
SPECIAL SECTION ON DISTRIBUTED COMPUTING INFRASTRUCTURE
FOR CYBER-PHYSICAL SYSTEMS

Received May 7, 2019, accepted June 8, 2019, date of publication June 19, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2923956

Understanding and Statically Detecting
Synchronization Performance Bugs
in Distributed Cloud Systems
CHEN ZHANG , JIAXIN LI, DONGSHENG LI , AND XICHENG LU
Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China

Corresponding author: Chen Zhang (zc1994nudt@163.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB0204300, and in
part by the National Natural Science Foundation of China under Grant 61872376.

ABSTRACT In such an information society, the Internet of Things (IoT) plays an increasingly important role
in our daily lives. With such a huge number of deployed IoT devices, Cyber-Physical System (CPS) calls for
powerful distributed infrastructures to supply big data computing, intelligence, and storage services.With the
increasingly complex distributed software infrastructures, new intricate bugs continue to manifest, causing
huge economic loss. Synchronization performance problems, which means that improper synchronizations
may degrade the performance and even lead to service exception, heavily influence the entire distributed
cluster, imperiling the reliability of the system. As one kind of performance problems, the synchronization
performance problems are acknowledged as difficult to diagnosis and fix. We collect 26 performance issues
in three real-world distributed systems: HDFS, Hadoop MapReduce, and HBase, and do analysis on their
root cause, fix strategy, and algorithm complexity in order to understand these synchronization performance
bugs better. Then, we implement a static detection tool including critical section identifier, loop identifier,
inner loop identifier, expensive loop identifier, and pruning component. After that, we evaluate our detection
tool on these three distributed systems with sampled bugs. In the evaluation, our detection tool accurately
finds out all the target bugs. Besides, it points out more new potential performance problems than the
previous works. With the strict performance overhead, our detection tool is proved to be greatly efficient.

INDEX TERMS Software debugging, software performance, distributed computing, software reliability.

I. INTRODUCTION
In such an information society, Internet of Things (IoT)
plays an increasingly important role in our daily lives, which
means that computing and communication capabilities can
be embedded in diverse objects in the physical environment.
With such a huge number of deployed IoT devices, Cyber-
Physical System (CPS) calls for powerful distributed infras-
tructures to supply big data computing, intelligence, and
storage services.

Distributed software infrastructures such as large-scale
storage systems, scale-out computing frameworks, synchro-
nization services, and cluster management services, have
emerged as a dominant backbone for CPS. A mass of

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Ling.

applications begin to be developed based on distributed cloud
systems, hence, the reliability of these systems is important.

With the increasingly complex distributed software infras-
tructures, new intricate bugs continue to manifest, causing
huge economic loss. Inside, synchronization performance
problems make up a large proportion. As one kind of per-
formance problems, they are acknowledged as difficult to
diagnosis and fix [1].

Users expect great dependability and efficiency from dis-
tributed systems, given the large-scale fundamental infras-
tructures. With a wide range of applications, performance
problems are non-negligible to service quality for information
technology enterprise. A few seconds’ delay in distributed
cloud systems could cause service exceptions.

Unfortunately, it is difficult to guarantee the reliability
due to the complexity of software and its non-deterministic
runtime. Among all types of performance bugs in distributed

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 99123

https://orcid.org/0000-0003-4349-0540
https://orcid.org/0000-0001-9743-2034

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

FIGURE 1. A HDFS synchronization performance bug: all writes to
NameNode(NN T2) blocked since NameName(NN T1) runs a report
processing from DataNode(DN), which contains a time-consuming loop.

systems, synchronization performance bugs are particularly
troublesome. Different from other performance bugs, which
generally are caused by unnecessary operations, synchroniza-
tion performance bugs are more the situations that important
tasks are delayed by other workload-sensitive tasks causing
performance degradation even service exception.

Figure 1 illustrates a real-world synchronization perfor-
mance bug fromHDFS. It is triggered by an unexpected time-
consuming source on NameNode (NN). Specifically, after
DataNode (DN) sends a big block report (i.e., Job 1) to NN,
NN processes the report through a heavy report-processing
loop where the maximum number of iterations is undefined
while holds NN’s lock. The loop iteration number is related
to the number of blocks in DN. However, when NN is still
in the process, all regular writes (i.e., Job 2) to HDFS have
been blocked and wait for the loop to finish since they need
the same lock.

Synchronization bugs or lock-related problems are com-
mon in distributed systems. With a strict synchronization
mechanism, a thread swell may affect other components,
the whole node, even the entire cluster. For instance, a HBase
bug says that heavy writes load on a RegionServer (RS).
The RS hits its global memstore upperlimit and begin to
flush data to disk until the global memstore size downs to
the lowerlimit . It is a time-consuming process which block
all writes on the same region. Synchronization problems like
this heavily influence performance of the entire distributed
cluster, imperiling the reliability of the system.

Thus, we aim to conduct a study around synchronization
performance problems in distributed system and address them
according to our study. We hope our work can provide certain
help for later research work.

Plenty previous studies [2], [3] related to performance
bugs have been done. In Jin et al.’s paper [1], they extracted
efficiency-related rules from performance bug patches and
successfully detected new bugs based on these rules. Their
work provides us a guidance, but limits exist at the same time.
They only studied bugs in single machine, and the efficiency-
related rules do not make sense in distributed systems. Fol-
lowing their guidance, our paper discusses the performance
issues in different distributed infrastructures.

Besides, SyncPerf [4], which focus on synchronization
performance problems, has done a series of studies around

FIGURE 2. Root cause of the synchronization performance bug shown
in Fig. 1.

FIGURE 3. The two category of synchronization performance bug. (c) can
be a specific instance of (b).

lock. Though SyncPerf has made a good discussion on lock-
related performance bug, the dynamic tools rarely cover each
execution path, meanwhile increase the number of false neg-
atives. So we explore to detect synchronization performance
bug with static method which can obtain a better code cover-
age and find out more potential synchronization performance
problems.

Especially, though PCatch [5] also studies performance
bugs in distributed systems, the bugs studied in that paper are
just a subset of our studies. PCatch looks at the propagation
chain and studies the relationship between source and sink.
In their work, source is just the preliminary candidates of
a bug. And to manifest the bugs, large-scale task is gener-
ally needed. PCacth can use relatively small scale tasks to
detect source bug. However, there are also false negatives
in PCatch and PCatch cannot get a full coverage of the
program code or affectable sink, which means the limited
input domain my lead to poor coverage. Different from their
work, we only focus on the source since it is the key factor
that introduce potential synchronization performance prob-
lems even though it cannot introduce performance bugs at
present.

