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ABSTRACT Recent years have witnessed the rapid development in the research topic of WiFi sensing
that automatically senses human with commercial WiFi devices. Past work falls into two major categories,
i.e., activity recognition and the indoor localization. The former work utilizes WiFi devices to recognize
human daily activities such as smoking, walking, and dancing. The latter one, indoor localization, can be
used for indoor navigation, location-based services, and through-wall surveillance. The key rationale behind
WiFi sensing is that people behaviors can influence the WiFi signal propagation and introduce specific
patterns intoWiFi signals, calledWiFi fingerprints, which can be further explored to identify human activities
and locations. In this paper, we propose a novel deep learning framework for joint activity recognition and
indoor localization task usingWiFi channel state information (CSI) fingerprints. More precisely, we develop
a system running standard IEEE 802.11n WiFi protocol and collect more than 1400 CSI fingerprints
on 6 activities at 16 indoor locations. Then we propose a dual-task convolutional neural network with
one-dimensional convolutional layers for the joint task of activity recognition and indoor localization. The
experimental results and ablation study show that our approach achieves good performances in this joint
WiFi sensing task. Data and code have been made publicly available at https://github.com/geekfeiw/apl.

INDEX TERMS CSI fingerprints, activity recognition, indoor localization, human–computer interaction,
1D convolutional neural networks.

I. INTRODUCTION
Channel State Information of WiFi devices have been
extensively explored for human sensing tasks such as
activity recognition [1]–[6], gesture recognition [7]–[10],
indoor localization [11]–[14], and health-care applications
[5], [15]–[20]. This prosperity benefits from several special
properties of WiFi, including the ubiquitous deployment of
commercial WiFi devices, the robustness to lighting condi-
tion and occlusion which overcomes limitation of cameras,
and the non-intrusiveness sensing which requires no user’s
extra effort.

Though there is abundant work on the specific
aforementioned WiFi human sensing task, little work aims
at completing the joint task of activity recognition and
indoor localization. Carrying out the joint task would breed
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approving it for publication was Waleed Alsabhan.

numerous useful human-computer interaction applications.
For example, in a smart home with Internet-of-Things (IoT)
devices [21], [22], the devices could precisely response differ-
ently to the same gesture command based on user’s location.
More specifically, the user can use the gesture of ‘hand
down’ to turn down the television in front of her, whereas she
can also use the same gesture to lower the air conditioner’s
temperature when standing close to the air conditioner. To our
best knowledge,MultiTrack [23] is the only work that enables
indoor localization and activity recognition jointly, however it
requires high-end hardware modification for ultra-wide band
WiFi (over 600MHz).

The joint task can be summarized as the following two
folds. (1) Recognizing activities conducted at different loca-
tions. (2) Localizing the user by the activities. However, there
are two major challenges lying in the way. The first challenge
is that WiFi fingerprint differs even when performing a same
activity but at different locations, thus we need to look for a
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same representation for activities conducted at all locations.
The second one is that WiFi fingerprints vary when perform-
ing different activities in one location, thus we have to explore
distinguished features for each location from the fingerprint
variances.

To conclude the above challenges formally, WiFi finger-
print,W , contains two components at the same time, activity
category (A) and user location (L). We denote the WiFi
fingerprint as W (A,L). Joint activity recognition and indoor
localization task aims to learn a function f , which is capable
to classify activity categories (f : W (A,L) → A) and to
localize the user (f : W (A,L) → L), simultaneously. Thus
we formalize the joint task as f : W (A,L)→ (A,L).

To this end, in the paper we propose a novel
1-dimensional Convolutional Neural Network (C1D) includ-
ing two branches, one for activity recognition and the other
for indoor localization. To date, conventional 2-dimensional
Convolutional Neural Networks (C2D), which have brilliant
ability to learn features from raw data, boost the development
of computer vision [24]–[29], robotics [30]–[33], machin-
ery [34]–[36], etc. Unlike C2D that processes 2D spatial data
such as images, C1D is capable to process 1D temporal data.
For temporalWiFi fingerprints, we design a C1D based on the
ResNet [24] to carry out the joint task of activity recognition
and indoor localization.

