
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE
TECHNOLOGIES FOR ELECTRIC POWER SYSTEMS

Received June 12, 2019, accepted June 14, 2019, date of publication June 19, 2019, date of current version July 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2923799

A Deep Imbalanced Learning Framework
for Transient Stability Assessment
of Power System
BENDONG TAN 1, (Member, IEEE), JUN YANG1, (Member, IEEE),
YUFEI TANG2, (Member, IEEE), SHENGBO JIANG1, PEIYUAN XIE3,
AND WEN YUAN3
1School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
2Department of Computer and Electrical Engineering and Computer Science, Institute for Sensing and Embedded Network Systems Engineering, Florida Atlantic
University, Boca Raton, FL 33431, USA
3State Grid Hunan Electric Power Company Ltd., Changsha 410007, China

Corresponding author: Jun Yang (jyang@whu.edu.cn)

This work was supported in part by the State Grid Hunan Electric Power Company Ltd., and in part by the Hunan Electric Power Company
of China State Grid.

ABSTRACT Maintaining transient stability is a core requirement for ensuring safe operation of power
systems. Hence, quick and accurate assessment of the transient stability of power systems is particularly
critical. As the deployment of wide area measurement systems (WAMS) expands, transient stability assess-
ment (TSA) based on machine learning with data of phasors measurement units (PMUs) also develops
rapidly. However, unstable samples of the power system are rarely seen in practice which affects greatly
the effectiveness of transient instability recognition. To address this problem, we propose a deep imbalanced
learning-based TSA framework. First, an improved denoising autoencoder (DAE) is constructed to map
the training set to hidden space for dimension reduction. Then, adaptive synthetic sampling (ADASYN)
is further used to synthesize unstable samples in hidden space to balance the proportion of different
classes. Third, the synthesized data are decoded into the original space to enhance the training set. Finally,
an ensemble cost-sensitive classifier based on a stacked denoising autoencoder (SDAE) is designed to extract
different feature patterns, and the SDAEs are merged with a fusion layer to classify the status of the power
system. The simulation results of two benchmark power systems indicate that the proposed method can
effectively improve the recognition accuracy of unstable cases by combining nonlinear data synthesis with
ensemble cost-sensitive learning methods. Compared with other imbalanced learning methods, the proposed
framework enjoys superiority both in accuracy and G-mean.

INDEX TERMS Deep imbalanced learning, transient stability of power system, denoising autoencoder
(DAE), ensemble cost-sensitive SDAE, feature patterns, G-mean.

I. INTRODUCTION
Transient stability is the capability of a power system tomain-
tain synchronizationwhen subjected to large disturbances [1].
With the interconnection between large power grids, access
to high-penetration renewable energy and the construction
of power markets, the dynamic characteristics of power sys-
tems are becoming increasingly complicated and the risk of
transient instability increases correspondingly [2]. Therefore,
real-time and accurate assessment of post-disturbance tran-
sient stability is crucial for power system security.

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

TSA can be represented in a mathematical form by a set of
high-dimensional differential-algebraic equations which are
called time domain simulations (TDS) [3]. The accuracy of
TDS can be improved with an increase in model complex-
ity, but the computing time also rises. The transient energy
function (TEF) [4], [5] is a model-based method that assesses
the stability by analyzing the increased energy in the power
system after clearing a fault, and the assessment result is
conservative with TSA for the simplification of the model [6].
Due to these properties, TDS and TEF cannot simultaneously
meet the need of accuracy and speed for on-line TSA.

With the rapid development of computer and communica-
tion technology, wide-area measurement systems (WAMS)

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 81759

https://orcid.org/0000-0003-1701-1577


B. Tan et al.: Deep Imbalanced Learning Framework for Transient Stability Assessment of Power System

are constructed based on many phasor measurement units
(PMUs). WAMS uses a high-speed communication network
as the platform to transmit the time-stamped data collected
by each PMU to the data center station, and synchronous pro-
cessing and analysis are performed at the central station.With
such characteristics of WAMS, many methods are proposed
for TSA based on real-time data provided by PMUs. In [7],
model-free and model-based maximal Lyapunov exponents
are utilized for on-line TSA with accurate assessment based
on real-time system variables. In [8], PMU measurement is
applied to single machine equivalent and post-fault trajectory
analysis [9] for TSA. Although these methods can achieve
accurate assessment, their time-consuming characteristics are
an obstacle for them as applied to rapid TSA.