As show in Figure 3, synchronization performance bugs are
generally including (1) large-scale process in a critical section
(2) high frequency of software contention and resource acqui-
sitions caused by large numbers of callers. It is, however,
unrealistic to achieve the scale and detect through dynamic
testing. The high contention of software resources has been
well studied in previous works [1], [6]–[11], so synchroniza-
tion performance bugs triggered by large-scale processing are
what this paper concerns.

99124 VOLUME 7, 2019

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

TABLE 1. Application and Bugs used in the study. MapReduce stands for
distributed computing framework, HBase stands for distributed key-value
stores and HDFS stands for distributed file systems.

In order to get a comprehensive solution and address
synchronization performance problems, guided by the pre-
vious work [1], [11], [12], we have made the following
contributions.

A. CHARACTERISTICS STUDY
Many empirical studies [1], [2], [13] have been conducted for
performance bugs, but rare researches focus on synchroniza-
tion performance bugs in cloud distributed systems. We col-
lect 26 performance issues in distributed systems, and do
analysis on their root cause, fix strategy and time complexity
in order to understand these synchronization performance
bugs better.

B. STATIC DETECTION
Owing to the poor coverage in previous work with dynamic
analysis, we finally choose building static tool to implement
detection, which is also our exploring method. We implement
the critical section identification and group them by lock
objects. Large-scale process identification is also expensive
loop identification, analyzing the program to figure out the
relationships among nested loops, time-consuming opera-
tions and the recursive call.

We evaluated our detection tool on 3 varying real-world
distributed systems, HDFS, HadoopMapReduce, and HBase.
We collect 26 performance bugs and make a preliminary
study, then pick out 13 synchronization related bugs with
clear description in them and conduct further analysis, finally
randomly pick out 5 bugs as benchmarks to test our static
analysis tool.

II. BUG STUDY
In this section, we conduct a comprehensive performance bug
study. The following research questions are studied.

1. How do we collect these bug samples?
2. What are the root causes of them?
3. What can we extract from the study above?
4. What others can we learn?

A. METHODOLOGY
We chose three widely deployed open-source distributed
system suites to examine: Hadoop MapReduce, HBase and
HDFS. As shown in Table 1, all of them provide a con-
siderable coverage of distributed system types, such as dis-
tributed computing framework, distributed key-value stores
and distributed file systems. They are all built with Java,
which is popular in the development of commercial software.

TABLE 2. The ‘‘/’’ in ‘‘HB3483/HB2149’’ means HB3483 and HB2149 is
actually the same bug. These two issues are redundant submits in JIRA
or the same problem fixed by different strategies. For category, C1 means
large-scale root cause and C2 means high-concurrency root cause.
M,N,P,Q,R are used to mark the iteration number of each loop. Specially
M stands for outer loop iteration of the critical section and N/P/Q/R
stand for the inner loop iteration. ‘‘rec’’ means recursive call exists in the
execution path. ‘‘X’’ in the last two column means we identify that the
effective factor contain ‘‘I/O’’, ‘‘RPC’’ or both.

From these applications, we can observe similarities and dif-
ferences among synchronization performance bugs in various
distributed systems suites.

All the bugs that we studied come from an open source
cloud bug study (CBS) database [14]. This CBS database
contains over 3,000 issues which are sampled organized
issue repositories (named ‘‘JIRA’’ and maintained by Apache
Software Foundation), over a period of three years(1/1/2011-
1/1/2014). Each bug issue is labeledwithmultiple tags andwe
search synchronization performance bugs based on keywords
including ‘‘performance’’ and ‘‘lock’’, ‘‘slow’’/‘‘delay’’ etc.
From CBS, we firstly filtered out bug nor related to perfor-
mance, then exclude performance bugs that have not been
fixed, and finally randomly picked 26 samples from the
remaining detailed bugs.

B. ROOT CAUSE ANALYSIS
Asmentioned in Section I, synchronization performance bugs
are generally triggered by (1) large-scale processing (2) high
concurrency. We mainly focus on addressing the first one,
which means to ask what happened in the critical section.
To answer this question, we manually recursively analyzed
plenty code lines in the problematic critical section.

Workload-sensitive slowdown is generally the key factor
behind synchronization performance bugs, which violates the
scalability goal of distributed systems. As the root cause of
synchronization performance bug, workload-sensitive slow-
down plays a vital role in the root cause of performance bug.

The unexpected slowdown of a source job could be trig-
gered by special inputs, configuration or system scale, etc.
Time-consuming sources, like block report processing in
NameNode of HDFS (shown in Fig. 2), side file localization
in TaskTracker of MapReduce, and memstore flushing in
HRegionServer of HBase, usually consist of at least two
components at the source code level. So the first step of our
work is to clarify the algorithm complexity of these critical
sections, and part of the results are shown in Table 2.

According to our study, there are mainly three key factors
to synchronization performance bugs causing swollen critical

VOLUME 7, 2019 99125

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

section, which are time-consuming operation, nested loop,
and recursive call.

1) TIME-CONSUMING OPERATION
In critical section, time-consuming operation is a fun-
damental factor causing slowdown of jobs, such as
I/O-containing operations (e.g., Java libraries operation
java.io.InputStream :: read or Hadoop common libraries
operation fs.rename), network operations (e.g., Java libraries
operation java.net.InetAddress :: getByName or RPC calls),
and some special operations (e.g., sleep(100ms), await(1s)).
HD3990 is just a good example. Once the management

web page dfshealth.jsp of NameNode is accessed, it will
place a lock on the namespace and do DNS lookup (i.e.,
InetAddress :: getByName) for every DataNode and also do
some other node checking referring to DNS lookup, which
often results in over 10s load time for the page on a multi-
thousand node cluster. In addition, 10 concurrent requests
were found to cause more than 7min load times during which
time all write operations in the NameNode are blocked.

2) NESTED LOOP
Loop is also an important factor to performance bugs.
A slowdown related to unbounded loop is universally linear
with the number of iterations of the loop, which generally
come from specific configurable options (e.g., the number of
local directories used for dfs.data.dir in HDFS).