To evaluate our proposed approach, we implement the
standard IEEE 802.11n protocol in two universal software
radio peripheral (USRP) sets, Ettus N210,1 where one Ettus
N210 broadcasts WiFi signals and the other parses Channel
State Information (CSI) fingerprints of WiFi for joint task.
We define 6 hand gestures for potential human-computer
interaction applications, namely, hand up, hand down, hand
left, hand right, hand circle and hand cross. One volunteer
repeats these activities 15 times at each location (16 locations
in all) and forms a dataset with 1394 samples (after excluding
the invalid data). We evaluate our proposed C1D on this
dataset and present the results with several metrics such as
confusion matrix, F1 scores, convolutional feature maps, etc.
Experimental results show our proposed C1D achieves a very
promising performance in the joint task. We summarized our
contributions as follows.

1. We first propose and achieve the joint task of activity
recognition and indoor localization, which enable practical
user gesture control in smart homes for human-computer
interaction applications.

2. We novelly view CSI fingerprints as time series with
channel dimension and time dimension, apply the advanced
1-dimensional Convolutional Neural Networks that sweep
along the time dimension of the CSI fingerprints, and achieve
the joint task of activity recognition and indoor localization.

3. We implement IEEE 802.11n protocol in two USRP sets
and build a dataset specifically for the joint task. We evaluate
the performance of proposed approaches on this dataset and
fully analyze the results.

1https://www.ettus.com/all-products/un210-kit/

II. RELATED WORK
A. CSI FINGERPRINTS
CSI fingerprints ofWiFi have beenwidely utilized for activity
recognition [3], [4], [8], [9], [15], [17] and indoor localiza-
tion [37]–[40]. As for activity recognition, in [3], [15], and
[17], CSI fingerprints are used to detect user falling especially
for the elderly-care system. In [9], CSI fingerprints are used
to infer user keystroke. Further in [41], researchers find that
CSI fingerprints can reveal people’s typing when they use
smart phones in public WiFi. In [8] and [42] CSI fingerprints
are designed for hand sign recognition for human-computer
interactions. As for indoor localization, [37]–[40] collect
CSI fingerprints corresponding to people locations, and train
classifiers to localize people with collected CSI fingerprints.
To our best knowledge, there is no work on joint activity
recognition and indoor localization, which is very useful in
controlling different smart devices at different locations with
a set of pre-defined activities. We achieve this task by a dual-
branch Convolutional Neural Network.

B. CSI FINGERPRINTS CLASSIFICATION
There exist three popular approaches in CSI fingerprints
classification. (1) Hand-crafted features + Support Vector
Machine (SVM) [43]: [15], [17] apply statistical values of
CSI time-series such as the mean, maximum, minimum,
entropy, etc., as features to train SVMwith kernel methods for
CSI fingerprints classification. This approach requires exper-
tise in designing features, which is even much harder on joint
activity recognition and indoor localization. (2) Dynamic
Time Wrapping (DTW) + k Nearest Neighbors (kNN):
[3], [8], [42] first build a dataset with CSI fingerprints. When
classifying a test CSI sample, this approach requires com-
puting all distances between the test sample and all samples
in the dataset, which is time-consuming compared to pre-
training a classifier first. (3) Deep learning: [37], [40] utilizes
deep Boltzmann Machine (DBM) to do indoor localization.
However DBM relies heavily on careful design and tricks to
converge. [38], [39] apply 3-5 convolutional layers on activ-
ity recognition. In general, the shortage in the depth limits
the performance. Reference [42] utilizes ResNet [24] and
Inception [26] to categorize CSI fingerprints, whereas it only
handles single moment CSI, i.e., rather than handling tem-
poral CSI fingerprints. In this paper, we propose a ResNet-
based Convolutional Neural Network to do CSI fingerprints
classification.

C. 1D CONVOLUTIONAL NEURAL NETWORK
Conventional Convolutional Neural Network (C2D)
[24]–[26] are designed for 2D inputs such as images. C2D
applies 2D convolutional kernels to sweep along the width
and height of an image to capture its semantic and struc-
tural information for image classification [24]–[26], object
detection [44], instance segmentation [27], etc. In [45] and
[46], researchers apply 3D CNN (C3D) on video data, which
sweeps along the width, height, and time of the video to
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FIGURE 1. Main hardwares: Ettus USRP N210 and Ettus Clock.

