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ABSTRACT Constraint-based clustering utilizes pairwise constraints to improve clustering performance.
In this paper, we propose a novel formulation algorithm to generate more informative pairwise constraints
from limited queries for the constraint-based clustering. Our method consists of two phases: pre-clustering
and marking. The pre-clustering phase introduces the fuzzy c-means clustering (FCM) to generate the cluster
knowledge that is composed of the membership degree and the cluster centers. In the marking phase, we first
propose the weak sample with the larger uncertainty expressed by the entropy of the membership degree.
Then, we study the strong sample that contains less uncertainty and should be closest to its cluster center.
Finally, given weak samples in descending order of entropy, we formulate informative pairs with strong
samples and seek answers using the second minimal symmetric relative entropy priority principle, which
leads to more efficient queries. Making use of the pairwise constraint k-means clustering (PCKM) as the
underlying constraint-based clustering algorithm, further data experiments are conducted in several datasets
to verify the improvement of our method.

INDEX TERMS Constraint-based clustering, pairwise constraint, weak sample, strong sample, symmetric
relative entropy.

I. INTRODUCTION
The constraint-based clustering which applies prior informa-
tion in the form of pairwise constraint has more improvement
in clustering performance [1]–[6]. The pairwise constraint
defines the cluster relationship between two samples [7]. The
types of it include must-link pair and cannot-link pair which
indicate two samples are in same clusters or not respec-
tively. In general, the user of constraint-based clustering
would first formulate a list of pairs and then attains the
answers through active learning. With the help of these pair-
wise constraints, constraint-based clustering takes advantage
of attributes to discover the underlying clustering standard
between samples and groups a set of samples into fixed num-
ber clusters. It is noteworthy that two categories of general
pairwise constraint formulation frameworks are explored to
enforce the clustering result in the existing research studies.

The associate editor coordinating the review of this manuscript and
approving it for publication was Kashif Munir.

The first category of approaches methods [8], [9] allevi-
ate the challenges in query view which obtain must-link
pair from limited queries as more as possible. The sec-
ond category of approaches methods based on sample view
include boundary-sample-based method [10], neighborhood-
sample-based schemes [11], [12] and informative-sample-
based framework [13] and so on.

But despite their apparent success, the problem has not
been fundamentally improved in pair view. This view does
not conflict but consolidate with two previous views. It would
confirm more must-link pairs and construct pairwise con-
straints with samples which would impact the clustering per-
formance. Two main challenges they suffer from is: 1) how to
generate informative pairwise constraint whose efficiency of
improving clustering performance is more powerful; 2) how
to make queries more efficient for the user practical applica-
tion goal of cutting cost-consuming.

The answer of pairs considered by those above-mentioned
formulation algorithms are provided by active learning
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which is mostly applied in labeling and sampling of image
processing [14]–[17], natural language processing [18], [19]
and so on [20], [21]. According to sampling strategy,
active learning can be divided into three categories:
uncertainty sampling [14]–[17], [22], [23], query-by-
committee [24]–[27], expected error minimization [28]–[31].
The uncertainty sampling is one of the most common meth-
ods due to its simplicity. By its definition, this method would
be designed to select samples which have less certainty.
Yang et al. discussed the uncertainty sampling with taking
active multi-class scenario into account [14], in which the
measure of certainty of sample was active pool and diversity
information was added into objective function. As discussed
in [15], some multi-class active learning did not consider
the uncertainty of outliers. Du et al. proposed a robust
multi-label active learning algorithm which introduced maxi-
mum correntropy criterion as themeasure of uncertainty [15].
In [16], [17], the sparse modeling was incorporated into this
samples selection to address the problem of redundant infor-
mation between uncertain samples. In query-by-committee
method, the query is formulated according to the criterion of
minimal agreement. And it attains more and more informa-
tion about classifier. But this may lead to ignore the difference
between different committees. The expected error minimiza-
tion method selects the unlabeled sample which minimize
the expected error of the current classifier. On account of its
computational expense, this method always be used in binary
classifier. As for constraint-based clustering, active learning
was introduced by Basu in 2004 [8]. Besides, the Interna-
tional Journal of Computer Vision (IJCV), one of computer
vision top journal, also had published a special issue on
active learning in 2013. The reason which many scholars are
interested in the research of it is that the labels are no longer
quite so expensive and time-consuming but the performance
of models are still powerful [32]–[34].