An important scenario is a non-scalable loop wrapping
the time-consuming operation, the iteration number of which
is usually decided by system-specific scalability parameters
(e.g., the number of reported blocks in HDFS, the number
of TaskTrackers in MapReduce), input data or commands
(e.g., the number of side files for a MapReduce job), or inter-
mediate results of workloads. In other words, the iteration of
each loop can be illustrated with specific workload size.

Taking MR4813 as one example in Figure 4, it says that
if user commits a big job with tons of files to finish the job,
and this process holds JobImpl’s write lock the entire time
during committing, which prevents AppMaster (AM) sending
heartbeat to Resource Manager (RM) for a long time, then
RM regards AM as unresponsive and attempts to kill the AM,
finally job fails.

The first step above is slow owing to moving large numbers
of output files, and this process in Table 2 shows a complexity
with O(N) ∗ O(P)rec, in which N donates the number of
directories in the committed job, and P donates the number of
files in the current directory, additionally there is a recursive
loop in mergePath() surrounding P. The details can be seen
in Figure 4. So we can illustrate the slowdown with recur-
sively traveling each file in the committed job and the total
iteration count is the number of files in a job result.

3) RECURSIVE CALL
Recursive call is also a key factor to the jobs’ slowdown.
Though compared with general loop, they are both repeating
the similar works, the difference is more important. Different
from general loop which shows an obvious end condition,

FIGURE 4. The complexity analysis of MR4813. In the writeLock critical
section, there are a 2-depth loop and a recursive loop. Sign ‘‘99K’’ means
going through several calls and sign ‘‘→’’ means directly calling.

Recursive call is difficult to identify the end of the call
chain. According our study, recursive call can be a greatly
non-determinate structure which generally causes slowdown,
especially for recursive loop. A recursive loop is a loop
that recursively calls the function containing itself. Recur-
sive loops could be time-consuming sources. For example in
HD2379, DataNodes with multiple millions of blocks on a
singlemachine recursively scan all the data directories to gen-
erate a block report, which can take multiple minutes when
page cache space is tight, while it holds the FSVolumeSet
lock then blocks all the writes and reads to current DataNode.
Though recursive call is not a necessary reason responsible
for time-consuming source, it indeed increases delay.

4) HIGH FREQUENCY LOCK
As seen in Table 2, the root causes of HD4183/HD5790 and
HD5241 belong to high frequency. Looking at their algorithm
complexity, they are [O(M)]∗O(P)∗O(Q) and [O(M)]∗O(P).
M represents the iteration number of the outer loop, which
means the critical section is in a loop field. With such a con-
tinuous lock acquisition, it heavily influences other threads’
resource contention.

C. FINDINGS
According to the study above, we extracted several findings
listed below. Some of these findings are also valuable tips for
improving our detection work.

99126 VOLUME 7, 2019

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

Finding 1: The paired synchronization primitives, lock and
unlock, are generally in the same function.

This finding is extracted from MR4813, HB3483,
HD5153 and etc. It supplies great convenience to static
critical section identification, which means we can find out
critical section by only analyzing codes of current method
without considering codes of the callees. The detail can be
seen in Section III-A.
Finding 2: Bugs related to keyword ‘‘synchronized’’ are

generally fixed by skipping the waiting time.
From MR4576, HD2379 and etc., the keyword ‘‘syn-

chronized’’ means the whole function is in critical section,
which is also used in Section III-A. To avoid entering the
‘‘synchronized’’ field, using an asynchronous thread and
using tryLock() are both the approaches skipping waiting for
lock acquisition. This finding may not help to identify syn-
chronization performance problems but can help to analyze
the evaluation results that how the bug disappears with the
increasing version of packages.
Finding 3: Nested loop shows a strong workload-sensitive

feature.
Nested loops are common in large-scale process, and they

easily show a linearly increasing consuming time due to the
unbounded variant in the loops. We regard nested loop as a
necessary condition of slowdown.
Finding 4: Recursive loop is strongly related to workload-

sensitive slowdown.
Learned from HD2379, HD5064 and MR4813, recursive

loops are generally merging tree structure or traveling file
systems, and they are both workload-sensitive. All the recur-
sive loops we studied are all the root cause of slowdown,
so we try to regard recursive loop as a sufficient condition
of slowdown.
Finding 5: Time-consuming operations are mainly the

direct cause of expensive loop.
Almost, each synchronization performance bug in Table 2,

the critical sections contain time-consuming operations such
as I/0 or RPC. Besides, disk Read/Write and net Read/Write
are much slower than memory operation. We regard time-
consuming operation as a necessary condition of slowdown.

D. FURTHER DISCUSSION
Synchronization performance bugs are usually fixed by
changing the source or the propagation chain. For exam-
ple, developers sometimes add timeouts to the source
loop or move part of the loop out of critical sections or out
of the loop thread (i.e., using asynchronous processing).
Developers sometimes break the cascading chain (propagate
from slowdown to the sink) by skipping waiting for certain
contention resources or creating more resources to share.

III. SYNCHRONIZATION PERFORMANCE BUG DETECTION
According to our study in Section II-C, loops are most
likely to become performance bottlenecks. Thus, we mainly
consider loops as potential large-scale processing problem-
related performance bug candidates.

FIGURE 5. The logic relationship among detection tool components.

There are four steps for detecting time-consuming sources.
(1) Identify all critical sections protected by any locks;
(2) Identify all loops and mark the functions containing
loops; (3) Identify loops contained inside the critical sections
got from Step 1; (4) Further identify vital critical sections
that contain time-consuming loops that contain nested loops,
I/Os or RPCs, recursive calls. (5) Removing pseudo time-
consuming loops out of the loop candidates.

We have implemented the static analysis of synchro-
nization performance bug detection using WALA, a Java
byte code analysis infrastructure [15], more details seen
in seciton IV.

A. CRITICAL SECTION IDENTIFICATION
It is challenging to identify critical sections because of
various types of synchronization operations in distributed
systems. Synchronization operations include (1) class-
level locks such as synchronized(CLASSNAME .class),
etc., and (2) object-level locks such as synchronized
methods, synchronized(obj), obj.lock()/unlock(), or man-
ually defined locks like obj.readLock()/readUnlock(),
obj.writeLock()/writeUnlock(), etc.
In addition, it is also challenging to accurately identify the

source code region scope between a pair of lock-require and
lock-release instructions for a critical section, which is nec-
essary for inner loop identification in Section III-C. In Java
bytecode, however, every critical section may correspond to
multiple lock-release instructions caused by different execu-
tion paths to exit the critical section.

