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ABSTRACT Three-phase line-start permanent magnet synchronous motors are considered among the most
promising types of motors in industrial applications. However, these motors experience several faults, which
may cause significant financial losses. This paper proposed a feed-forward neural network-based diagnostic
tool for accurate and fast detection of the location and severity of stator inter-turn faults. The input to the
neural network is a group of representative statistical and frequency-based features extracted from the
steady-state three-phase stator current signals. The current signals with different numbers of shorted turns
and loading conditions are captured using the developed finite element IMAG™ model for interior mount
LSPMSM. In addition, an experimental set-up was built to validate the finite element model and the
proposed diagnostics tool. The simulation and experimental test results showed an overall accuracy of
93.125% in detecting the location and the size of inter-turn, whereas, the accuracy in detecting the location

of the fault is 100%.

INDEX TERMS Electric motors, fault currents, fault detection, finite element analysis.

I. INTRODUCTION

In recent decades, faults in electric motors have been con-
sidered a major issue in industry. Production processes pre-
sume reliable and continuous operation of electric motors.
However, motors are subject to many possible fault types.
These faults may become catastrophic if not detected early.
They may lead to complete motor failure [1]-[3], which inter-
rupts the production process. These interruptions are costly
in terms of maintenance and loss of production time. There-
fore, having a fault-monitoring system is very important and
increases the reliability and availability of electric machines.
Detecting irregularity in a motor early using a proper fault
diagnosis scheme will help prevent expensive failures (and,
hence, prevent machine damage and reduce maintenance
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costs) and, more importantly, prevent unscheduled downtime
that results in the loss of production time and income [4]-[6].

To save electricity, researchers focus on investigating and
improving the efficiency of electric motors in manufactur-
ing processes. Induction motors are among the motors most
commonly used in industry; however, they suffer from low
operational efficiency and low power factor. In contrast,
permanent magnet synchronous motors are more efficient
and powerful; however, they lack the starting capability of
induction motors. Alternatively, line-start permanent magnet
synchronous motors (LSPMSMs) have the following signif-
icant advantages over the two previously mentioned motors:
high operational efficiency, high power factor, and the ability
to self-start [7]-[9].

The LSPMSM is a hybrid electric motor and it has dif-
ferent aspects compared with PMSM. In LSPMSM starting,
the induction torque, generated due to the induced current in
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the rotor bars, forces the rotor to rotate whereas the exci-
tation torque generated by the permanent magnets acts as
a braking torque. In PMSM, the motor needs an additional
mean to start. On the other hand, In LSPMSM, at steady
state, the motor rotates due to excitation and reluctance torque
whereas the induction torque is zero with constant load.
However, at steady state and under load variation, the bars of
the squirrel cage work as dampers. While, in PMSM there is
no induction torque even with variable loads, the main torque
is the excitation torque. On the other hand, the LSPMSM
suffers from demagnetization of permanent magnets due to
the high starting current. Such differences in performance
makes the fault detection in LSPMSM is more challenging
task compared to induction motor and PMSM.

LSPMSMs experience several types of fault due to
unavoidable mechanical and electrical stresses during oper-
ation, with the following representing the major faults: bro-
ken bars, eccentricity, bearing faults, stator inter-turn faults,
demagnetization and broken end rings [10]-[13]. In the lit-
erature [14], [15], stator winding faults in machines have
been reported to account for approximately 36% of motor
faults. The main causes of stator winding faults are inefficient
cooling systems, voltage stress, overloading, short circuits in
the winding, chemical contamination and partial discharge in
the winding. In most cases, stator winding faults start as turn-
to-turn (inter-turn), coil-to-coil, phase-to-ground, or phase-
to-phase faults, which ultimately lead to motor failure. It is
crucial to develop an effective tool for detecting such faults
in the initial stage because they become increasingly severe
over time if they are not addressed [16]-[20].