FIGURE 2. System framework. The system contains two sets of personal
computers and USRPs, which work as the WiFi transmitter and receiver,
respectively. An Ettus clock synchronizes the two sets.

capture information both in spatial and in temporal. In this
paper, we apply 1D convolutional kernels to sweep along the
time axis of the CSI fingerprint series to capture the temporal
information of CSI fingerprints, which works well in the joint
task of activity recognition and indoor localization.

III. DATA COLLECTION
A. HARDWARE
We implement the standard IEEE 802.11n protocol in two
universal software radio peripherals (USRPs) to collect CSI
fingerprints. As shown in FIGURE 1, the first two figures are
the top view and front view of the USRP (Etuss N201),
respectively. The USRP is mainly composed of a mother
board, a daughter board and a WiFi antenna, which is used to
broadcast or receive WiFi signals under the control of GNU
Radio.2 The details are listed below. Meanwhile, the assem-
bling diagram is shown in FIGURE 2.
1. Etuss N210s: A hardware with field programmable gate

array (FPGA) that can be embedded IEEE 802.11n protocol
to send and receive WiFi packages for CSI fingerprints.

2. Etuss Clock3 and synchronization cables: Synchronizing
N210s with GPS clock to avoid a WiFi phase shifting caused
by the clock differences between two N210s.

3. Antennas: To broadcast or receive WiFi signals under
the control of GNU Radio4

4. Computers and Ethernet cables: To control N210s when
are set in a same local area network as N210s.

B. ACTIVITY AND LOCATION
Wedesign 6 activities, namely, hand up, hand down, hand left,
hand right, hand circle, and hand cross, for human-computer

2https://www.gnuradio.org/
3https://www.ettus.com/all-products/OctoClock-G/
4https://www.gnuradio.org/

FIGURE 3. Six gesture commands mainly for human-computer interaction
applications in smart homes, i.e., hand circle, hand up, hand cross, hand
left, hand down, and hand right.

FIGURE 4. One volunteer does activities at 16 locations.

interaction applications, as shown in FIGURE 3. This cluster
of activities covers the majority of daily commands for smart
Internet-of-Things home, where using cameras are not prac-
tical due to security and privacy concerns. Here we illustrate
how our proposed activities work by the case of television.
‘‘Hand up’’ and ‘‘hand down’’ can be used to turn up and
down the voice volume, respectively; ‘‘Hand left’’ and ‘‘hand
right’’ indicate switching channels; ‘‘Hand circle’’ and ‘‘hand
cross’’ are for CONFIRM command and CANCEL com-
mand, respectively.

Besides recognizing activity in smart home, localizing the
user when s/he is doing an activity is also crucial for the
joint task. By combining user’s activity and location together,
we are able to infer user’s intention more precisely and make
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FIGURE 5. Signal preprocessing. we manually annotate the action duration (leftmost), split CSI samples during action (middle), and upsample the
splitted CSI series to be size of 192 (rightmost). (Take the 29th subcarrier series when the volunteer plays a ‘circle’ action at #2 position for example.).

FIGURE 6. CSI fingerprint samples of 6 activities on #10 position.

it possible for users to control a range of smart devices
with the same activity. For example, the user may want to
communicate with the television when sitting on the sofa,
whereas s/he probably needs to control the air condi-
tioner (AC) when standing in front of an AC. To make
a proof-of-concept experiment, we collect CSI fingerprints
when a volunteer does 6 activities (shown in FIGURE. 3) at
16 locations in one room.We illustrate the spatial relationship
in FIGURE. 4, where the 16 locations are selected evenly
with a purpose to cover most central area of the room. The
USRPs are fixedly placed besides the selected locations.
In all, the volunteer repeats each of the 6 activities 15 times
at 16 locations and forms a dataset with 1440 samples.

C. CSI FINGERPRINT ANALYSIS
We visualize some samples varying in activities and locations
to present the challenges of joint task of activity recognition
and indoor localization. FIGURE 6 shows CSI fingerprints
when the volunteer does 6 activities at #10 location, in which
the x-axis is the sampling index (time) and the y-axis is the
amplitude of the CSI fingerprints. There are 52 time series in
each CSI fingerprints, differed with 52 colors in FIGURE 6.
52 is the number of orthogonal frequency division multiplex-
ing (OFDM) [47] sub-carriers that carry data in parallel in
WiFi protocol. FIGURE 6 demonstrates that CSI fingerprints
vary when the user conducts 6 activities at a same location.