Given a method M and its corresponding control-flow
graph (CFG) G, we use WALA byte code analysis infrastruc-
ture to identify all the critical sections inM and take the set of
contained basic blocks as the code region scope for a critical
section.

Algorithm 1 shows an outline of static critical section
analysis. First, if M is synchronized, we will consider the
wholemethod as a critical section and put its basic block (BB)
set BBG into the output setC. Second, we traverse all instruc-
tions of M (i.e., the InstructionsOf (M) function) to find

VOLUME 7, 2019 99127

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

Algorithm 1 Critical Section Analysis Algorithm
Input: A method M and its control-flow graph G
Output: A set of critical sections C={C |C is a critical section

in M }
Set<Critical section> C← Null;
if M is a synchronized method then

new C
C ← BBG
C.add(C)

for i in InstructionsOf(M) do
if i is a Lock-Require instruction then

new C
BBC ← Null
for j in Lock-ReleaseInstructionsOf(i) do

BBC ← BBC ∪ (SuccBBs(BBi) ∩ PrecBBs(BBj))
end
C ← BBC
C.add(C)

end
return C;

out lock-require instructions and the correspondingly multi-
ple lock-release instructions of each lock-require instruction
(i.e., the Lock−ReleaseInstructionsOf (i) function) based on
the class name (when it is a class-level lock) or the variable
name (when it is a object-level lock). Then, we compute the
code region scope for each pair of lock-require and lock-
release instructions respectively by the intersection between
the successor BB set of the lock-require instruction (i.e,
the SuccBBs(BBi) function) and the precursor BB set of the
lock-release instruction (i.e, the PrecBBs(BBj) function) inG.
BBi and BBj means the BB containing the instruction i or j
respectively. The successor BB set of an instruction means
the set of all reachable BBs from the instruction in CFG, and
the precursor BB set of an instruction means the set of all BBs
that can reach the instruction in CFG. Finally, we can infer a
critical section’s code region scope BBC by the union of the
code region scope of all pairs of lock-require and lock-release
instructions.

B. LOOP IDENTIFICATION
As shown in algorithm 2, we first find out and tag all loops
Ls for a target system through control-flow analysis. Specif-
ically, we statically analyze the program to find out all loops
by identifying back edges (Es) in control-flow graph. For
each loop, we also figure out the set of basic blocks (i.e.,
BBL) corresponding to the loop’s real code region through
a way as similar as the previous critical section analysis. That
is, the basic block set of a loop could be computed as the
intersection of the successor set of the back edge’s end basic
block and the precursor set of the back edge’s start basic block
(i.e., BBL ← SuccBBs(Eend) ∩ PrecBBs(Estart)).

C. INNER LOOP IDENTIFICATION
We find all inner loops for each critical section, where the
basic blocks of the loops are completely contained in the
code region scope of the critical section. (e.g., BBL ⊂ BBC).

Algorithm 2 Loop Field Analysis Algorithm
Input: A method M and its control-flow graph G
Output: A set of loop field L={L |L is a loop in M }
Set<Loop Info> L← Null;
for i in InstructionsOf(M) do

if IndexOf(SuccInstruction(i)) < IndexOf(i) then
new E
Eend ← SuccInstruction(i)
Estart ← i
if Eend equal FirstInst(any Lk in L) then

continue
new L
BBL ← (SuccBBs(Eend) ∩ PrecBBs(Estart))
L ← BBL
L.add(L)

end
return L;

As loop analysis has been done in Section III-B, The per-
formance features of critical section with inner loop can be
collected to get further analysis.

D. EXPENSIVE LOOP IDENTIFICATION
There are a wide variety of time-consuming loops in system.
According to the findings in Section II-C, we aim to identify
loops that satisfy the following three conditions. First, each
iteration of the loop contains time-consuming operation. Sec-
ond, the depth of loop is more than one (i.e., nested loop).
Finally, recursion exists in the call path to time-consuming
operations.

1) TIME-CONSUMING OPERATION ANALYSIS
Our goal here is to judge whether a loop contains time-
consuming operations in its every iteration.

Since time-consuming operations might be conditional in a
loop, we aim to identify out a loop containing non-conditional
time-consuming operations or containing time-consuming
operations at all the same-level of conditional branches. Note
that we only consider the first-level conditional branches but
not nested conditional branches in our implementation for
reducing the time complexity of program analysis.

From our findings in Section II-C, we mainly focus on
time-consuming operations such as I/O, RPC, network oper-
ations and explicit sleep. We search every loop’s body and all
its callees recursively for time-consuming operations. In the
implementation of detection tool, we identify I/O, network-
related and sleep operations by checking relevant function
calls in Java libraries. For RPCs, we automatically tag all of
RPC call functions for the target system based on its design
of RPC communication component in advance. Also, users
also can specify system-specific time-consuming functions as
time-consuming operations for reducing the time complex-
ity of program analysis or increasing the accuracy of time-
consuming operations analysis.

99128 VOLUME 7, 2019

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

2) NESTED LOOP ANALYSIS
To identify the nested loops, finding out all the inner loop is
necessary. So, we look for all inner loops for each loop field
in the same function, where the basic blocks of the loops are
completely contained in the code region scope of the outer
loop. (e.g., BBL_inner ⊂ BBL_outer). The process of inner-loop
identification involves both intra- and inter- procedural analy-
sis. Specifically, we do intra-procedural analysis by searching
in the basic block set of the outer loop field for finding
tagged loops. Also, for inter-procedural analysis, we analyze
all instructions of the outer loop field to get function calls
and recursively find tagged loops inside the callees through
the depth-first search.

3) RECURSIVE CALL IDENTIFICATION
A recursive loop is a loop that recursively calls the function
containing itself. From our findings in Section II-C, recursive
loop could make the loop become a time-consuming source.
No extra component is built to analyze recursive loop, instead,
we record all the intermediate functions when we recursively
search time-consuming operations and once find circle exists
in the call path we mark the loop as a recursive loop.

E. FURTHER FALSE POSITIVE PRUNING
After identifying expensive loops, we consider them
as performance bug candidates. These expensive loops,
however, might be not really time-consuming sources
to cause performance bugs. That is, an expensive loop
wrapped by a critical section might release the cor-
responding lock of the critical section inside its loop
body so that it would not hold the lock for a long
time. For example, the code snippet “obj.lock();
for(..){ ..; obj.unlock(); sleep(100ms);
obj.lock(); ..} obj.unlock();” releases the
object lock obj through obj.unlock(); during the loop iteration
to avoid holding the object lock all along. Note that releasing
lock during loop iteration is in fact one kind of fixingmethods
to real-world synchronization performance bugs.