Accurate modeling of electric motors is considered the
first step in the detection and recognition of motor abnor-
malities [9]. Modeling electric motors during faults will also
help in investigating the behavior and performance of motors.
Based on the literature, two approaches are used for modeling
motors during faults: analytic (electrical or magnetic)-based
and finite element-based approaches [15], [21]. Because
the use of LSPMSMs in industry is in its infancy, few
papers on modeling LSPMSMs during faults are available.
In [12], the performance of an LSPMSM with static eccen-
tricity, dynamic eccentricity and mixed eccentricity was
investigated using finite element models (FEMs). ANSYS
Maxwell® was used to develop transient models of the
motor. The speed, torque and flux density were recorded.
The authors in [12] found that the static eccentricity has no
effect on the motor performance under full load while the
dynamic eccentricity has the main dominate effect. But the
authors didn’t investigate the effect of eccentricity (static and
dynamic) under the variable loads which could affect their
result. In [9], a mathematical model of an LSPMSM with
asymmetrical stator winding was developed. The model was
developed based on the principles of coupled magnetic circuit
theory, electromechanical energy conversion and reference
frame theory. Using the derived model, the case of stator
winding asymmetry can be detected. But the torque equation
and the permanent flux equations needs some modifications
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to include the effect of variable number of turns. In [22],
a mathematical model of a LSPMSM experiencing demag-
netization was developed using dg-axis, and the developed
model was used to investigate the machine performance with
demagnetization. The reversable or irreversible demagneti-
zation (partial or complete) is highly related to temperature.
However, this effect can’t be investigated using the developed
model. In [13], ANSYS Maxwell®was used to develop a
model of a LSPMSM under broken bars fault. The authors
in [13] found that the statistical features extracted from the
envelope of stator current help in detecting broken bars fault.
However, these features could be affected by other types of
faults which make the use of them for discriminating between
broken bar and other faults difficult.

Several signals can be used to indicate fault occurrence.
Among these indicators are the magnetic flux, the vibration,
the stator current (a negative and zero sequence or a third
harmonic component), the zero-sequence component of the
voltage, the thermal image, the instantaneous real and reac-
tive power, the phase shift between the stator current and
the supply voltage and the acoustic noise [23]-[33]. The
motor current shows promise for fault detection because it
is already available from motor control services without the
need for extra design or additional hardware. The current
signal inherently contains valuable information regarding the
machine’s performance and operating conditions [1].

Preventive maintenance is always more desirable than cor-
rective maintenance. A substantial number of research efforts
worldwide have been devoted to developing incipient fault
diagnostic techniques. A neural network is a tool that plays
an important role in developing online and offline diagnos-
tic tools for motors, generators, transmission lines, cables
and transformers [34]-[37]. In [38], a feed-forward neural
network-based tool for detecting inter-turn faults in perma-
nent magnet synchronous motors was proposed. The inputs
to the proposed neural network were the first, third and fifth
frequency components of the motor’s current, and the neural
network had 13 binary outputs, each of which represented
an inter-turn fault severity level. Training and testing data
were collected under different loading conditions and com-
binations of speed and inter-turn severity. The results demon-
strated the success of the artificial neural network (ANN)
at fault diagnosis. It is worth mentioning that the authors
in [38] have tested the developed neural network with fault
severities up to 25%. Where 25% severity is considered high
and could affected the performance of the permanent magnets
of the motor and the tool performance. In [39], a neural
network-based diagnostic tool for detecting the location of
an inter-turn fault in an induction motor was developed. The
discrete wavelet transform was used for extracting represen-
tative features of the fault. The developed tool effectively
detected the fault and it is location under different loading
conditions, while the severity of the fault can’t be detected
using it. In [40], a tool for detecting the severity of inter-
turn faults in permanent magnet synchronous motors was
developed. The developed tool was neural network-based and
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used the magnitude of the third harmonic component of the
current as an input. Its output was the inter-turn fault severity.
The testing result shows high accuracy of the tool. However,
the developed tool lacks the capability of detecting fault
location. In [41], a neural network-based tool for detecting
the inter-turn fault level in an induction motor was proposed.
The tool used the sum of the absolute values of the differences
in the peak values of phase currents from each half cycle
as the input and the fault level as the output. In this tool of
fault detection, since only one input is used, neural network
became simpler and so training time is less. But it lacks the
ability of detecting the location of fault.