In this paper, we propose active informative pairwise
constraint formulation algorithm (AIPC) to solve the
above-mentioned problem. Table 1 provides the compari-
son of various formulating pairwise constraint methodolo-
gies. The AIPC has two phases: Pre-clustering and Marking.
In the Pre-clustering phase, fuzzy c-means clustering (FCM)
is introduced to develop cluster knowledge that contains
membership degree and cluster centers. The membership
degree provides the fuzzy type of cluster label to measure the
uncertain belonging of each sample. The cluster center is the
mean of all samples in the same cluster, weighted by their
membership degree. It contains less uncertainty and repre-
sents the clustering pattern of each cluster. In the Marking

TABLE 1. The comparison of various formulating pairwise constraint
methodologies.

phase, we study the membership degree to present an entropy
approach for measuring the uncertainty associated with each
sample. The larger the entropy of the sample, the larger is
the uncertainty. If the entropy is greater than one threshold
value, the sample is referred to as weak sample. Then we
should select strong sample which is closest to its cluster
center always has less uncertainty in clustering. Given the
weak sample in descending order of entropy, the queries
formed with strong samples use the second minimal symmet-
ric relative entropy priority principle until a must-link pair is
obtained. Weak samples and strong samples make up infor-
mative pairwise constraints that can improve the clustering
performance. The secondminimal symmetric relative entropy
priority principle makes the query more efficient.

The contributions of the paper are twofold. First,
we propose informative pairwise constraint that include weak
sample and strong sample which contain less uncertainty and
more uncertainty respectively. Second, following the second
minimal symmetric relative entropy priority principle, obtain-
ing the answer of the query leads to lower cost.

The rest of this paper is organized as follows. In Section II,
we introduce our proposed pairwise constraint algorithm
AIPC in detail. There are three cases, preliminary, problem
formulation and methodology. Then, in Section III, we pro-
vide the data experiments conducted in different datasets and
the underlying constraint-based clustering algorithm PCKM.
The experimental results verify the improvement of AIPC
over comparative methods. Finally, some conclusions and
future work are presented in Section IV.

II. ACTIVE INFORMATIVE PAIRWISE CONSTRAINT
ALGORITHM
A. PRELIMINARY
In this section, we introduce the mathematical notation used
for our proposed algorithm. X is the set of samples and xj
is the jth sample in X . We use M to denote the set of all
must-link pairs and C to denote the set of all cannot-link pairs.
In the application setting, We consider a query by a pair of
samples 〈xj, xk 〉, And then the answer is 〈xj, xk 〉 ∈ M or
〈xj, xk 〉 ∈ C. The pairwise constraints satisfy the following
properties:

1) If 〈xj, xk 〉 ∈M, 〈xk , xh〉 ∈M, then 〈xj, xh〉 ∈M
2) If 〈xj, xk 〉 ∈M, 〈xk , xh〉 ∈ C, then 〈xj, xh〉 ∈ C

B. PROBLEM FORMULATION
In addition to the similarity between samples, the pair-
wise constraint is an additional clustering principle for the
constraint-based clustering algorithm. Fig. 1 provide the
operational principle of pairwise constraint. Obviously, it is
unnecessary to reconsider the cluster label of samples which
are easy to be correctly grouped. If the pairwise constraints
consist of these samples, they have less effect on cluster-
ing performance. In contrast, the pairwise constraints should
work for reconsidering the samples that are most likely to be
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FIGURE 1. The operational principle of pairwise constraints in
constraint-based clustering. The samples are re-clustered with the help of
〈h,b〉 ∈ M, 〈r , s〉 ∈ M and 〈g,n〉 ∈ C. They are informative and the
clustering performance has improvement. However, 〈f ,k〉 ∈ M and
〈p, x〉 ∈ M have less influence on clustering and are non-informative.

in non-corresponding clusters, which will lead to satisfactory
clustering results.
Definition 1: If the pair leads to more desirable sam-

ple clustering, it is an informative pairwise constraint
(see 〈h, b〉 ∈ M, 〈r, s〉 ∈ M and 〈g, n〉 ∈ C in Fig. 1).
If the pair cannot improve the clustering performance, it is
a non-informative pairwise constraint (see 〈f , k〉 ∈ M and
〈p, x〉 ∈M in Fig. 1)