To realize an accurate and rapid TSA, many data-driven
methods have been proposed, which mostly employ artificial
intelligent (AI) technology to build prediction models offline
using massive training datasets. At present, previous relevant
research in this area can be divided into two categories. In the
first category, researchers use machine learning algorithms
to construct the mapping relationship between WAMS data
and transient stability. Once a fault occurs, the stability status
of a power system can be found according to the mapping
relationship with real-time measurements [10], [11]. Works
in this area focused on the performance of various classifi-
cation algorithms and application scenarios, such as decision
trees (DT) [12], [13], support vector machines (SVM) [14],
extreme learning machine [15], and neural networks (NN)
[11]–[16] are applied to online TSA. Time-adaptive TSA has
also been proposed in recent years, which uses continuous
prediction via the mapping relationship between post-fault
trajectories and stability status with long short-term memory
(LSTM) [17], [18]. In the second category, time series pre-
diction methods are applied to predict the future trajectory of
the system directly, and the stability status of the system can
be assessed [19].

However, there are serious class-imbalanced problems
in the data-driven TSA methods. Due to the robustness
of the modern power system, a realistic power grid can
remain stable after suffering most disturbances, and becomes
unstable only in a few situations. In this case, if the
machine learning model is trained directly via using WAMS
data, it will dramatically destroy the performance of the
classification model. For instance, if there is only one unsta-
ble sample in 100 samples, the model needs to regard all
the samples as stable so that it can achieve the accuracy
of 99%; however, this is obviously unreasonable. The class-
imbalanced problem is primarily solved at the algorithm
and data level. Related algorithms include model integration
and cost-sensitive methods, such as Easy ensemble [20],
Ada-cost [21], etc., but the performance is not ideal with
extremely class-imbalanced data. Improvements in data can
be divided into two categories: under-sampling and over-
sampling methods [22]. The under-sampling method can be
applied to a few situations because it loses much of the
data information of the class. In over-sampling methods,

random oversampling (ROS) [23] tends to cause over-fitting
problems, which is not beneficial for training a classification
model. To overcome the drawback of ROS, data synthesis
methods are introduced, such as synthetic minority over-
sampling technique (SMOTE) [24] and adaptive synthetic
sampling (ADASYN) [25]. However, they are based on linear
interpolation so that it is almost impossible to relate the syn-
thesized data with the physical and operational characteristics
of a real power system [22]. A nonlinear imbalanced machine
for voltage stability assessment was proposed in [22], but it
can only synthesize data for one type of time series.

In order to overcome the aforementioned drawbacks
to accomplish accurate and rapid TSA considering the
serious class-imbalanced problem, a deep imbalanced learn-
ing framework for transient stability assessment of power
systems is proposed in this paper. The main contributions of
this paper are listed as follows:

1) The proposed framework designs a nonlinear data
synthesis method and an ensemble cost-sensitive classifier to
implement imbalanced learning for TSA, so that the recog-
nition rate of unstable samples and overall accuracy can be
effectively improved.

2) In order to adapt to the environment of the power
system, the denoising autoencoder (DAE) is improved by
adding wide-area noise to the input layer. ADASYN is further
introduced to synthesize unstable samples in the hidden space
of the DAE to accomplish nonlinear synthesis to handle
non-temporal data for imbalanced learning TSA.

3)The ensemble cost-sensitive stacked denoising
autoencoder (SDAE) is improved to extract different pat-
terns by employing multi-SDAEs with a dropout layer for
TSA, and it can pay more attention to unstable samples by
increasing the cost of the unstable class.

The rest of this paper is divided into five parts. Section II
briefly introduces the implications of transient stability
assessment. Section III presents the models of ADASYN,
DAE, SDAE and ensemble cost-sensitive SDAE. Section IV
proposes a deep imbalanced learning framework for TSA
and section V discusses numerical results on two benchmark
power systems. Finally, the conclusions are drawn in
section VI.

II. TRANSIENT STABILITY ASSESSMENT
With the extensive installation of phasor measurement units,
it is possible to provide online monitoring for power systems.
Specifically, modern TSA is designed to predict the stability
status of power systems with real-time measurement after
clearance of a fault when it is subjected to severe distur-
bance. Therefore, rapid and accurate assessment is the core
requirement of TSA, to leave enough time for emergency
control.

Fig. 1 shows the dynamic curves of all generators in the
stable case when bus 16 of an IEEE 39-bus system [5] has
suffered a three-phase short-circuit fault. And Fig. 2 shows
the unstable case. Once the fault is eliminated, the dynamic
measurement will be transferred to the control center to
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FIGURE 1. Transient stable case.