Thus, we also identify loops containing lock releases in
critical sections by static analysis and exclude them out of
the bug candidates for false positive pruning.

IV. IMPLEMENTATION
The goal of our detection tool is to find out potential syn-
chronization performance bugs as many as possible. Due to
the limits that exist in dynamic detection with large-scale
processing related performance bugs, aiming at high code
coverage, this static detection tool is a beneficial try.

We implement our detection tool using WALA [15] static
analysis frameworks. WALA is a Java bytecode analysis
infrastructure maintained by IBM, which is a mature tool and
provides strong support for Java program static analysis in
previous work [16].

To begin with our detection tool, several works have
been done with WALA including (1) making class hierarchy

TABLE 3. Benchmark: target bugs and their reported application vertion.
Especially, Hadoop MapReduce v1.0.0 is integrated into package
hadoop-core-1.0.0.jar, and HDFS v0.20.205.0 is integrated into
package hadoop-core-0.20.205.0.jar, so we use the integreted jar
package to make evaluation.

analysis, (2) building the control flow graph of the whole
package. Each node in the graph stands for a method, and
our analysis is established on parsing every static single
assignment(SSA) in each method.

Especially for identifying the time-consuming operation,
we use specific character string to match the prefix of SSA
with WALA, such as using ‘‘java.io.’’ and ‘‘java.net.’’ to
separately check file-related and network-related Java library
APIs, using ‘‘org.apache.hadoop.fs.’’ to check Hadoop com-
mon library file-related APIs and etc. We consider all the I/O
operations and sleep-related functions as expensive opera-
tions. And as mentioned in Section III-D, our analysis checks
whether any such time-consuming API is called in the loop
field, including the callee functions of a loop.

V. EVALUATION
This section will illustrate the following questions:

Basic Preparation: What is the experimental environ-
ment? How can we use the application to perform the
evaluation? (Section V-A)

Detection Result:What is the effect of our static detection
tool? How can we understand the outputs of the detection
tool? (Section V-B)

FurtherMeasurement:What can we learn from each step
of our detection? (Section V-C)

Performance Overhead: What is the performance over-
head of our static detection tool? How can we improve it?
(Section V-D)

A. BENCHMARK
1) EXPERIMENTAL SETUP
We performed experiments on a PC with Intel(R) Core(TM)
CPU i5-4590 processor and 32GB of memory. The
experiments are performed on the unchanged Ubuntu
18.04 operating system. We used Java-1.8.0_191 with argu-
ment -Xmx16G to run the bug detection tool.

2) EVALUATED APPLICATION
Our evaluation uses 3 real-world synchronization perfor-
mance bug which separately comes from HDFS, Hadoop
MapReduce andHBase as our Benchmarks. This group of test
samples stand for distributed systems for different purposes,
as seen in Table 3. And the application versions all come from

VOLUME 7, 2019 99129

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

TABLE 4. Bug detection result. The foot number of ‘‘X’’ means the quantity of related bugs in candidates and ’-’ stands for unchecked.

bug repository, in which each bug issue is committed with the
corresponding application version.

We first check whether our tool can detect the original bugs
above with input the corresponding application jar package
and observe if new bugs are detected. We also record the
intermediate result, to further analyze the effectiveness. Then
we record the time consumption of each step to evaluate the
performance of our detection tool.

B. RESULTS
With many workload-sensitive call paths, we collect all the
time-consuming loop containing critical sections and regard
these critical sections as potential synchronization perfor-
mance problems (i.e., the candidates). And we set the prob-
lematic critical sections in bugs as our actual targets. Overall,
all the benchmarks are successfully detected by our detection
tool as shown by the X in Table 4. Especially, the foot
numbers, right ofX, illustrate that the numbers of candidates
targeting the same bug (i.e., multiple problematic critical
sections are all the root causes of the bug).

In addition, with the increasing version of HDFS, the new
bug is introduced, like HD3990 in HDFS-0.23.1.jar
and the current bugs are disappearing, like HD2379 in
HDFS-0.23.1.jar and HD3990 in HDFS-0.23.7.
jar. Analyzing these two bugs’ fix strategies, HD2379 is
fixed by using an asynchronous thread to do large process to
achieve a short-time lock and HD3990 is fixed using a better
algorithm to replace the time-consuming operation for speed-
ing. Considering that once the bug is fixed (e.g, HD2379 was
fixed in v0.21.0 and HD3990 was fixed in v0.23.6), it cannot
be checked (i.e., our rules or findings make sense).

We randomly select several candidates to make further
manual analysis, and the results show that they all has the
complete factors that we think a potential synchronization
performance problem matches (i.e., critical section, nested
loop, time-consuming operation). Then through our manual
work with the other output of the detection tool, all the
candidates except benchmarks are considered as new bugs.
Due to our goal is to find out all the potential synchronization
performance bugs, we consider all the candidates that obey
our rules or our findings as the effective bug, even though
they are not found making actual damages currently. So there
is no absolute error.

Figure 6 shows a part of the output, which illustrates
the detail of one candidate for HBase synchronization per-
formance bugs. As we can see, the critical section is the

FIGURE 6. One sample of the candidate HBase bugs from the outputs.
The number in bracket following L means the nested loop number in each
call step and the number following C means recursive call quantity.

whole method, which is attached with synchronized attribute.
And a 4-depth nested loop exists in the critical section.
The loops are while(true) end with signal value stopRow,
while(Bytes.equals(currentRow, peekRow())), while((kv =
this.heap.peek())! = null) and while((scanner =

this.heap.poll())! = null). Easy to draw a conclusion that
this critical section is unscalable. Besides, the innermost loop
field contains one time-consuming operation (i.e. allocate()).
This instance matches our conditions that judge the potential
performance problems, and we think it has the opportunity to
hold a long lock on HRegion$RegionScanner causing other
operations on this component blocked. So we consider it as a
potential synchronization performance bug.

