Calculate the training accuracy of each algorithm for
different attack types as the weight cardinality wj;.

3) For each test record, the predictive results of each clas-
sifier are calculated according to the [0-4] type.

4) Choose the class with the max voting result as the final
predict result of the record.

5) Output full five-category test results.

An example is given to illustrate the working principle of
the weighted voting algorithm.

As can be seen in Table 2, Classifier 1 has the best detection
effect for Type 3, while Classifier 3 has the best detection

VOLUME 7, 2019

TABLE 2. The class-weights of three classifier.

Class Classifierl Classifier2 Classifier3
Weight
Class1 w11=0.8 w12=0.5 w13=0.7
Class2 w21=0.7 w22=0.8 w23=0.9
Class3 w31=0.9 w32=0.6 w33=0.5
TABLE 3. Examples of voting results.
Predict |Classifier] |Classifier2 |Classifier3 |Voting Result
Recordl |Class2 Class 2 Classl 0.7+0.8 >|Class2
0.7
Record2 |Classl Classl Class1 0.8+0.5+0.7 |Class1
Record3 |Class3 Class2 Class2 0.9<0.8 +|Class2
0.9
Record4 |Class3 Class2 Classl 0.7<0.8<0.9 |Class3
TABLE 4. Confusion matrix.
Attack Predicted Class
Yes No
True Class Yes TP FN
No FP TN

effect for Type 1. After setting the weights of each classifier,
we can start voting for test records.

By adaptive voting, the highest possible classification test
results in Table 3 were calculated.

IV. EVALUATION
A. EVALUATION METRICS
All these evaluation metrics [5] are basically derived from
the four basic attributes of the confusion matrix depicting the
actual and predicted classes in Table 4.

1) True Positive (TP) - Attack data that is correctly classi-
fied as an attack.

2) False Positive (FP) - Normal data that is incorrectly
classified as an attack.

3) True Negative (TN) - Normal data that is correctly
classified as normal.

4) False Negative (FN) - Attack data that is incorrectly
classified as normal.

We will use the following measures to evaluate the perfor-
mance of our proposed solution:

TP +TN
TP + TN + FP + FN

The accuracy measures the proportion of the total number of
correct classifications.

Accuracy =

TP
TP + FP

The precision measures the number of correct classifications
penalized by the number of incorrect classifications.

TP
TP + FN

Precision =

Recall =

82517

IEEE Access

X. Gao et al.: Adaptive Ensemble Machine Learning Model for Intrusion Detection

The recall(also called detection rate) measures the number
of correct classifications penalized by the number of missed
entries.

2 - Precision - Recall
F1 — score =

Precision + Recall

The F1-score measures the harmonic mean of precision and
recall, which serves as a derived effectiveness measurement.

B. TEST EVALUATION

This section lists the experimentation process and results
obtained. All the tasks are performed using the Python with
scikit-learn and tensorflow library on Win10 system. The test
computer is equipped with Intel(R) Core 17 CPU 1.8GHz and
8.0GB RAM.

1) TEST EVALUATION

Firstly, several selected machine learning algorithms are used
to cross-validate and evaluate the indicators of each algo-
rithm. The original training set is divided into training set and
verification set according to the ratio of 50:50.

TABLE 5. Cross-validate on training set.

Algorithms|Accuracy [Precision|Recall |F1 Time(s)
DeciTree [99.63% 99.62% 199.62%|99.62%|0.33
RanForest [99.8% 99.79% 199.8% [99.79%10.7
kNN 99.59% 99.57% 199.59%(99.58%33

LR 97.73% 97.72% 197.73%|97.71%|13.7
SVM 99.53% 99.52% 199.53%(99.52%|220.7
DNN 98.4% 99.09% [98.4% |98.64%|245.2
Adaboost [99.9% 99.9% 199.9% 199.89%|112.3

According to the results of cross-validation in Table 5,
the training effect of Adaboost algorithm is the best. Then the
test data set is used to validate the algorithms and evaluate the
generalization effect in Table 6.

