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ABSTRACT Imbalanced data are very common in the real world, and it may deteriorate the performance
of the conventional classification algorithms. In order to resolve the imbalanced classification problems,
we propose an ensemble classification method that combines evolutionary under-sampling and feature
selection. We employ the Bootstrap method in original data to generate many sample subsets. V-statistic
is developed to measure the distribution of imbalanced data, and it is also taken as the optimization
objective of the genetic algorithm for the under-sampling sample subsets. Moreover, we take F'; and Gmean
indicators as two optimization objectives and employ the multiobjective ant colony optimization algorithm
for feature selection of resampled data to construct an ensemble system. Ten low-dimensional and four
high-dimensional typical imbalanced datasets are used in experiments. The six state-of-the-art algorithms
and four measures are taken for a fair comparison. The experimental results show that our proposed system
has a better classification performance compared with other algorithms, especially for the high-dimensional
imbalanced data.

INDEX TERMS Feature selection, imbalanced data, multiobjective ant colony optimization, genetic

algorithm.

I. INTRODUCTION
With the development of information technology and industry

applications, the volume of data is increasing rapidly. It is
a popular trend that adopting machine learning, artificial
intelligence and deep learning to get latent information from
data for providing users with more smart service [1]-[3].
Traditional classification algorithms take the assumption that
data has a good distribution; however, it is common that
training data are imbalanced over classes, which leads to
the bias of learning algorithms. The research on imbalanced
classification has recently drawn much attention [4]-[6].
Taking binary classification as an example, the imbalanced
problem means that the instances of one class are more than
another, and the class of major samples is the major class and
another is the minor class. We usually pay more attention to
the classification performance of minor class. The problem
of imbalanced distribution is widely existing in real world
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applications, such as fraud detection, cancer diagnosing, net-
work intrusion detection, and entity resolution [7], [8]. Imbal-
anced problems can be divided into two types, i.e. relative
imbalance and absolute imbalance. Relative imbalance means
that the ratio of minor instances to major instances is less
than one, but the number of minor instances may be also
large, such as 1000 or more. Absolute imbalance denotes
there are very few samples in minority class such as 10 or less
in dataset. We can classify the causes of imbalance problem
as intrinsic and extrinsic. The intrinsic reason indicates the
inherent property of data. For example, the probability that
an equipment fails is much lower than it runs normally. And
the number of people having cancer is obviously less than
that of healthy people. Extrinsic reason means other factors
are leading to the imbalance of data. For example, sporadic
interruptions occur when the balanced data is transmitting to
the database [9].

There are some effective methods proposed to adapt tra-
ditional algorithms to imbalanced data, including data-level
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methods, algorithm-level methods and ensemble learning
methods. Data-level methods employ sampling technolo-
gies to rebalance imbalanced data, including under-sampling,
and over-sampling. Algorithm-level methods construct new
algorithms or modify traditional algorithms to reduce the
disadvantages of imbalanced data, including cost-sensitive
learning, one class learning and feature methods. Ensem-
ble learning methods combine ensemble learning with
data-level or algorithm-level methods to further improve their
performance.

Evolutionary under-sampling is an important data-level
method, which selects the sample subset that maximizes or
minimizes the predefined objective functions to eliminate the
effect of imbalanced data [10]. Meanwhile, researchers also
use feature selection to choose relevant variables to eliminate
the disadvantages of imbalanced distribution and promote
the performance of classifiers [11]. Additionally, integrat-
ing ensemble learning method into algorithms can further
improve their classification and robust performance [12].

Previous methods use one or two advantages of basic
algorithms. However, in this paper, we propose a more
powerful imbalanced classification method called Genetic
Under-sampling and Multiobjectie Ant Colony Optimization
based Feature selection (GU-MOACOFS) which combines
ensemble learning, evolutionary under-sampling and feature
selection simultaneously. We employ Bootstrap to sample
original data. When the dimension of data is high, we use
symmetrical uncertainty (SU) to implement feature selection
to reduce computation costs. Then we develop a new indicator
called V-statistic to measure the distribution of data, which
is adopted as an optimization objective of genetic algorithm
for under-sampling without classifier. After that, we imple-
ment feature selection on sample subsets by multi-objective
ant colony optimization to get training subsets as inputs
of classifiers. GU-MOACOFS takes advantage of ensemble
learning, under-sampling and feature selection at the same
time. Exhaust experiments show its superiority compared
with other state-of-art algorithms.

This paper is organized as follows. Section 2 reviews
the related works of imbalanced classification methods.
Section 3 describes our method in detail. Section 4 presents
the results of the experiments based on 14 classical data sets.
Conclusion is given in section 5.

Il. RELATED WORKS
A. DATA-LEVEL METHODS
Under-sampling methods are to balance data by selecting
some majority class instances and combining them with all
minority class instances. Random under-sampling (RUS) is
one of the most popular under-sampling methods [13]. It is
obvious that under-sampling is a combinatorial problem,
so the under-sampling methods based on evolutionary algo-
rithms are widely used in real applications [14].

Yu et al. propose an under-sampling method based on ant
colony optimization [15]. It encodes instances of majority
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class as edges traveled by ants and uses O or 1 to denote
whether the current edge is selected or not. In order to
avoid over-fitting, it divides original data into three groups
randomly; two of them are training sample datasets and the
rest is testing sample dataset. Then it selects instances from
the majority class and repeats this process for 100 times to
ensure every sample can be chosen as one of the training
samples at least once. At last, the 100 results are united, and
the algorithm selects majority class instances based on their
frequencies.

Krawczyk et al. develop an algorithm based on Boosting
and regard genetic algorithm under-sampling as its compo-
nent, which is different from adopting an evolutionary algo-
rithm under-sampling directly [16]. Boosting is an ensemble
learning method, and diversity is important for its classifiers.
Hence, they propose an indicator to measure classification
performance and diversity among classifiers at the same time,
and apply it to guide genetic algorithm to select samples max-
imizing classifiers’ classification performance and diversity
simultaneously.

In order to balance big imbalanced data, Triguero et al.
combine genetic algorithm under-sampling with MapReduce
framework [17]. They split original data into M partitions
at Mapper stage, use genetic algorithm to implement under-
sampling on every partition to balance samples to train clas-
sifiers and integrate results at Reduce stage.

It is obvious that the evolutionary algorithm’s under-
sampling is straight and deployed easily, and it has attracted
attention and been widely used. However, the most disad-
vantage of evolutionary algorithm under-sampling is time-
consuming. Besides, traditional RUS may lose important
information.

Over-sampling methods reduce the effects of imbalanced
data by adopting over-sampling or generating new minority
instances. There are two popular methods, i.e. random over-
sampling (ROS) and synthetic minority over sampling tech-
nique (SMOTE), including its variants [18]-[20].

SMOTE is a very famous over-sampling method [19].
It selects one instance of minority class and gets its k nearest
neighbors by Euclidean metric based on their features’ space.
Then it chooses one instance from its k nearest neighbors
randomly, and generates new minority class instance by the
difference between itself and its selected neighbors.

Adaptive synthetic sampling (ADASYN) is an excellent
algorithm based on SMOTE. It tunes the instances of minor-
ity class generated by SMOTE according to the probability
distribution of minority class to improve the classification
accuracy of classifiers. In detail, it yields fewer instances if
the distribution of minority class is simple and more instances
if the boundary of the minority class is complexity [21].