The use of LSPMSMs in industry is in its infant. consider-
ing the up-to-date literature, no finite element-based models
do exist for interior-mount LSPMSM under stator inter-turn
fault. In addition, there exist no diagnostic tools that can
predict the location and/or the number of shorted turns in
the stator of LSPMSMs. To bridge this lack in research,
anew general FEM based model was developed using IMAG
and validated experimentally using a 1-hp interior-mount
LSPMSM. The developed model was used to simulate the
motor currents under different loading and inter-turn condi-
tions that could occurs in single or multiple phases of the
motor. Then the stator currents during steady state have been
recorded and used for extracting a group of statistical and
frequency-based fault features. These features are used in
the design of the neural network based diagnostic tool. The
developed neural network is capable of detecting the fault
location and the number of shorted turns.

FIGURE 1. Interior-mount LSPMSM.

Il. LSPMSM JMAG FAULT MODEL

Based on the literature and JMAG tutorials, as inter-turn
fault is symmetric on the axial axis of the motor, it will be
sufficient to perform 2D FEM analysis. This is in conformity
with many previous research works, which used 2D FEM
to investigate motor performance under faults [42]-[44].
Therefore, in this paper, a 2D FEM of a 1 hp interior-
mount LSPMSM with a stator inter-turn fault is created using
JMAG. In this study, the fault is assumed to be phase-a, while
the other phases remain healthy. Fig 1 shows the motor used
in the study, and Table 1 summarizes the motor’s parameters.
To create the FEM, the motor geometry was drawn using
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TABLE 1. LSPMSM parameters.

Parameter Value

Mean air gap radius 37.35 mm
Number of poles 4

Air gap width 0.3 mm
Permanent magnet thickness 3 mm

Stack length 80 mm

Number of turns per stator phase 86 x4

Rotor bar resistivity 2.655%x10-8 Q.m
Rotor end ring resistance 1x10-5Q
Angle between two adjacent rotor 18 degrees

bars

Number of bars 20

Permanent magnet flux density 1.25T

Machine rated power 1 hp

Moment of inertia 0.001586 kg.m2
Rated voltage 400 Vrms
Rated frequency 60 Hz

Rated speed 1800 rpm

Bar length 80 mm

Bar cross-sectional area 27 mm2

FIGURE 2. 2D geometry of the LSPMSM in JMAG™,

AUTOCADTM and then imported into JIMAGTM. Fig 2
shows the 2D model’s geometry. Each of the stator’s phases
occupies 8 slots (phase-a occupies the red slots, phase-b occu-
pies the yellow slots, and phase-c occupies the blue slots).
The Fig clearly shows that one pair of each of the phases
slots is split into two parts: the inner part contains the healthy
turns of the faulty phase coil, and the outer part contains the
faulty turns of the same coil. After the geometry has been
created, the material for each part of the motor is selected.
Table 2 shows the materials of the motor parts.

To implement the electrical functionality in the 2D geomet-
ric model, the rotor and stator are linked to a circuit model.
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TABLE 2. LSPMSM parts materials.

Component Material

Stainless steel
50JN600 - Silicon steel
Copper

Recoma-24HE
Aluminum A199.7

Rotor lamination 50JN600 - Silicon steel
Shaft Steel
Air gap Air

Stator core
Stator lamination
Stator coils
Rotor magnets

Rotor bars

FIGURE 3. LSPMSM stator winding circuit.

The bars and end rings are linked to the rotor circuit, and the
stator slots are linked to the stator circuit. Fig 3 shows the
stator circuit. The Fig clearly shows that phase-a has four
coils (coil 1 to coil 4). Coils 1, 2 and 3 are linked to the unsplit
red slots of Fig 2; the healthy part of coil 4 is linked to the
inner part of the split red slots; and the faulty part of coil 4 is
linked to the outer part of the split red slots. The total number
of turns in coil 4 (comprising both parts) is 86; therefore,
it is easy to vary the number of shorted turns by changing
the number of turns in the faulty part of coil 4. In order to
limit the current in the shorted turns, an external resistance of
0.8 2 is used. The same analogy goes for phase-b and —c.