FIGURE 7 illustrates 3 CSI fingerprint samples when the
volunteer carries out ‘‘hand circle’’ at #3 location. FIGURE 7
shows that though the volunteer plays the same activity at
the same location, CSI fingerprints are still very different in
time-serial profile (leftmost andmiddle), and in the start point
of the activity (leftmost and rightmost). Besides, performing
the same activity at different locations also largely varies CSI
fingerprints as illustrated in FIGURE8,making it challenging
to find out shared features for one activity at all locations.

FIGURE 7. Do ‘circle’ at the #3 position. CSI samples vary in profiles. CSI
may be partly captured because of late action start.

FIGURE 8. Do ‘circle’ at the #6 (left), the #9 (middle), and the
#15 position.

IV. METHODOLOGY
A. PREPROCESSING
As shown in FIGURE 2, we have one transmitting antenna
and one receiving antenna. As shown in FIGURE 7, the num-
ber of sub-carriers and the CSI samples for each CSI finger-
print are 52 and 192, respectively. This setting makes each
CSI fingerprint a matrix with size of 52 × 192. Note that
we only use CSI amplitude information and ignore the CSI
phase information for the fusion of them is out of range of this
paper.5 Because CSI fingerprints vary according to different
activity start time and finish time, we manually annotate the
activity duration to prepare useful signals for further use.
We take the time series of 29th sub-carrier as the visualization
example to show a duration annotation in FIGURE 5 (left).
This annotating process enables us to directly use the seg-
mented CSI fingerprints for the joint task. We then upsample
the segmented CSI fingerprints to make them the same size
using the linear interpolation (in our experiment, the sizes of
original and upsampled CSI fingerprints are both 192). One
interpolated sample is shown in FIGURE 5 (right).

B. 1D CONVOLUTIONAL NEURAL NETWORK
As illustrated in FIGURE 6, FIGURE 7 and FIGURE 8, CSI
fingerprints are time series with 52 sub-carriers. We denote
it as C ∈ R52×t , where t is for sampled time, R means Real
number. Thus it is essentially to do time-serial matching that
to use CSI fingerprints for the joint task of activity recognition
and indoor localization. Recall that Dynamic Time Warp-
ing (DTW) [48], [49], one of the most prevailing approaches
for time-serial matching, takes both the values and the shapes

5CSI phases also provided in the released dataset for research only.
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FIGURE 9. The difference between the 2D convolutional operation and
the 1D convolutional operation. (a). 2D convolutional operation for
spatial data. (b) 1D convolutional operation for temporal data.

of the time series into consideration to compute the distance
between two series. However, to categorize one test series,
DTW has to compute the distances of the series to all sam-
ples in training database, which is time-consuming. Some
work utilizes hand-crafted statistics characteristics of the time
series, e.g., the mean, variance, and entropy, to represents
the values and shapes of the time series [15], [17], [50],
which requires expertise to design and extract these character-
istics, i.e., not generic. Thus to achieve the joint task, we aim
to propose an approach that (1) can capture the values and
the shapes of the CSI fingerprints, and (2) should be time
efficient. Since Convolutional Neural Network approaches
boost current pattern recognition applications due to the
ability of learning powerful features directly from raw data.
In this paper, we apply 1-dimensional Convolutional Neural
Network (C1D) on CSI fingerprints for joint task of activity
recognition and indoor localization.