Other variants of SMOTE select more reasonable instances
generally through some specific approaches. Ramentol er al.
use fuzzy rough set to measure the degrees of newly generated
instances and original instances, and remove samples whose
degrees are lower than predefined value [22]. It is a key that
they use two different predefined values, the one is lower for
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majority class instances in order to preserve original infor-
mation, and another is higher for newly generated instances
in order to save more suitable data.

ROS is simple and direct for users, but it is over-fitting
easily. SMOTE and its variants can handle the disadvantage of
ROS effectively, however many real-world applications rely
on real data such as medical diagnose and fault detection etc.,
s0 it is not possible to adopt those methods [23], [24].

B. ALGORITHM-LEVEL METHODS

Unlike under-sampling and over-sampling methods,
cost-sensitive methods do not change data distribution. They
construct cost matrices to assign higher costs for the misclas-
sification of minority class instances with respect to majority
class instances. There are three categories of cost-sensitive
methods, i.e. methods based on translation theorem, methods
based on meta cost framework and methods directly design
appropriate cost functions for specific classifier. Though it is
superior to the data-level method, it is difficult to predefine an
appropriate cost function when facing complex imbalanced
problem [25], [26].

One class learning methods also do not change data
distribution. They obtain similarity degree values between
instances by their features and classify each instance on the
basis of predefined similarity thresholds. One class learn-
ing methods have better predictive performance and could
resolve over-fitting in part. However, their accuracy depen-
dent on the similarity thresholds which need to be empirically
tuned to achieve the desired performance [27], [28]

Feature methods include feature selection and feature
extraction. Classifiers may regard instances of minority class
as outliers or noise data as features of imbalanced data may
have a bias towards majority class. Feature selection method
can shift the focus on the features optimizing the contrast
between classes rather than the training examples.

Yin et al. propose a feature selection method based on
decomposition for the binary imbalanced problem [29]. They
cluster training data into C virtual classes, measure feature’s
correlation based on its relationship with class labels, and
select former N best features based on their evaluation values.

It attracts much attention that implementing feature selec-
tion for resolving the imbalanced problem. Moayedikia et al.
apply feature selection based on harmony search to eliminate
the influence of high dimensional imbalanced data [30]. They
measure the feature’s correlation by SU firstly, and adopt
harmony search to implement feature selection. Besides, they
introduce a vector tuning operation to add or remove features
from feature subset according to their values obtained by SU.
Du et al. employ a genetic algorithm to implement feature
selection on multiclass imbalanced data to improve classi-
fier’s performance [31]. Moreover, they combine the exten-
sion of geometric mean and the ratio between the number
of selected features and the number of original features as
optimization objectives. Besides, Fernandez et al. integrate
sampling with feature selection, encode training samples w
and features n into chromosome whose length is |w|+|n| [32].
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They take the area under the ROC curve and the difference
between the number of selected samples and original sam-
ples as two optimization objectives simultaneously, and non-
dominated sorting genetic algorithm co is selected to realize
their method.

It is a new research direction that using feature selection to
eliminate the drawback of imbalanced data, and it is becom-
ing a hot point though it has a short history.

Feature selection chooses features from original data, and
it does not change original features. Feature extraction, which
is different from feature selection, transforms data into a
low-dimensional space based on original features informa-
tion by some methods. Feature extraction contains some
technologies such as singular value decomposition, principal
component analysis and non-negative matrix factorization
etc. [33], [34]. The disadvantage of feature extraction is the
difficulty to interpret new generated features, and some tech-
nologies are time-consuming, such as non-negative matrix
factorization.

C. ENSEMBLE LEARNING METHODS

Ensemble learning methods combine ensemble learning tech-
nologies with data-level methods or algorithm-level meth-
ods to improve algorithms’ classification performance. Some
popular ensemble learning methods include Bagging, Boost-
ing and Adaboost. Bagging is an inherent parallel ensemble
learning technology whose components can be running at the
same time, and uses majority voting or weighted majority
voting to aggregate results. Boosting and Adaboost are iter-
ative ensemble learning methods, and they train a classifier
every iteration and focus on the misclassification samples
classified at the next iteration to promote whole classifiers’
performance [35].

There are some ways that combine ensemble learning with
data-level algorithms. Sun et al. propose a multiple classi-
fier system based on Bagging [36]. They develop samples
balancing methods to obtain different balanced data sets,
and use those to construct multiple classifier systems to get
a high-performance classifier. They introduce two samples
balancing methods, one uses a clustering algorithm to gather
instances of majority class into some clusters and combines
them with all minority class samples to generate many bal-
anced data sets, and another splits majority class samples
according to the number of minority class instances in order
to ensure the number of majority class instances of new
generated data sets is the same with that of minority class
instances.

SMOTEBoost is a famous modified algorithm based on
Adaboost, it integrates SMOTE with Adaboost, and uses
SMOTE to construct a new balanced data set to train clas-
sifier at each time in Adaboost to increase misclassification
samples’ weights in next iteration [37].

The other way is to union ensemble learning technologies
with algorithm-level methods. Guo et al. adopt Adaboost and
feature selection on the basis of binary particle swarm opti-
mization to resolve the multiclass imbalanced classification
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problem [38]. They regard Adaboost as a component of
binary particle swarm optimization which implements feature
selection, and employ Adaboost to construct multiple classi-
fier system by new training samples.

Li et al. develop a self-adapted ensemble classification
algorithm which uses ensemble learning, data-level methods
and algorithm-level methods simultaneously to solve mul-
ticlass imbalanced classification problem specifically [39].
They apply feature selection on original data, and take
resampling strategy based on ensemble learning to construct
multiple classifier systems. Then they use some alternate
methods to realize the proposed algorithm, such as employing
Fast Correlation Based Filter or binary particle swarm opti-
mization to realize feature selection, and applying Adaboost,
under-sampling balanced ensemble, or over-sampling bal-
anced ensemble to realize resampling.

Except for those mentioned algorithms, RUSBoost, EUS-
Boost, EasyEnsemble and BalanceCascade etc. have been
widely used in resolving imbalanced classification prob-
lems [40]-[42]. The applications of ensemble learning tech-
nologies can improve original algorithms’ adaptability and
robustness, and they have become a hot direction of imbal-
anced classification researches. However, ensemble learning
methods have an embarrassing drawback, i.e. they are very
time-consuming, especially Boosting and Adaboost. Besides,
the development of big data has made high dimensional data
become the main data type, which leads to a difficult situation
for current ensemble learning methods.

lll. GU-MOACOFS
A. FRAMEWORK OF GU-MOACOFS
The framework of the proposed GU-MOACOFS is described

in Fig. 1.
Original
Dat:
ata Feat Cross
Bootstrap cature Validation
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Data Data Data Data
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FIGURE 1. Framework of GU-MOACOFS.

Fitness
Value

VOLUME 7, 2019

Now we explain the reasons why GU-MOACOFS looks
like that.

o There are some general ensemble learning frame-
works such as Bagging, Boosting, and Adaboost, etc.
We choose Bagging because of the following factors.
First, Bagging has a better performance than other
frameworks under same time [43]. Second, Bagging
is an inherent parallel framework which is easy to be
deployed. Besides, it has less time costs than other itera-
tive methods, and it is more popular than iterative based
ensembles in applications [44].