C. METHODOLOGY
This section introduces the active informative pairwise con-
straint formulation algorithm (AIPC) to address the problem
of how to efficiently formulate more informative pairwise
constraints from limited queries for user application require-
ments. In our method, the weak sample (see Definition 2)
and the strong sample (see Definition 3) form the informa-
tive pair. The queries follow the second minimal symmet-
ric relative entropy priority principle (see Definition 4 and
Definition 5). Fig. 2 provides the overview of the AIPC for
constraint-based clustering.

1) PRE-CLUSTERING PHASE
The main purpose of this phase is to obtain the membership
degree of each sample and the cluster center of each cluster.
In fuzzy c-means clustering (FCM), the membership degree
indicates the fuzzy belonging of samples, and the cluster cen-
ters represent the pattern of clustering. The objective function
of FCM is as follows:

JFCM (U ,V ;X ) =
c∑
i=1

n∑
j=1

µmij d
2(xj, υi)

s.t. 0 ≤ µij ≤ 1,
c∑
i=1

µij = 1

1 ≤ i ≤ c, 1 ≤ j ≤ n (1)

where m (m > 1) denotes the degree of fuzziness. xj is the
jth sample in samples set X which have n samples. d(xj, υi)

can be specified as the Euclidean distance between xj and
vi. U =

[
µij
]
with µij being the membership degree of

xj in ith cluster.V = [υ1, υ2, · · · , υc] with υi being the ith

cluster center (c is the number of clusters). By minimizing
JFCM (U ,V ;X ), we have the alternative iterative equations in
the following

υ
(t+1)
i =

n∑
j=1

[
µ
(t)
ij

]m
xj

n∑
j=1

[
µ
(t)
ij

]m (2)

and

µ
(t+1)
ij =

d2(xj, υ
(t)
i )

1
m−1

c∑
i=1

d2(xj, υ
(t)
i )

1
m−1

(3)

The iterations will stop when
∣∣∣J (t+1)FCM − J

(t)
FCM

∣∣∣ ≤ ε0

(ε0 is admissible error) or t is equal to T ( t and T are the
number of iterations and the maximum number of iterations,
respectively).

Algorithm 1 Pre-Clustering of AIPC
Input: X : the set of samples; c: the number of clusters; ε0:

the admissible error; m: the degree of fuzziness; T : the
maximum number of iterations.

Output: U =

[
µ
(t+1)
ij

]
: the membership degree; V =[

v(t+1)1 , v(t+1)2 , · · · , v(t+1)c

]
: the cluster center.

1: Initial U =
[
µ
(0)
ij

]
, and iterations number t = 0;

2: repeat
3: Update cluster center υ(t)i by (2);
4: Update membership degree µ(t)

ij by (3);
5: Iterations number t++
6: until

∣∣∣J (t+1)FCM − J
(t)
FCM

∣∣∣ ≤ ε0, or T=t
For the Pre-clustering phase, the FCM provides cluster

knowledge that is considered in the Marking phase. The
performance of fuzzy clustering will greatly influence the
performance of AIPC. This is an important direction of our
future research. Ourmethod builds on themembership degree
and the cluster center, where the goal is to make use of clus-
ter knowledge. This is different from the above-mentioned
selection algorithmswhich exploit features. In the latter case.,
the AIPC enters the Marking phase.

2) MARKING PHASE
Definition 2: Suppose that xj is denoted by samples set X

which is grouped into c clusters, and
{
µ1j, µ2j, · · · , µcj

}
is

the membership degree of xj. For ∀i ∈ {1, 2, · · · , c}, there
exist δ > 0 (δ is a small enough positive number), such that
if ∣∣∣∣µij − 1

c

∣∣∣∣ < δ (4)
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FIGURE 2. The overview of AIPC method for constraint-based clustering.

then xj is a weak sample.