In the finite element model developed in this work, several
issues have been extended, developed, and generalized com-
pared to the mathematical model developed in [15]. These
are; using the developed finite element model the faults can be
done in any of the phases or a combination of different phases
as well as in a specific coil of the phases. In addition, unlike
the mathematical model, the finite element model considers
the location and distribution of windings in stator.

Ill. SIMULATION RESULTS AND

EXPERIMENTAL VALIDATION

A. JMAG™ MODEL TESTING AND

EXPERIMENTAL VALIDATION

Using the developed JIMAG™, the performance of the
interior-mount LSPMSM with a stator inter-turn fault was
investigated for different numbers of shorted turns and
loads. To validate the results of the developed model,
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a 1-hp interior-mount LSPMSM motor was experimentally
tested under healthy and faulty conditions. To introduce an
inter-turn fault in the tested motor, three access points (A1, A2
and A3) were placed on coil 4 of phase-a, as shown in Fig 4.
Using the access points, 26, 40 or 66 shorted turns were intro-
duced in phase-a. in order to have fair comparison between
the experimental and JMAG simulation results, an external
resistance of 0.8-£2 is used to limit the fault current. Note that
the external resistance in the simulation was 0.8 €2, which
was equal to the experimental external resistance (0.6 2))
plus 0.2 € (to represent the wire and the solder at the access
point). A Cassy system (software, sensor, Profi-Cassy) and
an isolation amplifier were used to measure the motor speed
and the current response, as shown in the experimental setup
of Fig 5.

FIGURE 4. The stator winding with access points.

FIGURE 5. Experimental setup.

To verify the FEM, simulations and experimental tests
were conducted with different numbers of shorted turns. The
tested cases contained O (healthy), 26 and 40 shorted turns
under no load. Both the current response and the speed were
recorded, as shown in Figs 6 and 7, respectively. Fig 6 shows
the phase-a current for three different cases. The Fig clearly
shows that the results of the simulation and the experiment
were almost the same in the steady state, with a small dif-
ference in the transient phase. Fig 7 shows the speed for the
three cases. Clearly, the speed responses of the simulation and
the experiment were in good agreement. Note that the ripples
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FIGURE 6. Phase-a stator current under no load (a) 0 shorted turns,
(b) 26 shorted turns, and (c) 40 shorted turns.

in the steady-state speed response were caused by cogging
torque and non-sinusoidal flux in the air gap (the turns were
equally distributed across the slots) [45], [46]. However, the
simulation and the experiment were in very good agreement.
By looking at the current and speed signatures, it is clear
that the current is more affected by inter-turn fault and hence
the investigation will be focused on extraction features from
current signals.

In this research work, no control strategies have been
employed. The motor connected directly through data acqui-
sition system to an AC power supply only as shown in
figure 5. More details about the experimental setup are men-
tioned in reference [15]. It is worth mentioning that the motor
run during steady state at synchronous speed (1800 rpm) even
with 66 shorted turns (the largest fault size investigated in this
paper). Moreover, 77 shorted turns case has been examined in
the laboratory. It was observed that the motor is still able to
run at synchronous speed under full loading condition.

B. EFFECT OF INTER-TURN FAULT ON STATOR CURRENTS

As the proposed diagnostic tool is expected to be used while
the motor is running at steady state, the present section is
aimed at investigating the effect of inter-turn fault on the
motor steady state current. The FEM was used to simulate
different shorted turns conditions. The results are shown
in Figs 8-11. Fig 8 shows three phase stator currents and
their frequencies spectrums under 28 shorted turns in phase-b

89018

FIGURE 7. Rotor speed under no load (a) 0 shorted turns, (b) 26 shorted
turns, and (c) 40 shorted turns.