« Any sampling method has its own principle. For exam-
ple, RUS implements random under-sampling until
the number of instances of majority class is the
same as that of minority class. We propose V -statistic
to measure the distribution of under-sampling data
by genetic algorithm, and it can improve the effi-
ciency of sampling compared with other evolutionary
under-sampling approaches combining with classifiers.
Besides, GU-MOACOFEFS applies SU to abandon noise
and useless features to reduce time costs when data
dimensionality is very high.

« Multiobjective ant colony optimization is a discrete
optimization algorithm which is more fit for feature
selection compared with continuous optimization algo-
rithms such as genetic algorithm or particle swarm opti-
mization. There is more than one objective that we
want to optimize in imbalanced classification problems,
and they may conflict with each other. It is better to
use multiobjective optimization technology to get better
solutions than single objective optimization methods.
So GU-MOACOFS employs multiobjective ant colony
optimization to implement feature selection.

o GU-MOACOEFS applies sampling first and then feature
selection, so multiobjective ant colony optimization can
try its best to make use of distribution information in
different sampling subsets.

B. V-STATISTIC

Some indicators are used to measure the complexity of imbal-
anced data, and the most popular indicator is imbalanced
ratio (IR) which is defined as the ratio between the number
of majority class samples and the number of minority class
samples, and it is shown in eq. (1).

_ Nmajor

IR 1

Nminor
where Np,jor denotes the number of majority class samples,
and Npinor denotes the number of minority class samples.
But it is not enough to use IR to measure the complexity
and distribution of imbalanced data. Fig. 2 shows two differ-
ent distributions under the same IR.
We can find that though they have the same IR, the distri-
bution of subfigure (a) is simpler than subfigure (b) which has
a worse boundary. Moreover, the classifier trained by samples
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FIGURE 2. Two different distributions under the same IR. (a) Simple
distribution situation. (b) Complex distribution situation.

in subfigure (a) will have a better performance. However,
it cannot be measured only by IR.

Ho and Base summarize 12 indications that measure the
complexity of imbalanced data, and they divide them into
three categories, i.e. measures of overlap individual feature
values, measures of separability of classes and measures of
geometry, topology and density of manifolds [45]. Luengo
et al. make some comparison experiments between those
12 measures, and they conclude that maximum Fisher’s dis-
criminant has a better ability [14]. The maximum Fisher’s
discriminant is defined as eq. (2).

(i — )
MO ="g 5
MF = max(fd) (2)

where w1, i, i1, 8;» are the means and variances of the
two classes. fd(i) denotes the fisher’s discriminant value of
feature i, and MF is the maximum fd over all the features.

In order to reflect the distribution of imbalanced data
comprehensively, we combine those two measures to propose
V-statistic which is defined to be eq. (3).

V = MF/IR 3)

It means the distribution of data is better if the value of
V -statistic is higher.

C. GENETIC ALGORITHM BASED UNDER-SAMPLING
It is an important method to use an evolutionary algorithm
to resample data. In traditional researches, it often combines
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with classifiers and adopts classification performance as opti-
mization objectives. That way has some disadvantages which
we want to solve. First, its results have a strong correlation
with classifiers, and it does not make use of samples’ infor-
mation. Second, it may be time-consuming because of using
classifiers. GU-MOACOFS performs genetic algorithm-
based under-sampling (GAUS) which is independent of clas-
sifier and uses V-statistic as its optimization objective to
resolve conventional algorithms’ disadvantages and improve
the efficiency of resampling.
Algorithm 1 shows how GAUS works.

Algorithm 1 Pseudo Code of GAUS
01. Input: Imbalanced Data
02. Output: Rebalanced Data
03. BEGIN
04. Number the instances of majority class, transform them
into chromosomes, and initialize chromosomes
05. WHILE (Not meet stopping criteria)
06. Crossover operation between chromosomes
07. Mutation operation among new chromosomes
08. Union selected instances of majority class with all
instances of minority class
09. Calculate fitness values of chromosomes by V-statistic
10. Choose elite chromosomes based on their fitness values
11. END WHILE
12. END

There are many crossover operations in genetic algorithms,
such as single-point crossover, multiple-point crossover and
uniform crossover etc. We use single-point crossover famil-
iarly in this paper.

D. MULTIOBJECTIVE ANT COLONY OPTIMIZATION

It is a very common preprocessing way to apply feature
selection to find relevant features in order to improve model’s
interpretation, reduce time-consuming and storage of data,
and improve classification performance. Fig. 3 illustrates this
observation. We randomly select a data set and plot its sample
distribution on three dimensions space, and then remove the
noise feature. We can find that it is easier to detect boundary
after removing noise feature. Though conventional feature
selection algorithms work well in balanced data, they may
deteriorate in imbalanced data and resulting in a higher error
rate [29]. In order to utilize the advantage of feature selec-
tion and avoid the effect of imbalanced data, we employ
multiobjective ant colony optimization to implement feature
selection.

Feature selection is a subset problem in math, and multi-
objective ant colony optimization has a better performance in
resolving subset problems. Cao et al. propose a graph-based
ant system which constructs a structure graph composed of
a directed graph and some mappings which map the prob-
lems onto directed graphs [46]. Then they apply a method
called equivalent routes pheromone strengthening policy to
update the pheromone matrix. However, it is only used
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FIGURE 3. Sample distribution before and after removing noise feature.
(a) Before feature selection. (b) After feature selection.

Algorithm 2 Pseudo Code of Feature Selection by Multiob-
jective Ant Colony Optimization
01. Input: Data sets
02. Output: Pareto solutions (feature subsets)
03. BEGIN
04. Initialize Pareto archive, pheromone matrices and
heuristic information matrix
05.WHILE (Not meet stopping criteria)
06. FOR each ant
07. Construct solution based on transition probability func-
tion and heuristic information
08. Reconstruct training data sets based on selected fea-
tures and train classifiers to obtain fitness values
09. END FOR
10. Update Pareto archive according to fitness values of
solutions
11. Choose solutions from Pareto archive to update
pheromone matrices
12. END WHILE
13. END

for single objective optimization problems. Based on ref-
erence [46], we make it being fit for multiobjective opti-
mization problems. Then we employ it to choose feature
subsets.

Algorithm 2 shows the feature selection process of the
modified multiobjective ant colony optimization.
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In step 7, the transition probability is given by eq. (4).
[z] - i)

Pg- = Zebj¢visitk [fhj]a . [77};]/3

0 otherwise

ejj ¢ visity

“

where pi.‘/. denotes the probability that ant k travels from node
dj to node dj;1 by edge e;;. Tj; is the pheromone value of
edge e;; at current iteration, 7; a statistic expectation heuris-
tic information of selecting node i. visify denotes the edges
which are visited by ant k. wandf are constants to control
the relative importance of the pheromone versus the heuristic
information.

We use Fisher discriminant as the heuristic information of
multiobjective ant colony optimization. As GU-MOACOFS
has n sample subsets because of using Bagging method,
we calculate Fisher discriminant value of each feature in
every sample subset, then aggregate them to generate heuris-
tic information, which is given by eq. (5).

nf
(@)=Y f00) )
r=1

In order to get better quality of Pareto solutions, we set
more than one pheromone matrix. And weight product
method is applied to aggregate values of pheromone matrices
to calculate transition probability. Supposing there are two
optimization objectives, Eq. (6) shows us how to obtain tran-
sition probability.

7= ()M (1) (6)

where A is a weight parameter and its range is [0, 1].

After obtaining new Pareto archive, pheromone matrices
must be updated for further evolution by solutions from
Pareto archive. The way to update edge tabu’ at time ¢ is
described in eq. (7).