FIGURE 9 (left) shows a 2-dimensional convolutional
operation (C2D) for spatial data such as images, and
FIGURE 9 (right) illustrates C1D for temporal inputs such
as WiFi fingerprints. For a C2D, the input size is 7 × 7,
a 2D convolutional kernel sized 3 × 3 sweeps along the
width and height of the input with the stride of 2, and it
leads to a result of 3 × 3. With this sweeping operation,
spatial information of the input, such as the object location
in an image, can be captured. Differing from C2D, C1D only
sweeps along the time axis and captures temporal information
inC (including values and shapes), which is highly correlated
with the user activities. Besides, consulting the widely used
method that C2D takes 3 (3 for RGB color channels) as the
channel for image data, in this paper, we take the 52 of C as
the channel of C1D operation (52 for 52 OFDM channels)
for CSI fingerprints. Different to previous work that views
the 2D CSI fingerprints as images with height and width,
then applies C2D on the fingerprints [38], [42], [51], to our
best knowledge, our approach is the first manner that views
CSI fingerprints as time series with channel dimension and
time dimension. More importantly, it makes advanced C1D
can be directly applied on CSI fingerprints without bells and
whistles.

C. NETWORK FRAMEWORK
In computer vision community, ResNets [24] have been
proved to be effective and advanced in many task, such
as image classification [24], object detection [44], instance

FIGURE 10. The basic residual block (left) and a detailed implementation.
‘C1D3×1’ and ‘C1D1×1’ stand for the 1D convolutional operation with the
size of 3× 1 and 1× 1, respectively. ‘BN1D’ is for 1D Batch Normalization.
ReLU is for the Rectified Linear Unit activation function.

segmentation [27], etc. However the standard ResNets are
implemented to process 2D inputs such as images with height
andwidth, thuswe re-implement a ResNet specifically for our
temporal CSI fingerprints, termed as ResNet1D.

The main component of ResNet1D is the basic residual
block as shown in FIGURE 10 (left). We denote the input
fingerprints as x, and the output as y. With two convolutional
layers, x becomes f (x). With a shortcut link, x becomes a
part of y. Thus the two branches make the output of the basic
residual block

y = f (x)+ x. (1)

In FIGURE 10 (right), we illustrate our implementation in
details. In the f (x) branch, x is scanned by two C1Ds with
size of 3 × 1 (‘C1D3×1’). Moreover, 1D batch normal-
ization [52] (‘BN1D’) follows at each ‘C1D3×1’, and a
Rectified Linear Unit activation function follows the first
‘C1D3×1’. In the shortcut branch, x is processed by a C1D
with the size of 1 × 1 (‘C1D1×1’) and a 1D batch normal-
ization. The outputs of two branches, f (x) and x, may have
difference in the size, making it unavailable to do element-
wise addition between f (x) and x. Therefore, the ‘C1D1×1’
in the shortcut branch is designed to make the sizes of f (x)
and x the same.

Based on the basic residual block above, we build the
ResNet1D as shown in FIGURE 11. The network takes CSI
time series as input and predicts user activity and location
in parallel as output. The network contains 11 C1D layers,
where 9 are shared, and each sub-task has one C1D indepen-
dently, whose parameters are listed in FIGURE 11. Taking
the first C1D, ‘C1D7 × 1, 128’, as an example, the C1D is
with the kernel size of 7 × 1 and the output channel number
of 128. Besides C1Ds, there is 1 max pooling operation
following the first C1D and 2 average pooling operations
following the last 2 C1Ds, respectively. Four residual blocks
(RB1, RB2, RB3, and RB4) contribute the mainstream of the
ResNet1D-[1,1,1,1]. Take the RB1 for example, it contains
one basic residual block as shown in FIGURE. 10, where the
first convolutional layer is a 1D convolution with kernel size
of 3 × 1 and out-channel number of 128 (C1D3 × 1, 128).
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FIGURE 11. Deep framework. ‘RB’ is the abbreviation of residual block.
For all RBs having one residual shortcut, we term this framework as
ResNet1D-[1,1,1,1].

Note that we neglect the ‘BN1D and ‘ReLU’ for simplifica-
tion. Since this network contains 4 residual blocks (RBs) and
in each block there exists one basic residual block, we call
it ResNet1D-[1,1,1,1]. Moreover, we use a fully-connected
layer to predict each of the 6 activities with a separate score.
The output of activity recognition is the activity with the
highest score. Meanwhile we use a fully-connected layer to
predict one location out of 16 locations where the activity is
carried out.

It deserves mentioning that ResNet1D-[1,1,1,1] is an
expansible framework by cascading multiple basic residual
blocks in RBs. In the evaluation section, we will compare the
performances of ResNet1D-[1,1,1,1], ResNet1D-[2,2,2,2],
and ResNet1D-[3,3,6,3] (the latter two RB settings are
defaults in ResNet [24]).