FIGURE 8. Three phase stator currents under 28 shorted turns in phase-b
(a) time response and (b) frequency spectrum.

while the other two phases are healthy. The Fig shows a clear
increase in phase-b current while the other two phases have
a negligible change. For the case of 25 and 45 shorted turns
in phases -a and -b, respectively, Fig 9 shows the three phase

VOLUME 7, 2019



L. S. Maraaba et al.: Neural Network-Based Diagnostic Tool for Detecting Stator Inter-Turn Faults

IEEE Access

FIGURE 9. Three-phase stator currents under 25 and 45 shorted turns in
phase-a and -b, respectively (a) time response and (b) frequency
spectrum.

FIGURE 10. Phase-c current under no load (a) time response and
(b) frequency spectrum.

stator currents and their frequencies spectrums. It is clear that
the phases with shorted turns are clearly affected, and their
magnitude of the fundamental current component is increased
as the number of shorted turns increases. Fig 10 demonstrates
clearly that the current time response and the corresponding
frequency spectrum of the healthy phase is slightly affected
by the occurrence of inter-turn fault in the other phases.
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FIGURE 11. Experimental three phase stator current under no load.
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FIGURE 12. Demagnetization curves under 66 shorted turns.

The Fig shows three cases (casel- healthy condition,
case 2- 42 shorted turns in phase-b, case 3- 25 and 45 shorted
turns in phase-a and -b, respectively).

In order to confirm that the occurrence of inter-turn fault
highly affects the phase it takes place in and slightly affects
the other two phases, Fig 11 shows the experimental three
phase current under no load for 26 shorted turns in phase-a
occurring at 0.45 sec. It is clear from the Fig that, during
fault, phase-a current is largely affected while other phases
are slightly changed which confirms the simulation results.
It is worth mentioning that having high number of shorted
turns can cause demagnetization of the permanent mag-
nets. However, the magnets of the used motor are Sintered
Neodymium Iron Boron (NdFeB) Magnet batch N38SH.
These magnets have very low knee point on their demag-
netization curve. Demagnetization study has been carried on
the motor magnets in presence of 66 shorted turns fault with
full load applied on the motor. The demagnetization study
done at the edge of the magnet at three temperature levels
(100°C, 120°C and 150°C). The demagnetization curves are
shown in figure 12. There was no any sign of demagneti-
zation at 100°C. The operating point at 120°C was lower
but didn’t cross the knee point and accordingly no demag-
netization occurred. However, the demagnetization curve
at 120° C, shows the tendency to formulate demagnetization
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FIGURE 13. Extracted features: (a) minimum, (b) maximum, (c) variance.

in the magnets. The curve at 150° C shows demagnetization
case. Hence, we can conclude that demagnetization could
take place at temperatures higher than 120° C in presence
of 66 shorted turns.

IV. FEATURES EXTRACTION

In this section, several statistical and frequency-based fea-
tures were extracted from the steady state current response.
The extracted features were investigated to select the most
representative features of the fault. The time-based features
extracted were the maximum, minimum, variance, kurtosis,
skewness, third-order moment, root mean square (RMS) and
entropy. The frequency-based features were the amplitudes
of the fundamental, second and third current components.
For feature extraction, the developed FEM was simulated for
different number of shorted turns and loading. For demon-
stration purposes, both statistical and frequency-based fea-
tures shown in Figs 13-17 are extracted from phase-a for 65
simulated cases.

89020

FIGURE 14. Extracted features (a) kurtosis (b) skewness, (c) third order
momentum.

To investigate the frequency-based features, the frequency
response of the current at full load for O (healthy), 26 and
40 shorted turns is shown in Fig 16. The Fig clearly shows
that the fundamental component of the current is strongly
affected by the fault size, whereas the other components are
slightly affected. Therefore, the amplitude of the fundamental
component of the current is selected as a representative fault
feature. Fig 17 shows the fundamental component for the
65 simulated cases.

V. NEURAL NETWORK BASED DIAGNOSTIC TOOL

ANN has been implemented for diagnosis and classifications
in several disciplines with impressive success. In this work,
ANN has been trained offline to learn different types of motor
faults. Ultimately, the trained ANN can be implemented to
predict accurately the type and severity of the fault based on
online measurements. This type of detection is considered
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FIGURE 15. Extracted features (a) entropy and (b) RMS.