()= (1—p)Ti(t— D)+ A’ (tabu') e €V (tabu')
T =) —1)

where p is evaporation rate, W (tabu') is the equivalent
routes of edges tabu', A’ (tabu') is the increasing pheromone
value [46]. We use fitness values of selected solutions to
update pheromone matrices to improve the algorithm’s ability
to find better results. A (tabu') is calculated by eq. (8).

N

otherwise

m
A (tabu') = () fultabu'))/(Q * m) )
h=1
where m is the number of objectives, f;(fabu’) denotes the
fitness value of edge in hth objective, and Q is a constant
value.

E. PREPROCESSING AND DESCRIPTION

OF PROPOSED METHOD

In this part, we describe the preprocessing steps of the pro-
posed algorithm when the dimension of data is high. Then we
give the pseudo code of GU-MOACOFS and its complexity.
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Our method may have a shortcoming when the dimension
of data is very high. As we apply V-statistic as an optimiza-
tion objective, itis very time-consuming when dimensionality
is high. So we employ SU which is an indicator to mea-
sure feature correlations based on entropy. SU is effective
in feature selection for large scale data sets [47]. Supposing
x and y are two variables, and their uncertain is given by
egs. (9) and (10).

H(x) = =) P(xi)logy(P(xi)) ©)
H(xly) = = > PO:) Y Plxilyp) logs(P(xilyp) — (10)
i J

1

where P(x;) is the prior probability over all values of x, and
P(x;]y;) is the posterior probability of x. Based on egs. (9)
and (10), we can get information gain defined in eq. (11).

Gxly) = H(x) — H(xly) (11

it gives the entropy loss of x when y is considered. Apparently,
x contains more information if G is higher. To compare each
combination of x, y meaningfully, the values in eq. (11) have
to be normalized as eq. (12).
S(x,y) = HZG& (12)
(x)+H(y)

The range of S is between 0 and 1. S = 1 means that x and
y are fully correlated, while S = 0 implies that x and y are
independent.

If there are many dimensions, we can apply SU to measure
the correlations of features to abandon noise and redundant
features firstly. By this way, we can reduce the time costs of
genetic algorithm and multiobjective ant colony optimization
at the same time. As it is clear that it will cost more time to
select 20 features from 2000 features than from 100 features.
Eq. (12) can only give the SU of one feature against a single
target class label. We use eq. (13) to measure the weight of
feature f; over two class labels.

__S(lo
2 S(jle)

where Vj, i # j. If feature f; is strongly correlated with class
¢, then its S will have the greatest value for all S(f;|c).

Now, we can give the pseudo code of GU-MOACOFS in
algorithm 3.

Now, we analyze the complexity of GU-MOACOFS. Sup-
posing the number of data subsets is n, original data dimen-
sion is C, GAUS iteration number is ite_g, GAUS population
size is N_g, MOACO iteration number is ite_m, MOACO
population size is N_m. The time of Bootstrap sampling
is O(n), the overall complexity of crossover and mutation
operation of GAUS is O(N_g), the evaluation time of GAUS
for each solution by V-statistic is O(C), so the overall time
of GAUS is O(nxite_gxN_gxC). In MOACO, the most
time-consuming part is searching for solutions by ants and
its complexity is O(ite_mxN_mxC?). The overall time of
GU-MOACOFS is O(nxite_gxN_gx C+ite_mxN_mxC?).

FS(fi, o (13)
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Algorithm 3 Pseudo Code of GU-MOACOFS
01. BEGIN
02. Initialize parameters and set maximum iteration value
iter
03. IF dimension of original data is higher than predefined
value nf
04. Obtain every feature’s correlation by eq. (13), sort
them in descending order, and select former nf features to
construct new input data
05. ENF IF
06. Resample data by Bootstrap to generate n groups of
data subsets
07. FOR each data subsets
08. Adopt algorithm 1 to implement under-sampling to
generate corresponding sample subsets
09. END FOR
10. Employ algorithm 2 to get feature subsets
11. Select one feature subset based on user’s preference
12. END

IV. EXPETIMENTS AND ANALYSIS

A. DATASETS AND MEASURES

In this part, we use fourteen data sets which include ten
low dimensional data sets and four high dimensional data
sets to make comparison experiments. Four low dimensional
data sets come from website http://www.keel.es/datasets.php,
three high dimensional data sets, i.e. DLBCL, CNS and
COLON, come from reference [30], and the last dimensional
data set comes from reference [15]. Table 1 gives the charac-
teristics of fourteen data sets, and the last column denotes the
number of features which are selected by our algorithm and
compared algorithms. We have mentioned that we will use SU
to implement feature selection preprocessing steps in order to

TABLE 1. Characteristics of experiment datasets.

Selected
Name Instances Features IR
Features
GLASS4 214 9 15.4615 5
ECOLIO1VSS 240 6 11.0000 4
ECOLI067VS35 222 7 9.0909 4
ECOLI0146VS5 280 6 13.0000 4
YEAST2VS8 482 8 23.1000 5
ECOLI0347VS56 257 7 9.2800 5
VEHICLEO 846 18 3.2513 15
ECOLIO1VS235 244 7 9.1667 5
YEASTO05679VS4 528 8 9.3529 5
YEAST4 1484 8 11.0000
DLBCL 59 7129 1.5000 14
CENTRAL 60 7129 1.8571 15
NERVOUS(CNS)
GLI8S 85 22283 2.2692 10
COLON 62 2000 1.8182 20
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improve our method’s efficiency, and we set the number of
selected features by SU as 100 for all high dimensional data
sets.

Indicator is very important for measuring the performance
of algorithms in imbalanced data. For balanced binary classi-
fication data, we often use the classification success rate (also
known as overall accuracy) which is the total classification
accuracy of two classes. But it is not enough for imbal-
anced problems. Supposing there are 90 negative samples
and 10 positive samples, a classifier’s classification success
rate will be 90% though it misclassifies all positive sam-
ples. So we must employ some more effective indicators.
Table 2 gives the confusion matrix for two-class classification
problem, and the positive class is minority class and negative
class is majority class.

TABLE 2. Confusion matrix for two-class problem.

Predicted
Positive Negtive
True Positive TP(True Positive) FN (False Negative)
Negtive FP (False Positive) TN (True Negative)

TP (FP) is the number of positive (negative) instances
classified correctly, and FN (TN) is the number of posi-
tive (negative) instances classified wrongly.

As we usually care about positive instances classification
results, we can use F indicator which is given as eq. (14) to
measure classifier’s performance.

_ 1+ ,32) “ TPrate - PPyalue

Fg = (14)
g ﬁ2 “ PPyaiye + TPrate
here TPrye = 7oy PPyaie = 7o TPrase is al
where rate. = TPLFN> value = TpIFp» rate 18 alSO

called recall, and PP,y is usually called precision. F indica-
tor is a comprehensive measure for recall and precision, and 8
is a coefficient which is used to adjust the important degree of
recall compared with precision. Usually, we set 8 = 1 (also
known as F indicator) and it means that recall and precision
are important equally.

The area under ROC curve (AUC) is also a popular indica-
tor used to measure the classification performance in imbal-
anced data. And it can be obtained by eq. (15).

1 + TPrate - FPrate

AUC = 5 (15)
where FP,y. = TNF—fFP. The range of AUC is [0.5, 1], and the

classifier is better if AUC is higher. If AUC value is equal to
0.5, it means the classifier is a random classifier.