FIGURE 2. Transient unstable case.

predict the stability status for the power system, and then
emergency control is conducted. The process of assessment is
called TSA. It can be found that the power system loses its sta-
bility when some generators lose synchronization. However,
with the wide deployment of control devices, it is difficult to
cause modern power systems to lose transient stability, which
means that there are few unstable cases in the power system
database. As a result, data-driven TSA has a huge obstacle in
detecting instability patterns.

In order to effectively mine instability patterns from
massive power system datasets, this paper considers the
factors affecting the mining of instability patterns from two
directions. Due to the small amount of unstable data, the data-
driven TSA will consider the unstable case to be an abnormal
point, so a feasible method is proposed to increase the weight
of unstable samples through synthesis. In addition, it can
also ensemble models and increase the cost of classification
in the unstable case to improve the model’s performance in
detecting instability, which will help TSA effectively mine
unstable patterns. The imbalanced learning framework pro-
posed in this paper is composed of these two aspects, which
will be introduced in detail in the following sections.

Algorithm 1 ADASYN
Input: Training data set with m samples {xi, yi}, i =
1, 2, · · · ,m, the dimension of xi is n × 1 and yi ∈ {1, 0}.
Suppose the number of minority classes is ms, the number
of majority classes is ml , and ms + ml = m.
Output: Synthetic data.

(1) Calculate imbalanced degree of class:

d = ms ÷ ml (1)

where d ∈ (0, 1].
(2) Calculate the number of samples that need to be

synthesized for the minority class:

G = (ml − ms) · β (2)

where β ∈ (0, 1] means G is equal to the difference
between the minority class and the majority class
when β = 1, and the minority class is well balanced
with the majority class.

(3) Calculate k neighbors with the Euclidean distance for
each minority class sample, and 1 is the number of
the majority class samples among k neighbors. Then,
the ratio r can be calculated as:

r = 1÷ k (3)

where r ∈ (0, 1].
(4) Get the ri of each minority class sample in (3) and

represent the situation for each minority class sample
using surrounding majority class samples:

r̂i = ri/
ms∑
i=1

ri (4)

(5) Calculate the number of synthetic samples for each
minority class sample:

gi = r̂i · G (5)

(6) Select one minority class sample among k neighbors
around each minority class sample to be synthesized.
Synthesize data according to the following formula:

si = xi + (xzi − xi) · λ (6)

where si is the synthetic data, xzi is a minority class
sample randomly chosen from k neighbors of xi.

III. ADASYN, DAE AND ENSEMBLE COST-SENSITIVE
SDAE MODELS
A. ADASYN PROCESS
He et al. [25] proposed a novel adaptive synthetic sam-
pling approach for learning from imbalanced data, termed
ADASYN. It can adaptively synthesize minority class sam-
ples according to their level of difficulty in learning, which
means it generates more data for the minority class that is
harder to learn. The ADASYN process can be summarized in
Algorithm 1.
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B. UNSUPERVISED FEATURE LEARNING AND ENSEMBLE
1) DAE
DAE is a type of autoencoder (AE) [26]. As shown
in Fig. 3(a), DAE is a three-layer neural network which
is trained to try to copy input to output. By adding wide-
area noise to the input, DAE learns to remove noise and to
approximate the original input data. As a result, DAE can
learn more stable and meaningful features, which constitute
a more robust representation of the input data. In general,
DAE consists of two parts: the encoder and decoder. The
encoder can extract higher order features from input data and
the decoder can transform the higher-order features to input
data. In other words, the structure of the encoder and decoder
are symmetrical.

The function of the encoder can be express as:

h = f (x, θe) = σ (W1(x+ ε)+ b1) (7)

where θe = [W1, b1] is the parameter of the encoder,
W1 is the weight matrix, b1 is the bias vector of all neurons
in the encoder, ε is a random error vector composed of the
same white noise used in WAMS to adapt the environment
of the power system, and σ = 1/(1 + exp(−x)) is an active
nonlinear transformation function. The hidden layer output h
implements compression on the high-dimensional input data
by feature extraction, which means the encoder preserves the
main features while removing irrelevant information.