E(xj) = −
c∑
i=1

µij lnµij (5)

where µij is the membership degree of the xj belonging to
the ith cluster. µij = 1

c denotes that the uncertainty infor-
mation is the maximum and the cluster label of xj is likely
to be non-corresponding. Meanwhile, the Shannon entropy is
maximum.

maxE(xj) = ln c (6)

Theorem 1: For any xj ∈ X, there exist ε > 0 (ε is a small
enough positive number), such that

E(xj) > ln c− ε (7)

then xj is a weak sample.
Proof: For any sample xj, the membership degree{

µ1j, µ2j, . . . , µcj
}
is supported in finite dimensional space,

and the generalized entropy of xj is

Sf (xj) =
c∑
i=1

µijf (µij) (8)

where f : [0, 1] → [0,∞) is a continuous function with
f (1) = 0. Let f (µij) = − lnµij, then, the generalized entropy
is Shannon entropy.

Sf (xj) = E(xj) = −
c∑
i=1

µij lnµij (9)

FIGURE 3. Weak sample. The weak samples are between dotted lines.

Obviously, the Shannon entropy is uniform continuity [35].
Thus, for any ε > 0, there exist δ > 0 such that for every

xj, xk with |µij − µik | < δ, we have that

|E(xj)− E(xk )| < ε (10)

Let the membership degree of xk be
{
1
c ,

1
c , . . . ,

1
c

}
,∣∣∣µij − 1

c

∣∣∣ < δ, then

|E(xj)− ln c| < ε (11)

Thus, E(xj) > ln c− ε, xj is a weak sample (see Fig. 3)
Definition 3: Strong sample is one which contains less

uncertainty. Furthermore, it should be closest to the cluster
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center of its cluster so that it would be difficult to group
into non-corresponding clusters. Each cluster has one strong
sample at least.

We apply the membership degree to build up the weak
samples setW =

{
xwj |1 ≤ j ≤ nw

}
(nw is the number of weak

samples). The strong sample set S =
{
xsj |1 ≤ j ≤ ns

}
(ns is

the number of strong samples) can be presented by making
use of the above cluster centers. Given the weak sample xwj
denoted byW in descending order of entropy, we select one of
the strong samples xsj to formulate the query 〈xwj , xsj〉, where
xsj ∈ S. If xwj and xsj are placed in the same cluster, the answer
is 〈xwj , xsj〉 ∈M.
Although most informative pairs are selected, the number

of queries is still larger. We consider the query cost to reach
the user’s requirement in ourmethod.We define the following
processes.
Definition 4: Symmetric relative entropy is developed

from relative entropy. Different from relative entropy, it is
symmetrical and can more profoundly measure divergence
between two samples. Suppose that xj and xk are samples in
the dataset. Letµij be the membership degree of the jth sample
belonging to the ith cluster, andµik be the membership degree
of the k th sample belonging to the ith cluster. The function of
symmetric relative entropy is defined as follows:

D(xj, xk ) =
1
2

(
c∑
i=1

µij ln
µij

µik
+

c∑
i=1

µik ln
µik

µij

)
s.t. 1 ≤ j, k ≤ n (12)

where c is the number of clusters and n is the number of
samples in dataset.
Definition 5: Second minimal symmetric relative entropy

priority principle is one in which we first select a strong
sample whose symmetric relative entropy to weak sample
is second minimal.

Following the second minimal symmetric relative entropy
priority principle, we first sort the strong samples in ascend-
ing order of symmetric relative entropy. Then we formulate
the query in the form of: should the 〈xwj , xs2〉 be must-link?
If the answer is ‘‘Yes’’, we attain 〈xwj , xs2〉 ∈ M and can
stop with only one query. If the answer is ‘‘No’’, we get
〈xwj , xs2〉 ∈ C. In general, the smaller symmetric relative
entropy between weak and strong samples, the higher proba-
bility of must-link is. Therefore, The strong sample xs1 ∈ S
(j 6= k, 1 ≤ k ≤ ns), with minimal symmetric relative
entropy to xwj , formulate 〈xwj , xs1〉 ∈ M. These processes
are summarized in Fig. 4.

For the Marking phase, the query formulates by weak
sample and strong sample, leading to informative pairwise
constraints. The second minimal symmetric relative entropy
priority principle efficiently determines pairwise constraints.

III. EXPERIMENTS
In this section, we will systematically evaluate the perfor-
mance of AIPC in comparison with four comparative meth-
ods. The experiments, conducted in six standard datasets,

Algorithm 2 Marking of AIPC
Input: X : the set of samples; Nq: the maximum number

of queries; U = [µij]: the membership degree of each
sample; V = [υ1, υ2, · · · , υc]: the cluster center of each
cluster.