C. FURTHER EVALUATION
We observe the result after each component’s process from
three different perspectives (i.e. # of function, critical section
and loop). As shown in Table 5, 6 and 7, compared
with the initial quantities, the numbers of final candidates
show a reduction by 4-12 times, which greatly do good to
developer to find out the effective performance problem.
Besides, the final loop count is smaller than that of critical

99130 VOLUME 7, 2019

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

TABLE 5. The # of candidate functions in each condition. F,C,L,Tc,R separately means function, critical section, loop, time-consuming operation and
recursive call. Especially, ‘‘# CF’’ means the number of F containing C without recursive analysis. ‘‘# LF’’ means the number of F containing L without
recursive analysis. ‘‘# LCF’’ means the number of CF containing L. ‘‘# TcLCF’’ means the number of LCF containing Tc. ‘‘# TcRLCF’’ means the number of
TcLCF with recursive call in the call path.

TABLE 6. The # of critical section in each condition. C,G,L,Tc separately
means critical section, lock group, loop and time-consuming operation.
Especially, ‘‘# LC’’ means the number of C containing L. ‘‘# TcLC’’ means
the number of C containing L-wrapping Tc.

TABLE 7. The # of distinct loops from candidates in each condition. L,C,Tc
separately means loop, critical section, time-consuming operation.
Especially, ‘‘# CL’’ means the number of L in C. ‘‘# TcL’’ means the number
of L containing Tc. ‘‘# CTcL’’ means the number of Tc-containing L in C.

section or synchronized function. Now that they come from
the same time-consuming call paths, the loop field code is
reused by different critical sections, which means loop is the
key factor in the large-scale process. In the future, we will
study and learn more loops, which are more related to scal-
ability. Deserve to mentioned, loop with recursive call make
huge promotion to the complexity.

D. PERFORMANCE OVERHEAD
As analysis time of each stage in the whole process shown
in Table 8, synchronization performance bug is reasonable
for in-house analysis. It cost 9s - 120s to analysis the jar
packages. The consuming time is more sensitive to the
number of function in the program instead of the pack-
age size. Especially, we cannot find an independent pack-
age of HDFS-v0.20.205.0 in Maven repository, so we use
hadoop-core-0.20.205.0.jar instead. Due to the
hadoop-core package integrate HDFS and many other com-
ponents, it can be seen that the package size of HDFS-
v0.20.205.0 in Table 8 is twice bigger than that of HDFS
package in other versions. Moreover, we found that almost
90% the static analysis time is actually spent for WALA to

build the program dependency graph. To improve the perfor-
mance, we can pre-compute the program dependency graph
and store it to disk, which can greatly accelerate the sec-
ond analysis with loading the existing program dependency
graph.

VI. RELATED WORK
A. BUG STUDY
1) PERFORMANCE BUG STUDY
Several performance related empirical studies have been con-
ducted in recent ten years. They proposed different methods
to study the reported bugs. Some [1] of them focus on the
lifecyle of a performance bug, like what is the root cause,
how they are introduced, how they are exposed, and how
they are fixed, then find that performance problems take long
time to get diagnosed and the help from profilers is very
limited; some [12], [13] of them look at how performance are
noticed and reported by end users; some [2] of them compare
qualitative difference between performance bugs and non-
performance bugs across impact, fix and fix validation.

Besides, some researches have been done on a specified
code structure, like loop. LDoctor [3] can not only use statis-
tical analysis to identify which loop is more correlated with
a performance symptom, but also point out whether or what
type of inefficiency this loop contains by providing detailed
root cause information and fix strategy suggestions.

And Liu et al. works [17] focuses on the performance
problem in a specific application scenarios (i.e. smart-phone
applications). Also comprehensive studies [18], [19] have
been conducted for local concurrency bugs.

2) DISTRIBUTED SYSTEM BUG STUDY
Compared with studies on local machine, bug studies [14],
[20] on distributed systems take up a small number. Some
distributed program related works [21] only discussed few
bugs. Among the studies above, no one specifically discuss
the performance bug in distributed systems. So we hope
our work can make some contributions to performance bug
study in distributed systems and provide certain help for later
research work.

Similar to our work, SyncPerf [4] analyze a few synchro-
nization performance bugs from several distributed infras-
tructures, but the dynamic tool based on its findings limits the
bug detection coverage. PCatch [5]make some causality anal-

VOLUME 7, 2019 99131

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

TABLE 8. Time consumption detail of detection tool.

ysis with a double-digit number of distributed performance
bugs and its work focus on the cascading relationship between
root cause and sink. But they do not characterize the sinks,
which goes against auto detection.

B. BUG DETECTION
1) PERFORMANCE BUG DETECTION
Extensive efforts have been done to detect the potential
performance problems. A large number of tools have been
proposed to make contributed to performance bug detection.
Xu et al. [22] look at low-utility data structure with unbal-
anced costs and benefits. Jin et al. [1] come up with rule-
based methods based on their characteristic study that is
extracting rules from performance-bug patch and applying
them to bug detection. Cachetor [23] uses a combination of
dynamic dependence profiling and value profiling to iden-
tify and report operations that keep generating identical data
values. Predator [24] targets false sharing for multithreaded
applications. WAIT [25] focus on those bugs blocking the
application from making progress.

There are also tools [3], [16], [26]–[28] that analyze
inefficient nested loop, workload-dependent loops, unneces-
sary iterations and their improvement and expansion. Addi-
tionally, our work also analyzes loops, but focuses on not
efficiency of loop but the workload-sensitive information
(e.g. the complexity of a group of nested loop).

2) LCbug DETECTION
Specifically, LCbug detection is always hot spot in the
recent decades. Identify data races [29]–[32], atomicity
violations [33], [34] and order violations [35]–[37] are the
main methods. Besides, a large amount of lock contention
detectors and critical thread detectors have been developed
but they all focus on their specific goal.

3) DCbug DETECTION
For DCbug detection, DCatch [38] learns from LCbug detec-
tion approaches and shares the same theoretical foundation
with them.

ECRacer [39] and DCatch both focus on concurrency bugs
in distributed systems, but their target is different. ECRacer
looks at how application use underlying distributed eventual-
consistency data stores, while DCatch devotes to general
distributed systems, particularly basic infrastructures.

As shown in Section II, syncPerf [4] and PCatch [5]
also have done much work to detect performance bug in

distributed systems. But due to the dynamic method syncPerf
and the artificially designated sink in PCatch, their detection
coverage is greatly restricted.