Then, the hidden layer output h is decoded to the original
high-dimensional space by:

x̂ = g(h, θd ) = σ (W2h+ b2) (8)

where θd = [W2, b2] is the decoder parameter, W2 is
the weight matrix, and b2 is the bias vector of all neurons
in decoder. When the norm of the difference between the
decoded data and the original data is small, it is believed
that the hidden layer output of the encoder can represent the
characteristics of the input data. The training process finds
the optimal [θe, θd ] to minimize the square reconstruction of
x and x̂ by the gradient descent algorithm:

L =
m∑
i=1

∥∥xi − x̂i∥∥2 (9)

where L is the loss of the DAE and m is the number of input
data samples. Once trained, the DAE can conduct nonlinear
transformation and extract robust features from input data
with noise for classification or regression.

2) SDAE
An SDAE [26] consists of multiple DAEs, which stacks each
DAE in a deep structure, as shown in Fig. 3. An SDAE is
able to overcome the difficulty of determining highly nonlin-
ear and complex patterns by learning hierarchical features.
The training process of an SDAE includes multiple
unsupervised pre-training steps and a supervised fine-tuning
step. In the unsupervised pre-training steps, an effective way
to obtain good parameters for an SDAE is by using greedy

FIGURE 3. (a) DAE structure. (b) SDAE pretraining process. (C) SDAE
fine-tuning process.

layer-wise training, which is implemented by training stacked
DAEs in an encoder network by training a layer each time
before starting the next layer. As shown in Fig3.(b), given
a set of training data, the first layer is trained to obtain the
hidden representation h1, then the second layer is trained on
the hidden representation h1 for higher representation h2,
and so on for subsequent layers. In this way, SDAE can
extract a robust nonlinear representation from input data in
an unsupervised manner.

In the fine-tuning process, as shown in Fig. 3(c), all
hidden layers trained during pre-training are stacked and a
sigmoid layer is added on the top of the stacked deep learning
architecture. To train an SDAE efficiently, the parameters
in all layers of the SDAE are connected to corresponding
parameters learned in the pre-training phase, then the SDAE
is fine-tuned with label information by the back propaga-
tion (BP) algorithm [27].

In this paper, an SDAE is used as an excellent feature
extractor to learn robust nonlinear representation for clas-
sification from noisy input data. To obtain accurate TSA,
an ensemble-cost SDAE is proposed in next section while
considering imbalanced learning.

3) ENSEMBLE COST-SENSITIVE SDAE
TSA can be regard as an imbalanced learning problem as the
power system is too strong to lose its stability. Therefore,
if TSA does not consider the imbalance in the power system,
it tends to regard the system as stable. Once the unstable
situation is judged to be stable, it will cause security risk to
the power system. In other words, the cost of stability and
instability are different. To mine the pattern of instability
effectively, an ensemble cost-sensitive SDAE is designed,
as shown in Fig. 4. From left to right, there are input lay-
ers with selected features of a power system, a supervised
learning process is represented by ensembled DAEs to learn
from input layers, and a fusion layer and cost-sigmoid layer
are deployed to merge higher order representations in the
DAEs.
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FIGURE 4. Structure of ensemble cost-sensitive SDAE.

At the left of the ensemble-cost SDAE in Fig. 4,M SDAEs
are the feature extractors for unlabeled data. A single SDAE
can only capture a specific feature of the input data. However,
the power system stability pattern is not dominated by just
one mode, so a dropout layer is added for every SDAE to
obtain different patterns. The features learned by the SDAEs
are heterogeneous because the features represent different
physical attributes that humans do not understand. Then,
the captured features of multiple SDAEs are merged by the
fusion layer using successive cost-sigmoid layers, and the loss
function of the cost-sigmoid layer, can be written as:

L1 =
m∑
i=1

yi log(ti) · ws + (1− yi) log(1− ti) · wl (10)

where L1 is the loss function of the cost-sigmoid layer, yi
is label of i-th sample, ti is the prediction of the i-th sam-
ple, ws and wl are weight of unstable and stable samples,
respectively. In order to increase the cost of the classifica-
tion of unstable samples, ws is set larger than wl and wl is
always set to 1 as a benchmark so that the ensemble cost-
sensitive SDAE can effectively mine the unstable pattern.
Finally, the cost-sigmoid layer can fine-tune the features
learned by the SDAEs and fuse the layers using labeled
data. In short, the different patterns of features in data are
extracted via multiple SDAEs and a fusion layer, while the
cost-sigmoid layer is regard as a classifier.

For an ensemble cost-sensitive SDAE, the M is larger,
and the performance of the model will improve and the
training time will increase correspondingly. To speed up
learning with M as large as possible, the batch stochastic
gradient descent (SGD) method with momentum, which is

FIGURE 5. Structure of the deep imbalanced learning framework.

called Adam [28], can be introduced to update the weight
of the model. In this way, an ensemble cost-sensitive SDAE
can extract robust nonlinear features from data and perform
excellent imbalanced learning to realize balanced TSA.