TABLE 6. Result of each algorithm on KDDTest+.

Algorithms |Accuracy |Precision |Recall |F1 Time(S)
DeciTree [79.71% [83.51% [79.72% |77.31% |6.34
RanForest |76.64% [81.85% [76.64% |72.17% |1.86
kNN 75.51% [80.97% |75.51% |71.41% |86.49
LR 73.58% |74.65% |73.58% |69.13% [43.77
SVM 74.09% [80.91% |74.09% |70.38% |1785.2
DNN 81.6% |84% 81.6% |80.18% |227.8
Adaboost [76.02% [81.82% [76.02 |72.12% |265.1

In the field of intrusion detection, there is a high real-
time requirement for the analysis of big data of security
logs, which requires not only high accuracy, but also as short
detection time as possible. Through comparison, it is found
that the overall accuracy of DNN and decision tree is higher,
and the running time of decision tree is shorter, which belongs
to the best cost-effective learning algorithm. We also need to

82518

TABLE 7. Recall of algorithms detects on each class of KDDTest+.

Algorithms Normal | Dos Probe |R2L U2R

DeciTree 97.21%|84.77% | 66.25% | 21.37% | 7.00%
R.Forest 97.37%|81.47% 68.86% | 2.73% | 1.50%
kNN 97.27%(79.38%62.21%|5.16% |4.50%
LR 92.81%|79.81%64.93% | 1.56% |3.00%
SVM 97.65%|77.40% | 48.95%19.38% |2.00%
DNN 95.92% | 84.56% | 77.53%[30.63% | 26.50%

evaluate the detection effect of each algorithm for different
types of data.

By comparison in Table 7, the detection effect of R2L and
U2R data is poor, which is closely related to the imbalance
of sample proportion in the previous analysis. If we need
to improve the overall detection effect, we must find ways
to overcome these problems. Although the overall detection
effect of DNN is better, it is worse than other types in
Normal type detection. As can be seen in Table 7, some
other algorithms perform well on Normal type, but not on
the others. Therefore, various classification algorithms do not
have advantages in all types of data, but each has its own
advantages. In the future, we will optimize the combination
of the algorithms and make use of the advantages of various
algorithms to improve the overall detection effect.

o/,/c/\/"**\o/"

Accuracy
© o o o0
O N oo ©

5 10 15 17 20 25 30 35 40

FIGURE 8. Accuracy of decision tree using different number of features.

0.60 4 —— SAMME
—-- SAMME.R

—— SAMME
SAMME.R

0.7 4

0.6 1

" Pt

0.3

Test Error
°
5
°
Error

T T T T T 0.2 T T T T T
o 50 100 150 200 o 50 100 150 200
Number of Trees Number of Trees

FIGURE 9. Adaboost SAMME.R test results.

2) MULTITREE RESULT

Many researchers use feature selection method to improve
the effect of decision tree. The feature with the maximum
value of Gini is selected as the partitioning feature. We use
CART (Classification and Regression Tree) algorithm to test
the accuracy of different number of features in Figure 8§,
and find that 17 features get the best accuracy of 79.7% on
NSL-KDD Test+. We tested the four-level decision tree and

VOLUME 7, 2019

IEEE Access

X. Gao et al.: Adaptive Ensemble Machine Learning Model for Intrusion Detection

ini = 0.277
samples = 1378
value = [166, 52, 1159, 0, 1]

dst_host_srv_count == -1.022 -

v ini=0.132
=0418 gini
samples = 5471 > samples = 4093
vale = [3973. 239, 1258, 0, 1] value = [3807. 187. 99. 0. 0]
.z'
o gini=0.06
— 5 = 6392
dst_host same src_port_rate <= 1.154 service_http <=10.3 | valne = [140, 13, 6197, 73, 17]
gini = 0.493 gini=0.142
samples = 12187 ™ samples = 6716 — = 0.042
valie = [4430, 255, 7461, 28, 13] value = [457, 16, 6203, 28, 12] —n B ee = 324