D. LOSS FUNCTION
The loss, L, that optimizes ResNet1D is the sum of two sub-
tasks, activity recognition and indoor localization. We term it
as follows.

L = Lactivity + λLlocation (2)

where Lactivity and Llocation are losses of activity recognition
and indoor localization, respectively, λ is to balance these

two losses. Before computing Lactivity and Llocation, we first
normalize the prediction scores with SoftMax function,

s′i =
esi∑K
j=1 e

sj
, i ∈ [1, 2, . . . ,K ], (3)

where K is the categories of activities (K = 6 for Lactivity and
K = 16 for Llocation), si and s′i are the predicted score and
normalized score for the i-th activity, respectively. Using (3),
all prediction scores are normalized to 0-1 range.

Then we apply the Cross Entropy Loss function on the
normalized score to compute Lactivity as follows.

Lactivity = −log(s′t ) (4)

where s′t means the normalized prediction score that belongs
to (resulted from) t-th activity. With the same approach,
indoor localization loss, Llocation, can be computed. In our
experiment, we assume activity recognition and indoor local-
ization are of the same importance, thus we set λ in (2) as 1 to
optimize ResNet1D-[1,1,1,1].

E. IMPLEMENTATION
We implement ResNet1D with Pytorch 1.0.06 in a desktop
that is with the Window 7 OS and one Nvidia Titan Xp
GPU. The network is trained for 200 epochs by Adam opti-
mizer [53] with default settings (β1 = 0.9, β2 = 0.999). The
mini-batch size is 128 and the initial learning rate is 0.005.
The learning rate decays by 0.5 every 10 epochs. Before each
epoch, all training data are shuffled.

V. EVALUATION
A. DATASET
As III-B described, our dataset involves 6 hand activities,
i.e., hand up, hand down, hand left, hand right, hand cir-
cle and hand cross, that one user conducts at 16 locations.
At each location, each activity is repeated for 15 times.
Thus we collect totally 16 × 6 × 15 = 1440 samples.
In IV-A, we manually discard samples with extremely late
start point to ensure data quality, leading to a final dataset
with 1394 samples.We select one out of every five samples to
build the test set (278), and leave the remaining 1116 samples
for the training set. Due to the test set evenly selected from
all samples, the test condition is the same as the training
condition. We then train the proposed deep networks with the
training set and validate the networks on the test set.

B. LEARNING CURVES
We display learning curves of loss and accuracy for the
activity recognition and indoor localization in FIGURE 12.
In the loss curve of activity recognition (1st subfigure),
the training loss (blue line) decreases gradually, and reaches
a relatively low state around the 50th epoch. Whereas the test
loss curve (red line) wildly swings within the first 45 epochs,
and gradually reaches to a steady state around the 75th epoch.

6https://pytorch.org/
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FIGURE 12. Learning curves and losses of activity recognition, and indoor localization.

FIGURE 13. Confusion matrix of activity recognition.

A phenomenon needs to be addressed is that though the
training loss curve keeps relatively steady after the 50th
epoch, the test loss still decreases when more training epochs
are involved. We ascribe it to the process of shuffling training
dataset before each training epoch, described in IV-E. The
shuffle process makes the network, i.e., ResNet1D-[1,1,1,1],
be optimized with different mini-batch samples in each
epoch. After training loss curve reaching a steady condition,
the shuffling process continuously generates (keeps generat-
ing) more mini-batch combinations and these combinations
are continuously updating the network.

The accuracy curves of activity recognition are plotted
in the 2nd sub-figure of FIGURE 12, where the training
curve (blue line) reaches a steady condition around the 70th
epoch, and the test curve reaches a steady condition around
the 100th epoch. Similarly, we ascribe it to shuffling process
as explained above. Besides, the learning curves of indoor
localization are plotted in the 3rd and 4th sub-figures of
FIGURE 12. Comparing the learning curves between the
activity recognition and indoor localization, we find that the
task of indoor localization converges faster and achieves a
better performance.

C. QUANTITATIVE RESULTS
We demonstrate the quantitative results including confusion
matrix, prediction accuracy, precision, recall, and F1 scores
in the following section.