IV. DEEP IMBALANCED LEARNING FRAMEQORK FOR TSA
Until now, many methods have been proposed for online
TSA, and they can be summarized into two modes: mode A
and mode B. Mode A generates a large number of transient
samples offline to train the model. When the real-rime data
arrives, the trained TSA model can be deployed immediately,
and the model is updated periodically as many new transient
samples are collected. Mode B trains the TSA model with a
massive number of samples produced by time domain simu-
lation offline as well, but it can update itself online as it con-
ducts TSA for a power system.However, the fast update speed
of the model in mode B sacrifices generalization, so mode A
is used in this paper, which is also called ‘‘offline training,
online application’’.

The deep imbalanced learning framework for online TSA
proposed in this paper can be summarized in four steps: 1)
feature construction for TSA; 2) index formodel performance
evaluation; 3) offline training; and 4) online application. The
deep imbalanced learning framework is shown in Fig. 5.

A. FEATURE CONSTRUCTION FOR TSA
A simple WAMS consists of several PMUs and a phase
data concentrator (PDC). Typically, a PMU is installed at a
substation and the data sampled by all PMUs is sent to a PDC
at a location where the data are aggregated and analyzed.
As a result, the WAMS can report data at the frequency
in which the power system works for situational awareness
to provide complex analysis, control and protection in real-
time. In order to effectively utilize the real-time information
provided by a WAMS, many studies have conducted much
meaningful work [29]–[31]. This research generally trans-
forms measurements into statistics, such as maximum value
of voltage, and then uses these statistics as feature inputs of
the TSA model. However, information loss is inevitable in
such artificial feature engineering. The model proposed in
this paper is an end-to-end analysis process, which avoids
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TABLE 1. Confusion matrix.

information loss in the powerful feature extraction ability
without the feature conversion process. Some elements that
can reflect system dynamics are chosen to construct the input
features for TSA; they include generator active power, gener-
ator reactive power, bus voltagemagnitude, bus voltage angle,
branch active power, branch reactive power, load active power
and load reactive power.

B. INDEX FOR MODEL PERFORMANCE EVALUATION
Since TSA has the defect of ignoring unstable samples, it is
unreasonable to use only the accuracy of all samples as the
evaluation index for the model. Assume that stable samples
account for 99% of the dataset, then the TSA model can
achieve an accuracy of 99% by judging all samples to be
stable. In order to effectively evaluate the performance of
the model under the class imbalance, this paper utilizes the
confusion matrix [32] shown in TABLE 1.

In a confusion matrix, f11 represents the number of actual
stable samples that are predicted to be stable and so on for
f12, f21 and f22. The index to evaluate the performance of the
model is defined as follows:

TSR =
f11

f11 + f21
× 100% (11)

TUR =
f22

f12 + f22
× 100% (12)

G− mean =
√
TSR · TUR× 100% (13)

ACC =
f11 + f22

f11 + f12 + f21 + f22
× 100% (14)

TSR represents the proportion of correct results predicted
to be stable from all stable samples, TUR represents the
proportion of correct results predicted to be unstable for all
unstable samples, G-mean is the geometric mean of TSR and
TUR, which can effectively evaluate the performance of the
imbalanced data, and ACC represents the overall accuracy.

C. OFFLINE TRAINING
1) TRAIN THE IMBALANCED LEARNING MODEL OFFLINE
With access to a high proportion of renewable energy, mod-
ern power systems operate under a variety of conditions,
so as many typical operatiing conditions as possible are
considered. In order to find the boundary of instability, this
paper only considers the most serious contingency, which
is the three-phase short circuit. Datasets include thousands
of samples that can be generated with different operation
conditions and contingencies.

In the procedure as Figure 5 shown, the datasets with
selected features are divided into training and testing data.

DAE converts training data into hidden space, and the hidden
space data are synthesized by ADASYN to balance the class
amounts, which means the ratio of numbers of stable samples
and unstable samples is set to 1:1 by synthetically increasing
the number of unstable samples. Then, the synthetic data
are converted back to the original space of the training data.
Finally, the decoded data are used as input for the ensemble
cost-sensitive SDAE, and it is trained using the method intro-
duced in section III. Testing data are utilized to evaluate the
trained model with the indices introduced in section IV for
good performance in subsequent online application.