FIGURE 16. Phase-a current under full load: (a) time response and
(b) frequency spectrum.

inexpensive and noninvasive. The most commonly used neu-
ral network for classification purposes is the multi-layer
feed-forward neural network (MFNN). The feed-forward NN
has the ability to learn various types of complex linear and
nonlinear functions.

In developing the neural network, well-known statistical
features such as: variance, skewness, kurtosis, third order
momentum, entropy, maximum, minimum and (RMS) and
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FIGURE 17. Magnitude of the fundamental component of the phase-a
current.

fundamental current component for each phase have been
examined. The testing performance has been monitored for
different combination of these features. The skewness and
entropy were found to have less significant contribution to
the neural network performance. Therefore, as a compromise
between the neural network performance and complexity, the
other seven features are used. Moreover, Figs 13-17 show that
the nonlinearity of the skewness and entropy are very high
compared with those of other features. In addition, all the
statistical features except skewness and entropy almost follow
a certain pattern regardless of the load. Moreover, Fig 14-b
clearly shows that little change in the skewness is observed
as the number of shorted turns increases.

In addition, different structures of neural networks with dif-
ferent number of hidden layers and hidden neurons have been
used to form suboptimal feed forward neural networks that
correlate the extracted features with its corresponding number
of shorted turns. The simplest with the highest efficiency
was the one with two hidden layers with 18 and 5 neurons,
respectively. It is worth mentioning that the stator current
signals during steady state has been used as a fault indicator.
Where the distinct fault features are extracted from the current
signal. In this work, 3 cycle of the current signal (50ms in
60-Hz system) is found enough for extracting the correct
representative features.

The outputs to the developed neural network are 3 which
represent the number of shorted turns in each phase, and the
inputs are 21 (the maximum, minimum, variance, kurtosis,
third-order moment, (RMS) and fundamental current com-
ponent for each phase). Fig 18 shows the topology of the
designed neural network.

The activation function of all the neurons is ‘tansig.’.
391 simulated cases are used to train the ANN. These rep-
resent inter-turn faults on any single phase or inter-turn faults
in two phases at the same time. 160 unseen cases (captured
experimentally and by JMAG simulation) are used to test
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FIGURE 18. Neural network topology.

FIGURE 19. Diagnostic tool block diagram.

the ANN. For training, 13 numbers of shorted turns (0, 5,
10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60) and 9 loading
conditions (no load, 0.5N.m, 1N.m, 1.5N.m, 2N.m, 2.5N.m,
3N.m, 3.5N.m and 4N.m) are used. On the other hand, the
number of shorted turns and loading values are taken dif-
ferent than the ones used in the training process. The neural
network was trained using Levenberg—Marquardt backprop-
agation algorithm.

The proposed fault detection and classification technique
starts with data acquisition and then application of fast
Fourier transform and signal processing methods. There fea-
tures are fed to the trained neural network in order to predict
the location and number of shorted turns. This is illustrated
in Figure 19. Table 3 shows a sample of the 160 testing cases
used.

89022

TABLE 3. Test results.

Actual shorted | Detected shorted .
# Load turns turns T/F detection
N T8 el a|BlC|A]B]|C |Detcton