C. OTHERS
There are also many other effective technologies to analyze
performance problems and concurrent bugs.

1) PERFORMANCE PROBLEM DIAGNOSIS
Many diagnosis tools have been built to not only identify
root causes but also give suggestions about fixing strategies
when some problems are reported. These proposed tools also
can be specified to diagnose certain type of performance
problems. X-ray [40] aims to identify inputs or configuration
entries, and nearly all of which are caused by end users.
StackMine [41] focus on the callstack and use automated
tools to identify certain records correlated with event handlers
that cause performance loss. Yu et al. [42] can help the soft-
ware developer understand how performance problem prop-
agate by using processes detailed system traces to clarify the
performance causality relationship between different compo-
nents of the system. Coz [43] is an all-right profiling tool for
multi-threaded programs, which works on unmodified Linux
binaries and finds out potential optimization opportunity.

Also, many performance diagnosis techniques have
been proposed to solve problems in distributed systems.
They focus on different parts of the distributed systems.
Some [44]–[47] look at identifying the faulty compo-
nents or aim to study faulty interactions that lead to perfor-
mance anomaly. Some [44], [47]–[49], [49]–[51] make full
use of a quantity of run-time traces to clarify the performance
dependency relationship and casual relationship then reason
about performance problems and give a diagnosis report.

All tools above depend on diverse run-time traces, which
is time-consuming and deviates from the our goal that the
efficiency of problem diagnosis.

2) MODEL CHECKING
In distributed systems, verification and model checking are
widely used.

The verification method [52], [53] usually uses some
frameworks verify the distributed system implementations.
Also, there is some exception, like building distributed sys-
tems with verifiable language(e.g. P# [54]). Though the result
accuracy of verification can be perfect (no false positive and
no negative), a long proof tremendously limits the application
and propagation. MACE [55] is such a language with a suite

99132 VOLUME 7, 2019

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

of tools for building and model checking distributed systems.
And MacePC [56] developed on MACE can detect non-
deterministic performance bugs.

Diverse distributed system model checkers have been pro-
posed, such as Demeter [57], MaceMC [58], SAMC [59],
Dbug [60], and MoDist [61]. They usually intercept non-
deterministic distributed system events and permute their
ordering. Comparing to verification, these methods can get
a better speed and some additional mistakes.

Besides, application of the Happens-Before (HB) model
[38] and performance cascading (may-HB) model [5] can
draw a clear map of multiple threads’ relationships.

VII. CONCLUSION
Synchronization performance bugs widely exist in diverse
distributed systems. As performance problems, they are
imperceptible, which means they need a large workload to
manifest, and generally introduced by resource contention.
To understand this kind of problems better, we conduct a bug
study, extract some findings. Based on our findings, we build
a static synchronization performance bug detection tool. The
evaluation of our detection tool verified our findings. Espe-
cially, to get a better execution and code coverage is the main
reason why we choose static instead of dynamic. The work
in this paper is the start that we fight against synchronization
performance bugs andwe hope it also can provide certain help
for later research work.

REFERENCES
[1] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, ‘‘Understanding and

detecting real-world performance bugs,’’ in Proc. 33rd ACM SIGPLAN
Conf. Program. Lang. Design Implement. (PLDI), Beijing, China, 2012,
pp. 77–88. doi: 10.1145/2254064.2254075.

[2] S. Zaman, B. Adams, and A. E. Hassan, ‘‘A qualitative study on perfor-
mance bugs,’’ in Proc. 9th IEEEWorking Conf. Mining Softw. Repositories
(MSR). Zürich, Switzerland: IEEE Press, Jun. 2012, pp. 199–208. [Online].
Available: http://dl.acm.org/citation.cfm?id=2664446.2664477

[3] L. Song and S. Lu, ‘‘Performance diagnosis for inefficient loops,’’ in Proc.
39th Int. Conf. Softw. Eng. (ICSE). Buenos Aires, Argentina: IEEE Press,
2017, pp. 370–380. doi: 10.1109/ICSE.2017.41.

[4] M. M. Ul Alam, T. Liu, G. Zeng, and A. Muzahid, ‘‘SyncPerf:
Categorizing, detecting, and diagnosing synchronization performance
bugs,’’ in Proc. 12th Eur. Conf. Comput. Syst. (EuroSys),
2017, pp. 298–313. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=3064176.3064186

[5] J. Li, Y. Chen, H. Liu, S. Lu, Y. Zhang, H. S. Gunawi, X. Gu,
X. Lu, and D. Li, ‘‘Pcatch: Automatically detecting performance
cascading bugs in cloud systems,’’ in Proc. 13th EuroSys Conf.
(EuroSys), 2018, pp. 1–14. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=3190508.3190552

[6] G. Chen and P. Stenstrom, ‘‘Critical lock analysis: Diagnosing
critical section bottlenecks in multithreaded applications,’’ in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal. (SC),
Salt Lake City, UT, USA, Nov. 2012, pp. 71-1–71-11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389093

[7] R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu, ‘‘What change history tells
us about thread synchronization,’’ in Proc. ACM 10th Joint Meeting
Found. Softw. Eng. (ESEC/FSE), Bergamo, Italy, 2015, pp. 426–438.
doi: 10.1145/2786805.2786815.

[8] Y. Huang, Z. Cui, L. Chen, W. Zhang, Y. Bao, and M. Chen,
‘‘HaLock: Hardware-assisted lock contention detection in multithreaded
applications,’’ in Proc. ACM 21st Int. Conf. Parallel Archit. Compi-
lation Techn. (PACT), Minneapolis, MN, USA, 2012, pp. 253–262.
doi: 10.1145/2370816.2370854.

[9] X. Liu, J. Mellor-Crummey, and M. Fagan, ‘‘A new approach for per-
formance analysis of openMP programs,’’ in Proc. 27th Int. ACM Conf.
Int. Conf. Supercomput. (ICS), Eugene, OR, USA, 2013, pp. 69–80.
doi: 10.1145/2464996.2465433.

[10] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield, ‘‘Analyzing lock
contention in multithreaded applications,’’ in Proc. 15th ACM SIGPLAN
Symp. Principles Pract. Parallel Program. (PPoPP), 2010, pp. 269–280,
Bangalore, India. doi: 10.1145/1693453.1693489.

[11] T. Yu and M. Pradel, ‘‘SyncProf: Detecting, localizing, and opti-
mizing synchronization bottlenecks,’’ in Proc. ACM 25th Int. Symp.
Softw. Test. Anal. (ISSTA), Saarbrücken, Germany, 2016, pp. 389–400.
doi: 10.1145/2931037.2931070.