Besides, we often adopt geometric mean (Gmean) to get
classifier’s performance, and it is given by eq. (16).

TP TN
Gmean = X (16)
TP+ FN TN + FP

Gmean is the geometric mean of the accuracies of two classes,
and it attempts to maximize them while obtaining good
balance.
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At last, we will still use classification success rate to
evaluate the results as it can give us the overall performance
evaluation of classifier in a sort of way. It is computed as
eq. (17).

TP + TN
~ TP+ FN +1N + FP

Acc 17
B. VALIDATION OF GENETIC ALGORITHM
UNDER-SAMPLING

First, we make some tests to evaluate the performance of the
proposed genetic algorithm based under-sampling (GAUS).
We use ROS, RUS and SMOTE as compared algorithms. The
parameters of GAUS are set as follows, maximum number of
iterations ite_g =200, population size N_g =80, crossover
percentage is 0.7, mutation percentage is 0.3, and mutation
rate is 0.25. We implement twenty times fivefold cross tests.
In order to make a fair comparison between algorithms,
we employ feature selection by SU before running each algo-
rithm in four high dimensional data sets. Table 3 to table 6
give the F|, Gmean, AUC and Acc results of four compared
algorithms.

We analyze the performance of four compared algorithms
from low to high dimensional data aspects. We count the
number of best results provided by four algorithms in ten
low dimensional data sets firstly. From table 3, we can find
that GAUS, SMOTE and RUS get seven, four and one best
values separately. GAUS obtains seven best results, SMOTE
provides three highest values, and ROS and RUS obtain
one maximum separately in table 4. In AUC experiments,
GAUS performs better in eight data sets, ROS is better on
GLASS4 and RUS is the best in YEAST2VSS. In Acc results,
GAUS and SMOTE perform better in six data sets simulta-
neously although RUS is better than others in YEAST2VSS.
From statistic results, we can find that random sampling
methods (ROS and RUS) are worse than sampling methods
based on criteria (GAUS and SMOTE) as random algorithms
are uncertain inherently. Besides, it is indicated that RUS is
better than ROS though ROS is over fitting easily and RUS
may lose information. And it also means under-sampling is
more effective than over-sampling in a way. At last, it is
clear that GAUS performs better than SMOTE in most cases
as SMOTE only uses the distance information of training
samples, while GAUS adopts V-statistic as criterion which
considers feature’s classification ability and sample’s quan-
tity at the same time. So GAUS can provide sampling subsets
which have a better classification performance.

Now we take a glance at the results in four high dimen-
sional data sets. GAUS provides all four best values while the
precision and recall of ROS and RUS are all zeros. It means
that they cannot find minority class samples. In table 4, GAUS
get the best results in GLI85 and COLON, SMOTE is better
in DLBCL, and RUS performs better in CNS. In AUC results,
GAUS has a better performance in three data sets except CNS
whose highest value is provided by RUS. Besides, the AUC
of ROS is 0.5 in GLI8S, and it indicates that the performance
of ROS is equal to that of the random classifier which does
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TABLE 3. F; results of four compared algorithms.

Data sets ROS SMOTE GAUS
GLASS4 0.5661+0.2017 0.4949+0.1757 0.5926+0.1732 0.5558+0.1141
ECOLIO1VS5 0.6314+0.1943 0.6181+0.1980 0.6389+0.1992 0.6717+0.1475
ECOLI067VS35 0.6295+0.0831 0.4307+0.1398 0.6587+0.1599 0.6933+0.1321
ECOLI0O146VS5 0.5256+0.0631 0.4797+0.0559 0.7177+0.2037 0.7267+0.1862
YEAST2VS8 0.5077+0.2104 0.5825+0.2378 0.5825+0.2378 0.5825+0.2378
ECOLI0347VS56 0.7302+0.1025 0.6561+0.2537 0.6733+0.1324 0.8592+0.0950
VEHICLEO 0.9201+0.0215 0.9329+0.0213 0.9259+0.0133 0.9204+0.0139
ECOLI01VS235 0.6641+0.0252 0.6001+0.0809 0.6880+0.1319 0.7154+0.0825
YEASTO05679VS4 0.4078+0.0642 0.4125+0.5555 0.4647+0.0262 0.5239+0.0573
YEAST4 0.2170+0.0783 0.1974+0.0699 0.3634+0.1331 0.2564+0.0851
DLBCL / 0.5775+0.1575 0.6407+0.2025
CNS / 0.4871+0.2377 0.5282+0.1627
GLI85 0.4852+0.1415 0.5219+0.2024 0.4996+0.2042 0.5572+0.1733
COLON 0.6721+0.1108 0.6469+0.1108 0.7286+0.1121 0.7472+0.0769

TABLE 4. GMEAN results of four compared algorithms.

Data sets ROS SMOTE GAUS
GLASS4 0.8787+0.1136 0.8685+0.1101 0.8661+0.1079 0.8335+0.1255
ECOLI01VS5 0.8310+0.1401 0.8796+0.0724 0.8313+0.1638 0.8909+0.0761
ECOLI067VS35 0.8356+0.0947 0.7743+0.0578 0.8431+0.0983 0.8471+0.0960
ECOLI0146VS5 0.8607+0.1147 0.8661+0.0900 0.8892+0.1101 0.8681+0.1184
YEAST2VS8 0.6442+0.1807 0.6467+0.1827 0.6467+0.1827 0.6467+0.1827
ECOLI0347VS56 0.9214+0.0647 0.8828+0.1028 0.8397+0.0967 0.9382+0.0605
VEHICLEO 0.9537+0.0145 0.9602+0.0242 0.9653+0.0167 0.9591+0.0097
ECOLI0O1VS235 0.8226+0.0983 0.8563+0.0720 0.8240+0.1173 0.8588+0.0862
YEAST05679VS4 0.8109+0.0690 0.8278+0.0675 0.8127+0.0596 0.8453+0.0422
YEAST4 0.7519+0.0727 0.7523+0.0794 0.6744+0.0612 0.7569+0.0610
DLBCL 0.2767+0.2588 0.1622+0.1280 0.2794+0.2703 0.1650+0.1273
CNS 0.3335+0.3051 0.4581+0.2850 0.4099+0.1298 0.3308+0.2130
GLI8S 0+0 0.1650+0.1289 0.3132+0.1238 0.5395+0.1309
COLON 0.7669+0.0918 0.7489+0.0853 0.8081+0.0930 0.8268+0.0425

not eliminate drawbacks brought by high dimension and
imbalanced distribution. In Acc experiments, ROS gets the
best result in DLBCL and RUS obtains the highest value
in CNS, but GAUS performs better in GLI85 and COLON.
We can make a conclusion that random sampling methods
are not fit in high dimensional imbalanced data sets, and
GAUS has a better comprehensive classification performance
than other compared algorithms. It is because that we employ
SU to implement feature selection to reduce the effects of
irrelevant and noise features, and only GAUS based on V-
statistic makes full use of information of training samples
to improve classifier’s performance, though other three com-
pared algorithms are also running in processed data sets.