1 |05 | 4|ofo|1|]o]o|F|T]|T F
2 -0.75 8 0 0 9 0 0 T T T T
3 -1.25 13 0 0 14 0 0 T T T T
4 -1.75 17 0 0 17 0 0 T T T T
5 |1 225 [ 22] 0 0 |[22] 0 o|T|T|T T
6 -2.75 27 0 0 27 0 0 T T T T
7 -3.25 33 0 0 33 0 0 T T T T
8 -3.75 37 0 0 38 0 0 T T T T
9 -0.25 41 0 0 41 0 0 T T T T
10 -0.75 44 0 0 44 0 0 T T T T
12 -0.75 0 8 0 0 8 0 T T T T
13 -1.25 0 13 0 0 13 0 T T T T
14 -1.75 0 17 0 0 17 0 T T T T
15225 | 0 [22] 0 o |20 | T|T|T T
16 -2.75 0 27 0 0 27 0 T T T T
17 -3.25 0 33 0 0 33 0 T T T T
18 -3.75 0 37 0 0 37 0 T T T T
19 -0.25 0 41 0 0 41 0 T T T T
20 -0.75 0 44 0 0 44 0 T T T T
21 -1.75 0 0 18 0 0 18 T T T T
22 -2.25 0 0 14 0 0 13 T T T T
23 -2.75 0 0 9 0 0 10 T T T T
24 -3.25 0 0 3 0 0 0 T T F F
25 -3.75 0 0 52 0 0 52 T T T T
26 -2.75 0 0 33 0 0 33 T T T T
27 -3.25 0 0 44 0 0 44 T T T T
28 -0.0 8 15 0 10 15 0 T T T T
29 -0.75 54 15 0 53 12 0 T F T F
30 -1.75 8 22 0 10 22 0 T T T T
31 -0.0 54 0 22 53 0 22 T T T T
32 -2.75 8 0 35 11 0 35 F T T F
33 -3.25 54 0 36 54 0 38 T T T T
34 -0.0 39 0 43 40 0 42 T T T T

FIGURE 20. Neural network training regression.

The criterion of assuming a true (T) detection of the
location and the number of shorted turns is as follows: the
detection is true if the faulty phase(s) is correctly located and
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FIGURE 21. Neural network training performance.

TABLE 4. Electric motors diagnostic tools.

Minimum
Reference Motor Current analysis faul.t
Type severity
%
[47] PMSM Current harmonic components 4.17%
48] Induction Stator current-Multiple reference 2.04%
frames theory
[49] Induction Stator current—Wav‘elet transform 1.5%
Analysis
[50] PMSM Stator current—Wav'elet transform 2.78%
Analysis
Empirical mode decomposition
(EMD) and Quadratic time— o
(311 PMSM frequency (TF) analysis of stator 2.78%
current

the difference between the predicted and actual number of
shorted turns is less or equal to 2 turns. Otherwise if any
of these two conditions is not satisfied then the detection is
false (F).

The training accuracies are 97.186% and 100% for detect-
ing the number of shorted turns and location, respectively.
In testing phase, the accuracies with unseen cases are
93.125% and 100% for detecting the number of shorted turns
and location, respectively. Figs. 20 and 21 shows the training
phase regression and performance, respectively.

The minimum fault severity where the proposed tool detect
correctly is 2.3% (8 turns) when fault occurs in one phase
and 4.3% (15 turns) when fault occurs in two phases. Results
are quite satisfactory compared to the other developed tools
reported in the literature for other motors, as shown in Table 4.
However, this comparison is somehow unfair since the con-
struction and behavior of LSPMSM is different from PMSM
and induction motors.

VI. CONCLUSION
In this paper, an FEM based model of an interior-
mount LSPMSM with stator inter-turn fault was developed.
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In addition, an experimental test rig was implemented to vali-
date the FEM model. The simulated and experimental steady
state stator currents showed that the occurrence of inter-turn
fault highly affects the phase it takes place in and slightly
affects the other phases. This confirms the advantage of using
the current signature as a fault indicator. Several statistical
and frequency based features (maximum, minimum, vari-
ance, kurtosis, skewness, third-order moment, RMS, entropy
and fundamental current component) were extracted from
the current for different load levels and different inter-turn
faults. All features except skewness and entropy follow a
certain pattern regardless of the load and number of shorted
turns. These distinct features were used in developing a feed
forward neural network diagnostics tool capable of accurately
predicting the location and number of shorted turns. The
accuracy of the developed tool was confirmed by testing
160 unseen cases (shorted turns in one phase or two phases
with different loading levels). The overall accuracy in detect-
ing the number of shorted turns and its phase location is
93.125% whereas the accuracy in detecting the location of
fault is 100%.
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