Output: The informative must-link pairwise constraints
1: the number of queries nq = 0;
2: Calculate the entropy of membership degree and then get

the weak samples;
3: Sort weak samples W =

{
xw1 , xw1 , . . . , xwnw

}
in

descending order of entropy;
4: Select strong samples which are closest to their cluster

centers;
5: repeat
6: Select weak sample xwj ∈ W ;
7: Sort strong samples S =

{
xs1 , xs1 , . . . , xsns

}
in

ascending order of symmetric relative entropy between
strong and weak samples

8: seek answer to the query 〈xwj , xs2〉
9: If the answer is must-link, 〈xwj , xs2〉 ∈M is returned;

If the answer of is cannot-link, 〈xwj , xs1〉 be specified as
must-link( see Fig. 4);

10: the number of queries nq ++
11: until Nq ≤ nq

FIGURE 4. The overview of second minimal symmetric relative entropy
priority principle. The xs1 denotes the strong sample whose symmetric
relative entropy between the j th weak sample xwj is minimal.

introduce PCKM as the underlying constraint-based clus-
tering algorithm. There are two performance metrics used
in clustering. The experimental results demonstrate that our
AIPC method has substantial improvements.

A. COMPARATIVE METHODS
To evaluate what AIPC brings in term of improvements of
the performance, we compare AIPCwith a set of comparative
methods, including Random algorithm, FFQS algorithm [8],
Min-Max algorithm [9], and Cai algorithm [13]. The Ran-
dom is the baseline method. The FFQS algorithm is the clas-
sic method which is in query view. The Min-Max, an impor-
tant variant of FFQS, is the popular comparative method
of the pairwise constraint formulation algorithm. The Cai
algorithm is an important research study in sample view.
In the following, we will briefly explain these comparative
methods:
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1) The Random algorithm is a method which randomly
selects the samples to form the pairwise constraints.
The cost of the query is high. In the meanwhile, there
may be non-informative pairs that lead to poor cluster-
ing performance.

2) The FFQS algorithm [8] is made up of two phases:
Explore and Consolidate phase. The Explore phase
selects at least one neighborhood sample from each
cluster by using the farthest-first strategy. These sam-
ples may have corresponding cluster labels. The
Consolidate phase randomly selects the sample not
included in neighborhoods set and formulates queries
against neighborhoods in increasing order of distance
until a must-link pair is obtained.

3) The Min-Max algorithm [9], which builds on the
Explore phase of FFQS [8], improves the Consolidate
phase. They select samples in which the largest similar-
ity to the neighborhoods sample is the smallest. Then
they formulate the query again with the neighborhood
sample that it is closest to. The query is answered in
descending order of similarity until a must-link query
is obtained.

4) The Cai method [13], which is inspired by the k-nearest
neighbors (KNN) algorithm, gets an informative sam-
ple set to study the formulation algorithm. Then the
Explore and Consolidate phase work on these informa-
tive samples. In Explore phase, the most informative
sample is considered as the first sample. The rest of the
procedure is the same as Min-Max [9].

B. DATASETS
In our experiments, we use six standard UCI datasets which
are popular for evaluating the performance of pairwise con-
straint formulation [8], [9], [13]. They include Iris, Wine,
Letters recognition (IJLTY), Pen-based recognition of hand-
written digits (3,8,9) (briefly Digits-389) and Ecoli. For the
Ecoli dataset, we remove the smallest 3 clusters, which is
used in common. The characteristics of them are in following
Table 2.

TABLE 2. The characteristics of datasets.