Finally, we can see that the results of GAUS in F{, Gmean
and AUC are better than those in Acc, it demonstrates that
GAUS has an excellent performance in resolving imbalanced
classification problems, and Acc indicator is inappropriate to
measure imbalanced classification results.
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C. VALIDATION OF GU-MOACOFS

In this section, we make exhaust experiments to evaluate the
performance of our proposed GU-MOACOFS. We choose
six state-of-art algorithms to make comparisons with the
proposed method, i.e. ADASYN, RUSBoost, support vector
machine recursive feature elimination (SVMRFE), minimum
redundancy maximum relevance (MRMR), instance selec-
tion feature selection multiobjective evolutionary algorithm
(IS+FS-MOEA) [32], and SYMON [30]. ADASYN and
RUSBoost are two popular methods for imbalanced classi-
fication problems. As GU-MOACOFS employs MOACO to
selects feature subsets for improving classification perfor-
mance, we introduce two excellent feature selection algo-
rithms, SVMRFE and MRMR, to demonstrate the advantages
of our algorithm. IS+FS-MOEA is the first method based on
the multiobjective evolutionary algorithm for the imbalanced
classification problem, and it is realized by non-dominated
sorting genetic algorithm II and has an outstanding capability.
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TABLE 5. AUC results of four compared algorithms.

Data sets ROS SMOTE GAUS
GLASS4 0.8872+0.0993 0.8784+0.0978 0.8770+0.1230 0.8457+0.1124
ECOLIO1VSS 0.8496+0.1390 0.8839+0.0694 0.8521+0.1315 0.8952+0.0720
ECOLI067VS35 0.8467+0.0809 0.7858+0.0484 0.8547+0.0849 0.8596+0.0814
ECOLI0O146VSS 0.8678+0.1072 0.8705+0.0865 0.8966+0.1205 0.8775+0.1088
YEAST2VS8 0.7183+0.1121 0.7215+0.1144 0.7215+0.1144 0.7215+0.1144
ECOLI0347VS56 0.9246+0.0614 0.8861+0.1395 0.8514+0.0834 0.9415+0.0661
VEHICLEO 0.9541+0.014 0.9608+0.0236 0.9656+0.0165 0.9593+0.0096
ECOLIO1VS235 0.8401+0.0827 0.8624+0.0662 0.8380+0.1035 0.8662+0.0780
YEAST05679VS4 0.8134+0.0687 0.8326+0.0677 0.8180+0.0504 0.8484+0.0383
YEAST4 0.7602+0.0653 0.7582+0.0726 0.7192+0.0405 0.7682+0.0532
DLBCL 0.4908+0.0896 0.4454+0.1062 0.4854+0.0860 0.5043+0.0829
CNS 0.5239+0.1306 0.6041+0.1153 0.4887+0.1415 0.5186+0.0731
GLIS8S 0.5+£0 0.5653+0.1460 0.5393+0.1379 0.6387+0.0965
COLON 0.7742+0.0896 0.7592+0.0866 0.8300+0.0737 0.8392+0.0404

TABLE 6. ACC results of four compared algorithms.

Data sets ROS SMOTE GAUS
GLASS4 0.9116+0.0303 0.8651+0.0624 0.9255+0.0255 0.9116+0.0303
ECOLIO1VSS 0.9333+0.0271 0.9125+0.0401 0.9375+0.0147 0.9333+0.0271
ECOLI067VS35 0.9240+0.0202 0.8126+0.0948 0.9375+0.0095 0.9465+0.0119
ECOLI0O146VSS 0.8892+0.0233 0.8607+0.0196 0.9428+0.0196 0.9500+0.0387
YEAST2VSS8 0.9689+0.0242 0.9752+0.0208 0.9752+0.0208 0.9752+0.0208
ECOLI0347VS56 0.9414+0.0196 0.8707+0.1097 0.9295+0.0383 0.9726+0.0176
VEHICLEO 0.9657+0.0098 0.9716+0.0088 0.9669+0.0088 0.9645+0.0094
ECOLIO1VS235 0.9102+0.0398 0.8612+0.0566 0.9184+0.0456 0.9184+0.0456
YEAST05679VS4 0.8117+0.0568 0.8059+0.0536 0.8631+0.0308 0.8840+0.0321
YEAST4 0.8532+0.0210 0.8283+0.0288 0.9482+0.0173 0.8855+0.0192
DLBCL 0.5454+0.1175 0.4424+0.1013 0.4955+0.1689 0.5136+0.2336
CNS 0.5333+0.0745 0.6333+0.0745 0.4500+0.1828 0.4333+0.1490
GLI85 0.3294+0.1220 0.4000+0.2544 0.4706+0.1715 0.5177+0.1578
COLON 0.7795+0.0739 0.7487+0.0460 0.7667+0.1067 0.8128+0.0401

SYMON is a powerful feature selection algorithm for high
dimensional imbalanced classification.

The parameters of GU-MOACOEFS are set as follows,
GAUS’s parameters are unchanged, the number of data sub-
sets generated by Boostrap is 21 (i.e. n = 21), maximum
number of iterations of MOACO ite_m = 200, pheromone
importance degree o =1, heuristic information importance
degree B = 1, the number of solutions in Pareto archive
is 60, MOACO population size is N_m = 30, pheromone
evaporation rate p = 0.1, weight parameter A = 0.5. SVM
is used as classifier, and it uses RBF kernel, 0 = 0.4 and
C = 100. The parameters of other algorithms are set the
same as those in their original papers. Table 7 to table 10 give
the Fy, Gmean, AUC and Acc results of seven compared
algorithms.

We still compare those algorithms in the opinion of low
and high dimensional data. We analyze the results in ten low
dimensional data sets firstly. In F results, GU-MOACOFS
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provides best values in eight data sets while SYMON only
performs better in ECOLI0O146VSS5 and YEAST2VSS. The
results of SVMRFE and MRMR in three data sets do not
exist, which means their precision or recall values are zero
and they cannot find minority class samples. In Gmean
experiments, GU-MOACOFS gets the best solutions in eight
data sets, while IS+FS-MOEA obtains better outcomes in
ECOLI0347VS56 and ECOLIO1VS235. In AUC results, GU-
MOACOFS performs better in eight data sets except the
previous two data sets where IS+FS-MOEA also provides the
best solutions. It indicates that SVMRFE and MRMR cannot
resolve imbalanced classification problems as their results
are 0.5 in YEASTO05679VS4 and YEAST4. In table 10,
GU-MOACOFS is better in five data sets, SYMON per-
forms best on three data sets, and SVMRFE outstands in two
data sets. From previous statistic results, we can find that
conventional feature selection algorithms, i.e. SVMRFE and
MRMR, are not suitable for imbalanced data classification
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TABLE 7. F; results of four compared algorithms.