2) MODEL UPDATING MECHANISM
As the working conditions change dynamically, the model
requires incremental learning to maintain adaptability.
A model updating mechanism is designed to implement
incremental learning as follows:

(1) When the power system collects records of some con-
tingencies without a topology change, it retrains the model
with the parameter initialization of the existing model, and
repeats this step periodically.

(2) When the system finds that the topology has changed,
the model needs to regenerate the datasets and select critical
features for retraining.

D. ONLINE APPLICATION
Once a fault is detected, the online application program is
triggered. After a cycle of a fault clearing, real-time measure-
ments are acquired in observation window of a cycle, and
the critical features are selected from them. Then, we input
these critical features to the ensemble cost-sensitive model,
and the model will perform TSA for the power system. If the
power system is assessed as unstable, emergency control
will be performed immediately; otherwise, the trained TSA
continues monitoring the stability status of the power system
during the next cycle.

V. CASE STUDY
In this section, analysis is implemented on an IEEE 39-bus
system and an South Carolina 500-Bus System [33] in order
to test the effectiveness of the proposed method. Keras [34]
offers consistent and simple APIs for deep learning, and
their tools are used to construct the DAE and ensemble cost-
sensitive SDAE; the framework proposed in this paper is
built in Python. All programs are compiled on a laptop with
Intel Core i5-7300HQ CPU, 8GB RAM and a 1050 2D/3D
graphics card with 2GB memory.

A. CASE OF THE IEEE 39-BUS SYSTEM
The IEEE 39-bus system has been widely used to test TSA
algorithms. A line diagram of an IEEE 39-bus system is
shown in Fig. 6. The system is composed of 39 buses,
10 generators, 19 loads and 34 transmission lines. The
generator on the bus-39 bus is the equivalent of the external
large power system, and its rotor angle is used as a reference
for other generators. The required time domain simulation is
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FIGURE 6. Line diagram of an IEEE 39-bus power system.

performed with DIgSILENT PowerFactory [35], which is a
power system simulation tool.

B. DATABASE GENERATION
The datasets are constructed via time domain simulation,
the generator is a six-order model, and the load uses the
constant impedance model. Considering a load level ranging
from 75% to 125% in a step size of 5%, with the generator
output level adjusted accordingly. In other words, the load
level and generator output level change at the same ratio.
Then, power flow is calculated, and if the power flow has
converged, the operation condition is preserved.

The contingencies considered are the three-phase
grounding fault that occurs on all buses and on all lines,
where the fault is located at 20%, 40%, 60%, and 80% of
their length. Further, fault duration includes 0.1 s, 0.2 s and
0.3 s, and the time domain simulation duration is set to 10 s.
Finally, 5775 samples are generated to include 3890 stable
samples and 1885 unstable samples, and the dimension of the
dataset variable is 10+ 10+ 39+ 39+ 46+ 46+ 19+ 19 =
228. In order to simulate the situation where the number of
unstable samples in the actual power system is scarce, some
unstable samples are discarded randomly so that the number
of unstable samples accounts for approximately 5% of the
total number of samples.

Power system transient stability assessment can be divided
into two states based on the transient stability index (TSI),
by calculating themaximum rotor angle separation of any two
generators. TSI η can be defined as [32]:

η =
360−1δmax

360+1δmax
(15)

where 1δmax is the maximum rotor angle separation of
any two generators at the end of post-fault time domain

FIGURE 7. Dynamic training process of SYNDAE.

simulation. If η > 0, the sample is label as ‘‘1’’ for the stable
case, otherwise it is labeled as ‘‘0’’ for the unstable case.

To prevent the model from overfitting and effectively
evaluating its performance, datasets are randomly divided
into 3:1 as training data and testing data, respectively. The
proposedmethod is trained in several minutes so that it is effi-
cient to deploy it in real system. And detailed discussion for
the proposed methods is introduced in the following sections.

C. SPATIAL DISTRIBUTION ANALYSIS OF SYNTHETIC DATA
The experiment is implemented to explain the physical
meaning of the nonlinear data synthesis method proposed in
this paper, and the methods including DAE and ADASYN are
hereafter referred to as SYNDAE.