The confusion matrix of ResNet1D-[1,1,1,1] on activity
recognition and indoor localization are shown in FIGURE 13

FIGURE 14. Confusion matrix of activity recognition.

TABLE 1. Precision, recall, and F1 score of the activity recognition task.

and FIGURE 14, respectively. As shown in the two figures,
we achieve a accuracy of 88.13% for activity recognition
and 95.68% for indoor localization. The gap between two
accuracies accords with learning curves. For activity recog-
nition, the majority of mis-predictions happen at recogniz-
ing the gesture of hand cross. Precisely, ResNet1D-[1,1,1,1]
wrongly predicts 8% of hand cross to hand left, and wrongly
predicts 6% of hand cross to hand circle. Meanwhile for
indoor localization, a major error is wrongly predicting 15%
of #16 location as #4 location. Nevertheless, ResNet1D-
[1,1,1,1] generally works well on both activity recognition
and indoor localization.

We further compute the precision, recall, and F1 score
from the confusion matrix, and list the results in Table 1 and
Table 2. There exists a big gap between precision and recall
for the activity of hand circle. A precision of 0.97 means
ResNet1D-[1,1,1,1] effectively figures out (recognize) the
hand circle activity, while a recall of 0.77 indicates that
ResNet1D-[1,1,1,1] tends to categorize other activities into
hand circle, decreasing the F1 score of hand circle to 0.82.
Besides in Table 2, the lowest F1 score is on #4 location
prediction, 0.81, due to the low recall. In general, ResNet1D-
[1,1,1,1] achieves very promising performances.
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TABLE 2. Precision, recall, and F1 score of the indoor localization task.

In addition, we computer average localization error (ALE)
in terms of meters by transferring localization labels via

ALE =
1
N

N∑
i=1

‖Coor(Pi)− Coor(GTi))‖22 (5)

where i and N are the index and the number of test sample,
respectively, (N = 278); Coor(Pi) is to transfer the predicted
location label to the 2D spatial coordinates according to
FIGURE. 4;Coor(GTi) is to transfer the ground-truth label to
the 2D spatial coordinates; ‖·‖22 is to compute the L2 distance.
Via Equation. 5, the average localization error of ResNet1D-
[1,1,1,1] on our dataset is 0.0904m, which is accurate enough
considering typical smart device distribution in homes.

Besides, we would like to report the average mis-classified
error between the prediction the the ground-truth, once one
sample is incorrectly predicted, via

AME =
1
M

M∑
i=1

‖Coor(Pi)− Coor(GTi))‖22 (6)

where M is the number of samples that wrongly classi-
fied (M = 12); other symbols keep the same meanings as
Equation. 5. Then AWE is 2.0943m, around two and three
experimental locations in FIGURE. 4.

D. DATA VISUALIZATION
We visualize the test set by t-SNE [54] to explore the behav-
iors of ResNet1D-[1,1,1,1] on the joint task. Taking the activ-
ity recognition task as an example (FIGURE 15), we reduce
the input into 2 dimensions data by a t-SNE tool7 and display
the 2-d data in the figure. For an input test sample, the reduc-
ing procedure is as follows. As IV-B said, one original CSI
fingerprint C ∈ R52×t , where t is 192 after the cutting and
linear interpolating preprocess, described in IV-A. However t-
SNE requires the input to be a long 1D vector, thus we reshape
C to be a vector, making a C ′ ∈ R1×9984 (192× 52 = 9984).
In addition, we repeat the reshaping over all test samples and
finally visualize the reshaped samples on the 1st sub-figure in
FIGURE 15, marked with the green box. We can see that the
inputs are highly disordered in term of activity recognition.

Besides the raw inputs visualization, we also visualize
feature maps produced by ResNet1D-[1,1,1,1] in multiple
layers (FIGURE 11), i.e., feature maps after max pooling
layer, RB1, RB2, RB3, RB4, feature maps before FC (the
7th sub-figure), and feature maps after FC (outputs, the
8th-subfigure). We reshape all feature maps to 1D long vec-
tors with the same approach used for visualizing the raw
inputs. FIGURE 15 shows that ResNet1D-[1,1,1,1] gradually

7https://lvdmaaten.github.io/tsne/

TABLE 3. Inspired by t-SNE visualization, we propose
ResNet1D-[1,1,1,1]+, which outperforms ResNet1D-[1,1,1,1] on activity
recognition.

increases the discriminative power of feature maps for the
activity recognition task step by step, making classification
more accurate in the deeper layers of the network. Finally in
the outputs (the last sub-figure of FIGURE 15), features are
learned to be effective for activity recognition.