Data sets ADASYN RUSBOOST SVMRFE MRMR IS+FS-MOEA SYMON GU-
MOACOFS
GLASS4 0.7072+0.1908  0.5997+0.2428 / / 0.7255+0.0750  0.7933+0.1251 0.8102+0.1283
ECOLIO1VSS 0.7981+0.1833  0.8278+0.1135  0.7238+0.0599  0.7732+0.0672  0.7975+0.1522  0.8967+0.1007  0.9152+0.0444
ECOLIO67VS35 0.7029+0.1002  0.6096+0.1137  0.7661+0.0809  0.7534+0.0827  0.7819+0.1449  0.8025+0.0850  0.8306+0.0553
ECOLIO146VS5 0.5963+0.1183  0.6117+0.1029  0.7239+0.0681  0.7767+0.0812  0.7289+0.1979  0.8918+0.1043  0.8592+0.0951
YEAST2VSS8 0.3082+0.2921  0.4538+0.2205  0.6736+0.0829  0.6925+0.0881  0.5733+0.1588  0.7267+0.1862  0.6804:+0.1478
ECOLI0O347VS56  0.7311+0.1675  0.7695+0.0850  0.7897+0.0582  0.7233+0.0573  0.9044+0.0928  0.8095+0.1429  0.9481+0.0485
VEHICLEOQ 0.91954+0.0216  0.8348+0.0501  0.93254+0.0115  0.9319+0.0131  0.9075+0.0469  0.9401+0.0284  0.9429+0.0209
ECOLIO1VS235 0.7056+0.0796  0.7621+0.1177  0.7233£0.0758  0.6982+0.0740  0.7982+0.1610  0.8406+0.1468  0.8512+0.1192
YEASTO05679VS4  0.5069+0.0899  0.4823+0.0681 / / 0.5456+0.1168  0.5035+0.1374  0.5755+0.1212
YEAST4 0.3187+0.0462  0.3061+0.1186 / / 0.3228+0.0933  0.3413+0.0430  0.4473+0.1083
DLBCL 0.5374+0.1294  0.5333+0.1960  0.4796+0.0599  0.5241+0.0674  0.8232+0.1040  0.8272+0.0856  0.9256+0.0059
CNS 0.4824+0.1737  0.4833+0.1628  0.5351+0.0425  0.4406+0.0835  0.8123+0.1696  0.8499+0.0621 0.8853+0.0573
GLI8S 0.5431+0.1535  0.7293+0.1456  0.4268+0.1090  0.6686+0.0806  0.9448+0.0719  0.9017+0.0641 0.9765+0.0122
COLON 0.7551+0.1678  0.6351+0.1975  0.7144+0.0771  0.6158+0.0713  0.9034+0.0620  0.7816+0.1394  0.9664+0.0162
TABLE 8. GMEAN results of four compared algorithms.

Data sets ADASYN RUSBOOST SVMRFE MRMR IS+FS-MOEA SYMON GU-MOACOFS
GLASS4 0.8974+0.1006  0.8446+0.1894  0.2310+0.3163  0.2310+£0.3163  0.9482+0.0384  0.9609+0.0600 0.9848+0.0144
ECOLIO1VSS 0.9364+0.0586  0.8738+0.0827  0.8292+0.0468  0.8590+0.0513  0.9771£0.0159  0.9188+0.0942 0.9804+0.0180
ECOLIO67VS35 0.9180+0.1002  0.8274+0.0905  0.8239+0.0548  0.8204+0.0617  0.8832+0.1088  0.8544+0.1033 0.9371+0.0596
ECOLI0146VSS5 0.8940+0.1053  0.8628+0.0852  0.8210+0.0539  0.8518+0.0585  0.9170+0.0539  0.9008+0.0935 0.9693+0.0126
YEAST2VS8 0.7560+0.1580  0.7716+0.1548  0.7407+0.0737  0.7478+0.0715  0.6357+0.1255  0.7616+0.1579 0.8354+0.1100
ECOLI0O347VS56  0.9245+0.0542  0.9237+0.0569  0.8534+0.0501  0.7867+0.0442  0.9844+0.0149  0.8494+0.1063 0.9044+0.0928
VEHICLEOQ 0.9583+0.0169  0.9191+0.0235  0.95354+0.0092  0.9536+0.0105  0.9643+0.0130  0.9710+0.0150 0.9797+0.0085
ECOLI01VS235 0.8897+0.1099  0.8688+0.0748  0.8284+0.0558  0.7781£0.0588  0.9724+0.0224  0.8808+0.1092 0.9428+0.0436
YEAST05679VS4  0.8141+0.0538  0.8042+0.0780 0+0 0+0 0.8246+0.0292  0.7893+0.0978 0.8284+0.1004
YEAST4 0.8578+0.0369  0.7902+0.0597 0+0 0+0 0.8667+0.0591  0.8514+0.0840 0.8910+0.0733
DLBCL 0.5072+0.1376  0.5646+0.1601  0.4545+0.0816  0.5510£0.0702  0.7450+0.1422  0.8356+0.0609 0.9110+0.0158
CNS 0.3692+0.1679  0.5797+0.1374  0.57214+0.0217  0.4955+0.0391  0.7059+0.1822  0.8755+0.0555 0.9251+0.0169
GLI8S 0.1447+0.3237  0.8135+0.1178  0.6238+0.0993  0.7534+0.0702  0.9642+0.0497  0.9494+0.0370 0.9765+0.0122
COLON 0.8116+0.1221  0.7309+0.1650  0.7856+0.0625  0.7042+0.0524  0.8876+0.0658  0.8332+0.1108 0.9677+0.0244

problems, and ADASYN and RUSBoost can settle drawbacks
brought by imbalanced distribution at a certain extent. It is
better to combine instance selection and feature selection
than only use feature selection as IS+FS-MOEA is superior
to SYMON in ten data sets. In the end, GU-MOACOEFS is
superior to other six algorithms in ten data sets in the opinion
of four indicators, and it indicates that employing ensemble
learning, sampling policy and feature selection at the same
time can achieve a better result, and ensemble learning can
further promote algorithm’s performance.

Now, we see the results given by seven algorithms in
four high dimensional data sets. It is easy to find out that
GU-MOACOFS is the best algorithm in all four testing data
sets. IS+FS-MOEA is better than SYMON in GLIS85 and
COLON while SYMON is better in DLBCL and CNS.
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Besides, conventional sampling methods, ADASYN and
RUSBoost, and feature selection algorithms, SVMRFE and
MRMR, cannot handle high dimensional imbalanced data
classification problems effectively. As high dimension prop-
erty and imbalanced distribution interact with each other,
and the combination of them brings more difficulties. Sam-
pling policy only resolves imbalanced problems and fea-
ture selection merely settles high dimension difficulties,
so they may not account for high dimension and imbal-
anced characteristics at the same time. Experiments show
that SYMON performance is not superior to IS+FS-MOEA
significantly though SYMON is designed for solving high
dimensional imbalanced classification problems. With the
results in ten low dimensional data sets, we can make a con-
clusion that adopting instance selection and feature selection
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TABLE 9. AUC results of four compared algorithms.