To obtain excellent representation of the input, the
dimension of the encoder is set to 100 because the dimension
of the encoder is generally smaller than the input, and the
overall training epoch is 40. Fig. 7 shows the training process
of SYNDAE which presents spatial changes of synthetic
data dynamically. According to the direction pointed by the
arrow, the data synthesized by the 1-th, 11-th, 21-th and 36-th
training generations are compressed into two-dimensions V0
and V1 by TSNE [36] respectively, where the blue points
are the original stable samples, the red points are the orig-
inal unstable samples and the green points are the synthetic
unstable samples. From Fig. 7 it can be observed that the data
synthesized by SYNDAE becomes more and more nonlinear
as the training progresses, which indicates that it captures
the nonlinear unstable patterns and effectively synthesizes it.
As SYNDAE encodes the original data to hidden space where
mined patterns of transients related to physical characteristics
of transient processes of the power system, then these patterns
are to be balanced with synthesis of ADASYN. Therefore,
it can enhance the transient characteristics of the data when
unstable patterns are decoded to balance the original data.

Different data synthesis methods, including SMOTE,
ADASYN, ROS and SYNDAE, respectively balance the
original data and compress these balanced sets into a
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FIGURE 8. (a) Two-dimensional spatial distribution of SMOTE.
(b) Two-dimensional spatial distribution of ADASYN.
(c) Two-dimensional spatial distribution of ROS.
(d) Two-dimensional spatial distribution of SYNDAE.

two-dimensional spatial distribution as shown in Fig. 8.
Fig. 8 (d) also shows the final training result of SYNDAE.
Compared with these other three methods, SYNDAE clearly
belongs to nonlinear data synthesis methods by mining com-
plex patterns from original data. The synthetic unstable data
of SYNDAE and the original data form a stable bound-
ary with a significantly larger interval than other methods.
This is because SMOTE and ADASYN are based on lin-
ear interpolation, so then the synthetic unstable samples are
distributed between the original unstable samples. In other
words, the data synthesized by SMOTE and ADASYN are
not implemented according to the transient patterns, so the
correlation with the physical characteristics of the power
system is not strong enough to form a stable boundary as
large as SYNDAE. ROS randomly copies unstable samples
to balance the original data results in the dispersion of the
spatial distribution of unstable patterns, which undermines
the generalization to a certain extent. Therefore, SYNDAE
can use the synthetic unstable patterns to help classifiers more
effectively distinguish transient data.

D. CLASSIFICATION PERFORMANCE ANALYSIS
In order to verify the effectiveness of the proposed method
on TSA, this paper compares several traditional methods
which are SMOTE, ADASYN, ROS, random under sam-
pling (RUS), conditional generative adversarial network
(CGAN), to highlight its advantages. All results are obtained
by using training and testing data.

The hyperparameter of the model is determined by grid
search optimization, which includes the number of SDAE and
the cost of the unstable samples. Fig. 9 shows the optimal
parameter search process of the proposed method. In order
to highlight the distribution of various evaluation indices,
contour is plotted. It can be observed that TUR increases

FIGURE 9. (a) Distribution of TSR. (b) Distribution of TUR. (c) Distribution
of G-mean. (d) Distribution of ACC.

TABLE 2. TSA results for different methods.

as the cost increases, but as attention to the stable samples
decreases, TSR also decreases. And because the number of
stable samples is much larger than unstable samples, so the
overall accuracy of samples is diminished. G-mean can be
used to make trade-offs between TUR and TSR. On the
premise of ensuring of maximum G-mean, a lightweight
model is obtained in this paper. Finally, the number of SDAEs
is set to 2, and the cost of unstable samples is set to 14.

TSA results for several different methods are provided in
TABLE 2. Extreme learning machine (ELM) [37] is used as
a benchmark classifier for comparison and has been widely
applied in TSA and gains excellent performance [38]–[40].
Compared to the original data, SYNDAE can significantly
increase TSR without reducing TUR when the classifier
is ELM, so its ACC is the highest compared to other
data synthesis methods that sacrifice TSR to improve TUR.
Compared with the imbalance of the learning methods listed
in TABLE 2, the proposed method outperforms in terms of
G-mean and ACC which realizes 100% of TUR with 98.81%
of TSR. Other methods cannot achieve a good balance
between TSR and TUR, resulting in a decrease of overall
accuracy and failure to meet requirements for TSA.

As SMOTE and ADASYN only linearly interpolate the
unstable samples, so transient characteristics of the data are
not effectively extracted, and the recognition rate of the stable
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TABLE 3. TSA results for different methods with wide-area noise.

sample is reducedwith ELMafter synthetically increasing the
number of unstable samples. ROS simply repeats the unstable
samples, resulting in a decrease of TSR and damage to the
generalization of ELM. RUS delete some stable samples to
balance the unstable samples, however, leading to harming
the ability to recognize the stable samples. And CGAN is
difficult to be trained to get the excellent performance for
imbalanced TSA. While SYNDAE mines transient patterns
effectively by synthesizing the unstable samples in hidden
space, so that TUR can be improved while maintaining TSR.
The ensemble cost-sensitive SDAE further enhances TUR
with powerful feature extraction capabilities and increases
the cost with misclassification of unstable samples. This
indicates that the proposed method can effectively identify
unstable samples and maintain a very high G-mean and ACC.