SAMp
vale = [317. 1.6, 0, 0]

gini = 0.018

samples = 41688
valne = [33. 41319, 333, 2, 1]

dst_host_srv_couat <= -0.146 [~
gmi= 0.038 zmi= 0.615
samples = 42216 ™ samples = 528
count <= -0.704 dst_host_diff srv_rate <=0328 | " yame = [286, 41404, 523, 2, 1] vahe = [253, 85, 190, 0. 0]
gini = 0,433 | eimi= 0167
samples = 58257 samples = 46070 - —
vaipe = [4717. 42123, 11373, 30, 14] value = [287, 41868, 3912, 2. 1] |7 | diff_stv_rate <= 0.066 gini = 0.326
> 4 gini=0.212 E— samples = 560
e samples = 3854 vale = [0, 445, 115, 0, 0]
value = [1, 464, 3389, 0. 0] [
™ gini= 0012
samples = 3204
vale =[1, 19, 3274, 0, 0]
sre_bytes <= -0.008
mi= 0.
sarmples = 123073 gini= 0.033
) _ _.;an}p 1 3 ~ E kes = 62875
value = [67343, 45927, 116356, 995, 52] - [ﬂmgiiq 8 s 16)
— valne = 2,77.282,
T ot <= 12,231 —
~ ini= 0.041 v
Filse service_ecr_i<=103 mm_compromised <= 0.009 % ame = ngal-,. * 2 6.,3;'}0961 16] ™ saﬁ:phs =335
gini = 0,141 gini= 0.068 S e valie = [262, 0, 0, 273, 0]
samples = 67716 samples = 64683
vale = [62626. 3804, 283, 965, 38] vahie = [62437, 960, 283, 963, 38] — 0 gimi= 0.135
T~ . samples = 390
— samples = 127 =62)
— valve = [363. 883, 1, 4, 22] [value = [362. 1, 1, 4, 22]
™~ n T—
src_bytes <= -0.008 p—— M gmi-o0o0m
T 117 5 : 5 les = 883
samples = 3033 ‘_m:’:‘“[l;‘;; o 0 iah;eim[li 282, 0,0, 0]
value = [189, 2844, 0.0.0] [el
R

FIGURE 10. 4-level decision tree generated from NSL-KDD training data set.

found that src_bytes feature has the biggest Gini value and
is the best choice for root node in Figure 10. Experiments
show that the number of features and which features to select
have a greater impact on the detection results. In the follow-up
algorithm, we will also select 17 main features for the training
of decision tree.

Adaboost SAMME.R algorithm trains several weak clas-
sifiers to form a strong classifier [16], the detection effect is
not as good as the accuracy of using decision tree algorithm,
and the accuracy of using 200 estimators is not significantly
improved listed in Figure 9, which shows that the Adaboost
algorithm is not always effective.

We use NSL-KDD Test + dataset to compare deci-
sion tree, Adaboost and MultiTree algorithm. The result
in Table 8 shows MultiTree we proposed achieves the best
effect, and its accuracy is 84.23%.

3) ADAPTIVE VOTING RESULT

After the test and evaluation above, SVM algorithm takes a
long time and has no advantage in accuracy, while Adaboost
algorithm is not ideal, and the precision of logistic regression

VOLUME 7, 2019

gini= 0.0
samples = 2844
value = [0. 2844, 0. 0, 0]

TABLE 8. Comparison of Adaboost and MultiTree.

Algorithms Accuracy | Precision | Recall | F1
DecisionTree | 79.71% | 83.51% | 79.72% | 77.31%
Adaboost 76.02% | 81.82% | 76.02 72.12%
MultiTree 84.23% | 86.4% 84.23% | 83.6%

algorithm is not high, so abandon these three algorithms.
Considering the detection accuracy and operation perfor-
mance, Decision Tree, Random Forest, kNN, DNN and
MultiTree are selected as ensemble learning algorithms.