C. UNDERLYING CONSTRAINT-BASED CLUSTERING
The clustering result of underlying constraint-based semi-
supervised clustering algorithm relates to the performance of
the pairwise constraint formulation algorithm. Our proposed

method AIPC and other comparative methods assume the
validity of constraint-based semi-supervised clustering. For
this purpose, we use PCKM as the implementation of
the above-mentioned pairwise constraint formulation algo-
rithm. Although some researchers have proposed a lot of
constraint-based semi-supervised clustering derived from
PCKM [2], [3], the PCKM is one which is effective and easy
to implement. The PCKM, a K-means variant, incorporates
prior information in the form of pairwise constraint which is
an additional clustering principle. Different from the classic
unsupervised clustering such as k-means, it minimizes not
only the total distance between samples and the cluster cen-
ters but also the cost of violating the pairwise constraints. The
objective function is in following:

JPCKM (L,V ;X ) =
c∑
i=1

n∑
j=1

d2(xj, υi)

+

∑
〈xj,xk 〉∈M

ωjk1
[
l ′j 6= l ′k

]
+

∑
〈xj,xk 〉∈C

ωjk1
[
l ′j 6= l ′k

]
(13)

where xj is the jth sample of dataset X . υi is the ith cluster

center of V . L ′ =
[
l ′j
]
with l ′j denotes the cluster label of xj.

1 is the indicator function, 1 [ture] = 1 and 1 [false] = 0.
W =

[
ωjk
]
and W =

[
ωjk
]
is penalty cost for violating the

〈xj, xk 〉 ∈M and 〈xj, xk 〉 ∈ C respectively.
In the experiment, we set the maximum times of iterations

of PCKM to 100 and use the default values for other param-
eters. We formulate up to 100 pair queries, starting from no
constraint at all. The time complexity of PCKM is O(n). The
time complexity of our method AIPC and other comparative
methods implementing in PCKM are shown in Table 3. It is
obvious that the complexity of our implementation is accept-
able. All of implementation run on unified experimental set-
ting platform. The characterizations of it is shown in Table 4.

TABLE 3. The summary of time complexity.

D. PERFORMANCE METRIC
For comparative analysis, there are two clustering perfor-
mance metric applied in the experiments. First, the Rand
index (RI) is a popular clustering evaluationmetric [36]–[38].
The value of RI is between 0 and 1. A value close to 1 indi-
cates that the performance is desirable. And the value equal
to 0 shows that the data clusters are completely different.
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TABLE 4. The characterizations of platform.

Suppose that the dataset X = {x1, x2, · · · , xn} with its actual
cluster label set L = {l1, l2, · · · , ln}. After clustering, we get
predicted cluster label set L ′ = {l ′1, l

′

2, · · · , l
′
n}. We have

definition in following.

TP =
{
(xj, xk )|, lj = lk , l ′j = l ′k , j 6= k

}
(14)

FP =
{
(xj, xk )|, lj = lk , l ′j 6= l ′k , j 6= k

}
(15)

TN =
{
(xj, xk )|, lj 6= lk , l ′j 6= l ′k , j 6= k

}
(16)

FN =
{
(xj, xk )|, lj 6= lk , l ′j = l ′k , j 6= k

}
(17)

The objective function of RI is

RI =
|TP| + |TN |

|TP| + |FP| + |FN | + |TN |
(18)

Second, the normalized mutual information (NMI) [39],
[40] is used to measure the mutual information between
predicted cluster label set and actual cluster label set. It is
normalized to a zero-to-one range. The equation is as follows.

NMI = 2
I (L ′;L)

H (L ′)+ H (L)
(19)

where I (L ′;L) is the mutual information between L ′ and L,
H (L ′) denotes the entropy of L ′.

E. IMPLEMENTATION DETAILS
There are two experiments being implemented in this paper:
1) introducing pairwise constraint formulation algorithm (our
AIPC and other comparative algorithms) to PCKM; 2) per-
forming sensitivity analysis for the parametric ε of our AIPC.

In the first experiment, we set the maximum times of
iterations T of FCM to 100 and use the admissible error
ε0 = 10−5 in the Pre-clustering phase of AIPC. The degree
of fuzziness m takes 2, which is more popular in FCM appli-
cations. According to Theorem 1, the ε would provide the
equivalent of δ. And it makes the AIPC more effective and
operational. There are three phases about how to define ε:
1) sort samples in descending order of entropy; 2) confirm
the number of queries and clusters as nq and c respectively;
3) the value of ε is ln c − E(xnq ) where E(xnq ) denotes the
entropy of the nqth sample. The ε of this experiment are
shown in Table 5.

In the second experiment, the number of queries takes from
nq = 0 to nq = 100, we evaluate the influence of ε with its
six different values.