E. IMPACT OF WIDE-AREA NOISE
This paper assumes that data of WAMS is not polluted in
the previous discussion; however, PMU measurements are
accompanied by noise that affects the performance of the
model used for TSA. Therefore, this section will discuss
the impact of wide-area noise on the proposed methods and
compare the robustness of different methods.

According to IEEE standards [13], the PMU measurement
error cannot exceed 1% of the measured value. The genera-
tion of wide-area noise can be referenced in [41], which is
summarized as:

xmeasi = xreali + ε (16)

where xmeasi is the measured phasor and xreali is the real value
phasor without measurement error. To meet the standards of
IEEE, reasonable white noise ε is added to the data in the
time domain simulation. Training data and testing data are
corrupted with white noise, and all parameters of the model
are the same as the previous test.

TABLE 3 presents the results for different methods balanc-
ing classes for TSA, considering wide-area noise. SYNDAE
is almost not affected by noise while the TSR of SMOTE,
ADASYN, ROS, RUS and CGAN drops significantly with
the ELM classifier. Performance of the proposed method
does not decrease due to wide-area noise, so it performs

TABLE 4. TSA results for a large power system.

better than other methods in terms of G-mean and ACC.
As SMOTE, ADASYN and ROS will add wide-area noise
in the synthesized data for wide-area noise outputs in the
original data. In addition, CGAN and RUS are affected by
noise slightly due since they do not interpolate. However,
SYNDAE and the proposed method consist of DAEs which
are designed considering wide-area noise and can denoise the
measurement error.

F. LARGER POWER SYSTEM CASE
In order to test the scalability of the proposedmethod, a larger
power system is employed to be analyzed, namely South Car-
olina 500-Bus System. The same database generation method
used in the IEEE 39-bus system is utilized to construct
datasets that includes 34725 samples with 1243 unstable
samples, and the datasets are split into training data (80% of
datasets) and testing data (20% of datasets) for the proposed
method.

As seen in TABLE 4, the original data has the poorest
ability to detect unstable samples while SYNDAE can
maintain the generalization for stable samples with moder-
ate performance of unstable samples; therefore, SYNDAE
achieves the highest ACC among the eight imbalanced learn-
ing methods. When the ensemble cost-sensitive SDAE is
trained with data synthesized by SYNDAE, the proposed
method efficiently extracts stable and unstable patterns in
the datasets, resulting in desirable performance of ACC
and G-mean. CGAN shows good performance at larger
power system, but its ability to capture the unstable situ-
ation is not stronger than proposed method. By intuitively
repeating or deleting unstable samples, ROS and RUS cre-
ates a bottleneck by recognizing them. Additionally, methods
based on linear interpolation, such as SMOTE andADASYN,
cannot capture enough transient characteristics of the power
system to achieve state-of-the-art performance.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, to overcome the imbalanced-class problem
in TSA, a deep imbalanced learning framework consisting
of nonlinear data synthesis method SYNDAE and ensem-
ble cost-sensitive SDAE is presented. Simulations of the
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proposed framework on benchmark power systems demon-
strate superior performance for TSA compared to traditional
imbalanced learning methods. The main conclusions can be
drawn as follows:

1) Compared with the methods based on linear
interpolation, the proposed nonlinear data synthesis method
SYNDAE demonstrates improved capability in extracting
transient characteristics for TSA with non-temporal data.

2) The proposed ensemble cost-sensitive SDAE can effec-
tively mine transient patterns in data and increase attention to
unstable samples so as to improve their recognition accuracy.

3) The proposed framework greatly improves the general-
ization of implementing TSA with nonlinear data synthesis
and ensemble cost-sensitive learning compared with existing
imbalanced learning methods such ADASYN, SMOTE and
ROS, etc.

In practice, PMU failure, phasor data concentrator (PDC)
failure and communication delay may cause missing data
both in cyber and physical power systems, resulting in poor
performance for TSA. Therefore, the information character-
istics of WAMS data in real time will be considered in future
works. In addition, the topology changes of power system is
another problem to be studied, for which would affect the
adaptability of the data-driven model.
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