We give some examples in Table 9 to illustrate how the
adaptive voting algorithm works, and the numbers in the
table mean the type of samples. After summing up the output
results of each algorithm, the weighted voting algorithm is
used to calculate the final prediction results. It can be seen
that the voting algorithm has better accuracy than the single
algorithm.

After training with various algorithms, the adaptive voting
algorithm is used to validate the NSL-KDD test set, and
good results are obtained calculated from the Table10 and

82519

IEEE Access

X. Gao et al.: Adaptive Ensemble Machine Learning Model for Intrusion Detection

TABLE 9. Adaptive voting sample on KDDTest+.

DeciTree | R.forest | kKNN | DNN %glﬁ Voting | True
3 0 0 3 0 0 0
1 1 1 1 1 1 1
4 0 4 4 3 4 4
3 4 0 4 4 4 4
4 0 4 4 2 4 4
0 0 0 0 2 2 2
3 0 0 4 2 4 3
0 0 0 4 3 3 3
2 2 2 3 2 2 2
0 0 0 0 3 3 3
0 0 0 4 3 3 3
2 0 2 2 0 0 0
TABLE 10. Result of voting.
Method Normal | Dos Probe R2L U2R
Voting 94.93% | 84.37% | 87.11% | 55.27% | 25%

8000

dos{ 532 574 58 2
6000
3
Q
T orobeq{ 108 163 2109 39 2
o
£ 4000
214 1085 2 61 1521 83
2000
wrd 37 0 100 13 50
- - : 0
» N
P S U
& <

Predicted label

FIGURE 11. Confusion matrix of adaptive voting(85.2%).

Figure 11. The metrics are Accuracy: 0.852, Precision:0.865,
Recall: 0.852, F1: 0.849.

The PCA principal component analysis method is used to
analyze the test result shown in Figurel2.

It is found that the data distributed in the test set has
some similarities with training data. Among them, R2L and
U2R data overlap with other data, and their distribution is
not uniform, which makes classification difficult. After using
the boosted algorithm to classify the test data, the erroneous
classified data are displayed by PCA method. Most of the data
points in the test data have been successfully classified and
deleted from the voting results figure. It is found that Normal
and Probe data are well separated, but some DOS (red) data
are not classified successfully. But it also shows a certain

82520

FIGURE 12. PCA Compare test set with voting wrong result (14.8%).

TABLE 11. Comparison of the accuracy of our model with other method.

Author algorithm | Classes |Data Set Accuracy

Our Model |Ensemble |5 KDDTest+ |85.2%
Voting

Our Model |Multi Tree |5 KDDTest+ |84.23%

Our Model |DNN 5 KDDTest+ |81.61%

Majd KNN+ELM |5 KDDTest+ | 84.29%

Latah[12]

KEHE CNN 5 KDDTest+ | 79.48%

WU[8]

Tavallaee[3] |NB Tree 5 KDDTest-21 | 66.16%

Ingre B.[24] | ANN 2 KDDTest+ |81.2%

Aggarwal Random 5 KDDTest+ |83.04%

P[16] Tree

Ambusaidi LSSVM- 5 Corrected 78.86%

[17] IDS KDD 99

Al-QatfM SAE SVM |2 KDDTest+ | 84.96%

[18]

linear regular distribution that help us to continue optimizing
our work in the future.

C. PERFORMANCE COMPARISON

In order to objectively evaluate the effect of our algorithm,
we compare the test results with the data of other papers.

VOLUME 7, 2019

X. Gao et al.: Adaptive Ensemble Machine Learning Model for Intrusion Detection

IEEE Access

The results of comparison in Table 11 show that our
adaptive ensemble machine learning model is an efficient
approach for intrusion detection, and our ensemble model
gives the best attack classification on the KDDTest+ dataset.