Data sets ADASYN RUSBOOST SVMRFE MRMR IS+FS-MOEA SYMON GU-
MOACOFS
GLASS4 0.9023£0.0948  0.8594+0.1345  0.5617+0.0959  0.5643+0.0936  0.9496+0.0368  0.9624+0.0568  0.9850+0.0142
ECOLIO1VS5 0.9393+0.0550  0.8827+0.0747  0.8480+0.0385  0.8741+0.0441  0.9775+0.0154  0.9252+0.0842  0.9812+0.0164
ECOLIO67VS35 0.9203+0.0562  0.8396+0.0769  0.8472+0.0451  0.8442+0.0484  0.8962+0.1004  0.8693+0.0875 0.9399+0.0562
ECOLI0O146VS5 0.8985+0.0989  0.8713+0.0784  0.8438+0.0430  0.8681+0.0473  0.9213+0.0448  0.9100+0.0825 0.9705+0.0202
YEAST2VS8 0.7706+0.1490  0.7981+0.1267  0.7834+0.0537  0.7907+0.0541  0.7083+0.0833  0.8000+0.1264  0.8525+0.0940
ECOLI0347VS56  0.92544+0.0542  0.9247+0.0560  0.8701+0.0402  0.8147+0.0343  0.9846+0.0147  0.8646+0.0914  0.9756+0.0186
VEHICLEO 0.9585+0.0168  0.9193+0.0236  0.9541£0.0089  0.9542+0.0102  0.9646+0.0128  0.9711+0.0149  0.9798+0.0085
ECOLI0O1VS235 0.8984+0.0933  0.8772+0.0688  0.8470+0.0461  0.8070+0.0463  0.9730+0.0218  0.8957+0.1001 0.9460+0.0493
YEAST05679VS4  0.8155+0.0523  0.8108+0.0658 0.5+0 0.5+0 0.8278+0.0298  0.7997+0.0865 0.8375+0.0941
YEAST4 0.8588+0.0361  0.7955+0.0543 0.5+0 0.5+0 0.8676+0.0587  0.8560+0.0777  0.8948+0.0686
DLBCL 0.5727+0.1217  0.5971+0.1587  0.5283+0.0779  0.5765+0.0687  0.8341+0.1578  0.8489+0.0519  0.9151+0.0144
CNS 0.5891+£0.1274  0.6014+0.1309  0.5901+0.0295  0.5689+0.0319  0.8164+0.1880  0.8811+0.0537  0.9280+0.0157
GLI8S 0.5452+0.1012  0.8235+0.1116  0.6426+0.0087  0.7701+0.0630  0.9658+0.0467  0.9512+0.0353 0.9765+0.0122
COLON 0.8245+0.1093  0.7498+0.1521  0.7978+0.0561  0.7245+0.0478  0.9289+0.0354  0.8482+0.0945 0.9691+0.0226
TABLE 10. ACC results of four compared algorithms.
Data sets ADASYN RUSBOOST SVMRFE MRMR IS+FS-MOEA SYMON GU-
MOACOFS

GLASS4 0.9298+0.0406  0.9114+0.0553  0.9391£0.0217  0.9439+0.0132  0.9393+£0.0206  0.9718+0.0197  0.9721+0.0255
ECOLIO1VSS 0.9625+0.0309  0.9625+0.0309  0.9571£0.0095  0.9644+0.0129  0.9583+£0.0295  0.9792+0.0208  0.9917+0.0014
ECOLIO67VS35 0.9281+0.0242  0.9147+0.0293  0.9562+0.0167  0.9539+0.0159  0.8888+0.0993  0.9686+0.0124  0.9640+0.0199
ECOLIO146VS5 0.9214+0.0324  0.9321+0.0149  0.9653£0.0094  0.9718+0.0096  0.9393+0.0505  0.9857+0.0140  0.9786+0.0149
YEAST2VS8 0.8366+0.0839  0.9355+0.0372  0.9771£0.0060  0.9794+0.0075  0.9792+0.0074  0.9855+0.0093 0.973140.0118
ECOLI0347VS56  0.9151£0.0482  0.9419+0.0273  0.9620+£0.0110  0.9529+0.0147  0.9729+0.0259  0.9686+0.0224  0.9882+0.0105
VEHICLEO 0.9610+0.0089  0.9172+0.0152  0.9682+0.0052  0.9678+0.0058  0.9539+0.0210  0.9717+0.0134  0.9728+0.0067
ECOLI0O1VS235 0.92194+0.0088  0.9589+0.0143  0.9490+0.0121  0.9492+0.0096  0.9508+0.0399  0.9714+0.0310  0.9755+0.0171
YEAST05679VS4  0.8257+0.0313  0.8599+0.0305  0.9027+0.0122  0.9014+0.0116  0.8784+0.0548  0.8748+0.0311 0.8845+0.0337
YEAST4 0.8638+0.0140  0.8694+0.0213  0.9663£0.0042  0.9640+0.0047  0.8761+0.0205  0.8794+0.0215 0.9461+0.0114
DLBCL 0.4985+0.1389  0.5727+0.1374  0.4924+0.0607  0.5668+0.0716  0.8181+0.1578  0.8329+0.0650  0.9334+0.0289
CNS 0.5394+0.1503  0.6000+0.1294  0.5958+0.0344  0.5396+0.0251  0.7889+0.1279  0.8710+0.0534  0.9292+0.0250
GLI8S 0.4706+0.2121  0.8259+0.1080  0.6353£0.0824  0.7784+0.0580  0.9634+0.0481  0.9412+0.0416  0.9765+0.0122
COLON 0.8406+0.0949  0.7664+0.1337  0.8032+0.0570  0.7201+0.0488  0.9060+0.0858  0.8579+0.0877  0.9667+0.0256

simultaneously can obtain a universal fine performance, and
ensemble learning can further promote algorithm’s ability.
So GU-MOACOFS could resolve high dimensional imbal-
anced data classification problems more effectively.

At last, we talk about an interesting finding. In the
results of Gmean and AUC, we mark three values gen-
erated by GU-MOACOFS through underline, and they
are the outcomes in two low dimensional data sets, i.e.
ECOLI0347VS56 and YEAST05679VS4. We focus on them
as they are worse than the results provided by GAUS in table
4 and table 5. It indicates that though GU-MOACOFS per-
forms better in most cases, feature selection may lead to the
deterioration of the algorithm in some data sets. A possible
reason is that features have a high relevance in those data
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sets, and removing features may result in a worse situation.
So we have to be careful about using feature selection in some
situations.

V. CONCLUSIONS

Imbalanced classification problems widely exist in real-
world engineering applications, and conventional algorithms’
precondition is balanced data. Imbalanced distribution may
undermine the performance of previous methods; thus,
we propose a new method called GU-MOACOFS which
combines ensemble learning, evolutionary under-sampling
and multiobjective feature selection for resolving imbal-
anced classification problems. It employs Bootstrap to gen-
erate some data subsets based on the Bagging framework,
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implements under-sampling on data subsets to produce
sampling subsets by genetic algorithm based on proposed
V-statistic, and uses F| and Gmean indicator as objectives
of multiobjective ant colony optimization to select feature
subset to improve the performance of classifiers. Experiments
show GU-MOACOFS can resolve imbalanced classification
problem efficiently, especially in high dimensional data sets.
Besides, some conclusions are made as follows.

Firstly, V -statistic for the genetic algorithm can better mea-
sure the complexity of data distribution and make use of data
information to resample more discriminant sampling subsets.

Secondly, high-dimensional imbalanced data has high
dimensionality and imbalanced property at the same time,
which leads to a more complex situation of classification. The
traditional sampling method or feature selection algorithm
cannot handle it completely. Hence, it is more reasonable to
combine resampling and feature selection to perform classi-
fication in high-dimensional imbalanced data.

Thirdly, it is demonstrated again that ensemble learning
can further improve algorithm’s performance and robustness.

Finally, though feature selection can promote the ability of
classification algorithm in most cases, it may not work well
because of strong correlation between features in some data
sets. Therefore, we should be more careful when using feature
selection.

The proposed GU-MOACOFS is more a framework than a
pure algorithm. Its components can be replaced by other alter-
native methods according to user’s demands. For example,
the genetic algorithm can be replaced with RUS or SMOTE;
also, MOACO can be replaced with other feature selection
methods. Thus, GU-MOACOFS can be regarded as a flex-
ible prototype of the imbalanced classification framework.
Besides, we acknowledge that our proposed method is time-
consuming compared with other algorithms in this paper, but
itis the cost of its better performance, which is consistent with
conclusion of thesis “No free lunch”. In the future, we will
use GU-MOACOFS to resolve the problem of some real-
world applications and further promote its performance.
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