With the similar approach, we visualize the raw inputs and
feature maps after multiple layers of ResNet1D-[1,1,1,1] for
indoor localization in FIGURE 16. It demonstrates that the
network can effectively learn features for indoor location.
In FIGURE 15, ResNet1D-[1,1,1,1] generates discrimina-
tive features after FC, whereas in FIGURE 16 it gener-
ates discriminative features beginning at RB4. Moreover
ResNet1D-[1,1,1,1] is able to generate better features for the
indoor localization than the activity recognition because the
class clusters are more tighter compared the last sub-figure of
FIGURE 15 and the last sub-figure of FIGURE 16.

More importantly in the activity recognition, we find the
features are largely enhanced through its own branch because
the feature before FC (7th) is much better than the features
after the shared RB4 (6th). Under this consideration, we just
add one more ‘C1D3× 1, 512’ between the ‘C1D3× 1, 512’
and the ‘AvgPool1D4 × 1’, named ResNet1D-[1,1,1,1]+.
We train ResNet1D-[1,1,1,1]+, and find it with better per-
formance on activity recognition, listed in Table 3.

E. EXPANSIBLE STUDY AND BASELINES
ResNet1D is expansible by simply customizing the num-
ber of residual block in each RBs, shown in FIGURE 11.
Following the default settings in ResNet [24], we evaluate
the accuracy of ResNet1D-[2,2,2,2] and ResNet1D-[3,4,6,3].
As listed in Table 4, all ResNet1Ds work well in joint activity
recognition and indoor localization. Meanwhile it deserves
mentioning that deeper ResNet1Ds tend to work better on
indoor location, whereas work worse on activity recognition.

Besides in Table 4, we show the comparison between
ResNet1Ds and two baseline methods, Dynamic Time
Warping8 (DTW)+kNN [48], [49], and Support Vector
Machine (SVM) [55] with radial basis function kernel (RBF).
All our proposed ResNet1Ds outperform the baseline

8https://www.mathworks.com/matlabcentral/fileexchange/43156-
dynamic-time-warping-dtw?focused=3846333tab=function
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FIGURE 15. Inputs and feature maps visualization of activity recognition by t-SNE.

FIGURE 16. Inputs and feature maps visualization of indoor localization by t-SNE.

TABLE 4. Expansible study and comparison with DTW+KNN. Deeper
networks work better on indoor localization task, whereas work worse on
activity task. All ResNet1Ds outperform the baseline methods,
i.e., DTW+kNN and SVM [55]. ‘AR’ and ‘IL’ are abbreviations of activity
recognition and indoor localization, respectively.

DTW+kNN, and SVM-RBF. We also record the time cost
of these methods, which are the sum of time cost in train-
ing and testing. SVM-RBF costs least but performs worst.
DTW+kNN is a very strong baseline in time-serial classi-
fication, however it is time-consuming.9

9Code is available at https://github.com/geekfeiw/apl

VI. CONCLUSION
In this paper, we propose novel 1D Convolutional Neural
Networks (C1D) with two branches for the joint task of
activity recognition and indoor localization with WiFi finger-
prints. To evaluate the proposed network, we implement IEEE
802.11n protocol in a software-defined-radio hardware, Etuss
N210, collect a dataset mainly for human-interaction applica-
tions, and fully discuss the results in various aspects. Experi-
ment results show that our proposed network can achieve joint
activity recognition and indoor localizationwell, e.g., 88.13%
on activity recognition and 95.68% on indoor localization,
outperforming Dynamic Time Warping and Support Vector
Machine. The computational time cost is larger than Support
Vector Machine, but can be reduced by training with the
larger batch size. Further, we envision C1D to be one of
leading approaches in CSI fingerprint processing, to this end,
we release our data and code.
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