V. CONCLUSION

According to the theory that there is no free lunch, no learning
algorithm is the best learner in any scenario. In the detection
effect of single classification algorithm, the performance dif-
ference of each algorithm is not prominent. No matter what
learning algorithm is adopted, a series of methods can be used
to improve the detection effect. In this paper, we proposed
an adaptive ensemble learning model. The key idea of our
model is to use ensemble learning to gather the advantages of
different algorithms. We use the method of ensemble learning
to improve the detection effect. Compared with other research
papers, it is proved that our ensemble model effectively
improves the detection accuracy. The accuracy of the adaptive
voting algorithm we proposed is 85.2%, and the precision
86.5%, the recall 85.2%, the F1 84.9%, better than algorithms
in Table 6. Compared with other algorithms of the same
kind, the effect of the algorithm is obviously improved, and
it has great practical value. Although deep neural network
has some advantages in detection effect, it takes long time
in our comparative experiment, which means it will lead to
a long detection delay in the practical application scenario
of broadband network which will affect the response time
of attack detection. Although the effect of a decision tree
is not as good as that of DNN, the result of our MultiTree
algorithm is better than that of DNN algorithm. For imbal-
anced classification scenarios, adjusting the proportion of
samples, setting different class-weights and choosing appro-
priate features can improve the accuracy of machine learning
algorithm. In the subsequent practical applications in the field
of intrusion detection, the primary goal is to improve the
quality of training data as much as possible, optimize feature
extraction and preprocessing methods, and make the data
more separable. In addition, for a small number of types of
attacks such as U2R, separate optimization methods should
be considered to improve the detection capability of such
high-level threat attacks. Ensemble machine learning has a
good generalization effect, which is worthy of continuous
promotion and optimization in the field of network security
research and application.

REFERENCES

[11 KDD Cup Data. Accessed: 1999. [Online].
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[2] NSL-KDD Dataset. [Online]. Available: https://www.unb.ca/cic/
datasets/nsl.html

[3] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis
of the KDD CUP 99 data set,” in Proc. 2nd IEEE Symp. Comput. Intell.
Secur. Defense Appl. (CISDA), Jul. 2009, pp. 1-6.

[4] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis, and
R. Atkinson, “Shallow and deep networks intrusion detection system:
A taxonomy and survey,” 2017, arXiv:1701.02145. [Online]. Available:
https://arxiv.org/abs/1701.02145

[5] N.Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to
network intrusion detection,” IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 41-50, Feb. 2018.

Available:

VOLUME 7, 2019

[6]

[71

[8]

[9]

(10]

(1]

[12]

(13]

[14]

[15]

(16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

(30]

S.Revathi and A. Malathi, “°A detailed analysis on NSL-KDD dataset using
various machine learning techniques for intrusion detection,” Int. J. Eng.
Res. Technol., vol. 2, no. 12, pp. 1848-1853, 2013.

M. Tao, W. Fen, and C. Jianjun, Y. Yang, and C. Xiaoyun, “A hybrid spec-
tral clustering and deep neural network ensemble algorithm for intrusion
detection in sensor networks,” Sensors, vol. 16, no. 10, p. 1701, 2016.

K. Wu, Z. Chen, and W. Li, “A novel intrusion detection model for
a massive network using convolutional neural networks,” IEEE Access,
vol. 6, pp. 50850-50859, 2018.

L. Dhanabal and S. P. Shantharajah, “A study on NSL-KDD dataset for
intrusion detection system based on classification algorithms,” Int. J. Adv.
Res. Comput. Commun. Eng., vol. 4, no. 6, pp. 446-452, 2015.

H. Nkiama, S. Z. M. Said, and M. Saidu, ““A subset feature elimination
mechanism for intrusion detection system,” Int. J. Adv. Comput. Sci. Appl.,
vol. 7, no. 3, pp. 148-157, 2016.

Y. Lecun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

M. Latah and L. Toker, “An efficient flow-based multi-level hybrid
intrusion detection system for software-defined networks,” 2018,
arXiv:1806.03875. [Online]. Available: https://arxiv.org/abs/1806.03875
A. K. Shrivas and A. K. Dewangan, “An ensemble model for classification
of attacks with feature selection based on KDD99 and NSL-KDD data set,”
Int. J. Comput. Appl., vol. 99, no. 3, pp. 8-13, 2014.