TABLE 5. The values of ε for weak sample.

F. EXPERIMENTAL RESULTS AND THEIR ANALYSIS
In this section, we present the clustering result of PCKM
which are in conjunction with Random, FFQS, Min-Max,
Cai and our proposed method on six different datasets. The
result is composed of RI and NMI value which is the mean
of 50 independent runs. In general, the AIPC outperforms
other comparative methods.

The RI and NMI index of clustering result are shown
in Fig. 5 and Fig. 6 respectively. The x-axis indicates the num-
ber of queries and the y-axis presents the RI or NMI by run-
ning PCKM with 4 comparative methods and our proposed.
The more powerful the clustering performance of PCKM,
the more desirable result of the pairwise constraint formu-
lation algorithm we attain. Note that the pairwise constraint
provided by Random algorithm lead to terrible clustering
performance. In comparison, the other comparative method
and AIPC are generally able to improve the performance with
the increasing of the number of queries. However, the AIPC
are more powerful than other formulation algorithm in most
case.

In Iris, one cluster is linearly separable from the other two
clusters. The RI and NMI value are close to one consistently
as we increase the number of queries. The AIPC, Cai and
Min-Max converge before using up 100 queries. But AIPC
requires fewer queries to obtain the same result. In Wine,
the AIPC method obtains better results than FFQS and Cai
method through lager query sizes. It is noteworthy that AIPC
degrades the clustering result in Letters-IJLTY dataset when
the queries are in the early stage. This demonstrates that
some formulated pairwise constraints have inaccurate labels.
When all labeled pairs are introduced into PCKM, the positive
what the correct labeling pairs bring to can hardly offset
the negative of the wrong labeling pairs. But as we increase
the number of queries, the advantage of the role of correct
labeling pair began to appear gradually and the performance
of AIPC becomes better and better. We also note that the per-
formance strength of our proposed is obvious in some dataset,
namely Breast, Digits-389. For Ecoli, there are 5 clusters.
The RI value are low when the queries work in the early
stage. While the number of queries increases to a certain
extent, the clustering performance has rapid development.
In other words, the performance of AIPC may be not sig-
nificant with comparison of other methods when the query
size is small. If the queries continue, the AIPC shows better
performance.
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FIGURE 5. Evaluation results of clustering performance by RI index.

G. SENSITIVITY ANALYSIS
In order to understand what are the AIPC algorithm paramet-
ric ε contributing to our proposed, we provide the sensitivity

analysis experiments which are conducted in three standard
UCI datasets: Breast, Digits-389, Letters-IJLTY. They have
different numbers of classes and contain the largest number of
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FIGURE 6. Evaluation results of clustering performance by NMI index.

samples. Specifically, the experiment selects different values
of ε (see Table 6) to study the effect of it on AIPC. The
experimental result of sensitivity analysis is shown in Fig. 7
and Fig. 8

From the horizontal view, the performance of our method
becomes more and more powerful when we had an increasing
number of queries. If the RI/NMI stop rising, it indicates
that the number of weak samples is less than the number of
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FIGURE 7. The PCKM clustering result of RI with introducing AIPC which considers 6 different values of ε.

FIGURE 8. The PCKM clustering result of NMI with introducing AIPC which considers 6 different values of ε.

queries. From the vertical view, our method gets more and
more desirable result with the increasing of ε. In the mean-
while, the improvement degree becomes less and less. Inte-
grally, it is necessary for selecting the appropriate value of ε to
consider the cost of computation and classifier performance.

IV. CONCLUSION AND FUTURE WORK
In the Pre-clustering phase, our goal is to obtain the
membership degree and cluster center. The clustering perfor-
mance of fuzzy clustering has a vital impact on the perfor-
mance of AIPC. The more powerful the cluster knowledge,
the more desirable the performance we obtain. The FCM
is one of the most widely used fuzzy clustering algorithms.
A great number of problems from different application scenes
have been effectively solved by introducing FCM [41]–[44].
In the future, we will research developing fuzzy clustering to
improve AIPC

In the Marking phase, our goal is to form informative pairs
and make queries more efficient. The Shannon entropy is one
measure to describe the uncertainty of samples. The most
informative pair should be composed of two weak samples.
However, it is difficult for experts to answer. In the future,
this will be a research direction.
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