C. Xu, J. Shen, X. Du, and F. Zhang, “An intrusion detection system using
a deep neural network with gated recurrent units,” IEEE Access, vol. 6,
pp. 48697-48707, 2018.

M. Albayati and B. Issac, “Analysis of intelligent classifiers and enhancing
the detection accuracy for intrusion detection system,” Int. J. Comput.
Intell. Syst., vol. 8, no. 3, pp. 841-853, 2015.

P. Aggarwal and S. K. Sharma, ““Analysis of KDD dataset attributes—Class
wise for intrusion detection,” Procedia Comput. Sci., vol. 57, pp. 842-851,
2015.

M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an intrusion
detection system using a filter-based feature selection algorithm,” IEEE
Trans. Comput., vol. 65, no. 10, pp. 2986-2998, Oct. 2016.

M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep learning
approach combining sparse autoencoder with SVM for network intrusion
detection,” IEEE Access, vol. 6, pp. 52843-52856, 2018.

Y. Zhou, M. Han, L. Liu, J. S. He, and Y. Wang, “Deep learning approach
for cyberattack detection,” in Proc. IEEE INFOCOM Conf. Comput. Com-
mun. Workshops (INFOCOM WKSHPS), Apr. 2018, pp. 262-267.

T. Omrani, A. Dallali, B. C. Rhaimi, and J. Fattahi, ‘“Fusion of ANN
and SVM classifiers for network attack detection,” in Proc. 18th Int.
Conf. Sci. Techn. Autom. Control Comput. Eng. (STA), Dec. 2017,
pp. 374-3717.

Z. Wang, “Deep learning-based intrusion detection with adversaries,”
IEEE Access, vol. 6, pp. 38367-38384, 2018.

Y. Wahba, E. ElSalamouny, and G. ElTaweel, “‘Improving the performance
of multi-class intrusion detection systems using feature reduction,” 2015,
arXiv:1507.06692. [Online]. Available: https://arxiv.org/abs/1507.06692
S. A. Ludwig, “Intrusion detection of multiple attack classes using a
deep neural net ensemble,” in Proc. Symp. Series Comput. Intell. (SSCI),
Nov./Dec. 2017, pp. 1-7.

B. Ingre and A. Yadav, “‘Performance analysis of NSL-KDD dataset using
ANN,” in Proc. Int. Conf. Signal Process. Commun. Eng. Syst., Jan. 2015,
pp. 92-96.

J. Zhao, S. Shetty, J. W. Pan, C. Kamhoua, and K. Kwiat, “Transfer
learning for detecting unknown network attacks,” EURASIP J. Inf. Secur.,
vol. 2019, no. 1, p. 1, 2019.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119-139, Aug. 1997.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach,
D.J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl.
Inf. Syst., vol. 14, no. 1, pp. 1-37, 2008.

M. A. Nielsen, Neural Networks and Deep Learning. San Francisco, CA,
USA: Determination Press, 2015.

C. Chio and D. Freeman, Machine Learning and Security: Protecting
Systems with Data and Algorithms. Newton, MA, USA: O’Reilly Media,
2018.

A. N. Jaber, M. F. Zolkipli, H. A. Shakir, and M. R. Jassim, “Host
based intrusion detection and prevention model against DDoS attack in
cloud computing,” in Proc. Int. Conf. P2P Parallel, Grid, Cloud Internet
Comput. Cham, Switzerland: Springer, 2017.

82521

	INTRODUCTION
	RELATED WORK
	PROPOSED APPROACH
	ADAPTIVE ENSEMBLE LEARNING MODEL
	DATASET INTRODUCTION
	DATA PREPROCESSING
	MULTI TREE ALGORITHM
	DEEP NEURAL NETWORK ALGORITHM
	ADAPTIVE VOTING

	EVALUATION
	EVALUATION METRICS
	TEST EVALUATION
	TEST EVALUATION
	MULTITREE RESULT
	ADAPTIVE VOTING RESULT

	PERFORMANCE COMPARISON

	CONCLUSION
	REFERENCES