[12] L. Song and S. Lu, ‘‘Statistical debugging for real-world performance
problems,’’ in Proc. 2014 ACM Int. Conf. Object Oriented Program.
Syst. Lang. Appl. (OOPSLA), 2014, pp. 561–578. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2660193.2660234

[13] A. Nistor, T. Jiang, and L. Tan, ‘‘Discovering, reporting, and fixing perfor-
mance bugs,’’ in Proc. 10thWork. Conf. Mining Softw. Repositories (MSR).
San Francisco, CA, USA: IEEE Press, 2013, pp. 237–246. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2487085.2487134

[14] H. S. Gunawi, V. Martin, A. D. Satria, M. Hao, T. Leesatapornwongsa,
T. Patana-Anake, T. Do, J. Adityatama, K. J. Eliazar, A. Laksono,
and J. F. Lukman, ‘‘What bugs live in the cloud? A study of
3000+ issues in cloud systems,’’ in Proc. ACM Symp. Cloud Comput.
(SOCC), 2014, pp. 1–14. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2670979.2670986

[15] Main Page—Walawiki. [Online]. Available: http://wala.sourceforge.
net/wiki/index.php/Main_Page

[16] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, ‘‘CARAMEL: Detect-
ing and fixing performance problems that have non-intrusive fixes,’’ in
Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng. (ICSE), May 2015,
pp. 902–912. [Online]. Available: http://ieeexplore.ieee.org/document/
7194636/

[17] Y. Liu, C. Xu, and S.-C. Cheung, ‘‘Characterizing and detecting per-
formance bugs for smartphone applications,’’ in Proc. ACM 36th Int.
Conf. Softw. Eng. (ICSE), Hyderabad, India, 2014, pp. 1013–1024.
doi: 10.1145/2568225.2568229.

[18] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues, ‘‘A study of
the internal and external effects of concurrency bugs,’’ in Proc.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun./Jul. 2010,
pp. 221–230. [Online]. Available: http://ieeexplore.ieee.org/document/
5544315/

[19] S. Lu, S. Park, E. Seo, and Y. Zhou, ‘‘Learning from mistakes:
A comprehensive study on real world concurrency bug characteris-
tics,’’ in Proc. ACM 13th Int. Conf. Architectural Support Program.
Lang. Oper. Syst. (ASPLOS), Seattle, WA, USA, 2008, pp. 329–339.
doi: 10.1145/1346281.1346323.

[20] S. Li, H. Zhou, H. Lin, T. Xiao, H. Lin, W. Lin, and T. Xie,
‘‘A characteristic study on failures of production distributed data-parallel
programs,’’ in Proc. Int. Conf. Softw. Eng. (ICSE). San Francisco,
CA, USA: IEEE Press, May 2013, pp. 963–972. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486921

[21] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin, W. Chen, and
L. Zhou, ‘‘Nondeterminism inMapReduce considered harmful? An empir-
ical study on non-commutative aggregators in MapReduce programs,’’ in
Proc. Companion ACM 36th Int. Conf. Softw. Eng. (ICSE), Hyderabad,
India, 2014, pp. 44–53. doi: 10.1145/2591062.2591177.

[22] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and G. Sevitsky,
‘‘Finding low-utility data structures,’’ in Proc. 31st ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI), Toronto, ON, Canada, 2010,
pp. 174–186. doi: 10.1145/1806596.1806617.

[23] K. Nguyen and G. Xu, ‘‘Cachetor: Detecting cacheable data to
remove bloat,’’ in Proc. ACM 9th Joint Meeting Found. Softw.
Eng. (ESEC/FSE), Saint Petersburg, Russia, 2013, pp. 268–278.
doi: 10.1145/2491411.2491416.

[24] T. Liu, C. Tian, Z. Hu, and E. D. Berger, ‘‘PREDATOR: Predictive false
sharing detection,’’ in Proc. 19th ACM SIGPLAN Symp. Princ. Prac-
tice Parallel Program. (PPoPP), Orlando, FL, USA, 2014, pp. 3–14.
doi: 10.1145/2555243.2555244.

[25] E. Altman, M. Arnold, S. Fink, and N. Mitchell, ‘‘Performance analysis
of idle programs,’’ in Proc. ACM Int. Conf. Object Oriented Program.
Syst. Lang. Appl. (OOPSLA), Reno/Tahoe, NV, USA, 2010, pp. 739–753.
doi: 10.1145/1869459.1869519.

VOLUME 7, 2019 99133

http://dx.doi.org/10.1145/2254064.2254075
http://dx.doi.org/10.1109/ICSE.2017.41
http://dx.doi.org/10.1145/2786805.2786815
http://dx.doi.org/10.1145/2370816.2370854
http://dx.doi.org/10.1145/2464996.2465433
http://dx.doi.org/10.1145/1693453.1693489
http://dx.doi.org/10.1145/2931037.2931070
http://dx.doi.org/10.1145/2568225.2568229
http://dx.doi.org/10.1145/1346281.1346323
http://dx.doi.org/10.1145/2591062.2591177
http://dx.doi.org/10.1145/1806596.1806617
http://dx.doi.org/10.1145/2491411.2491416
http://dx.doi.org/10.1145/2555243.2555244
http://dx.doi.org/10.1145/1869459.1869519

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

[26] A. Nistor, L. Song, D. Marinov, and S. Lu, ‘‘Toddler: Detect-
ing performance problems via similar memory-access patterns,’’ in
Proc. IEEE Int. Conf. Softw. Eng. (ICSE), San Francisco, CA,
USA, May 2013, pp. 562–571. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2486788.2486862

[27] X. Xiao, S. Han, D. Zhang, and T. Xie, ‘‘Context-sensitive delta inference
for identifying workload-dependent performance bottlenecks,’’ in Proc.
ACM Int. Symp. Softw. Test. Anal. (ISSTA), 2013, p. 90. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2483760.2483784

[28] O. Olivo, I. Dillig, and C. Lin, ‘‘Static detection of asymptotic perfor-
mance bugs in collection traversals,’’ in Proc. 36th ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI), 2015, pp. 369–378. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2737924.2737966

[29] B. Kasikci, C. Zamfir, and G. Candea, ‘‘Data races vs. data race bugs:
Telling the difference with portend,’’ in Proc. 17th Int. Conf. Architec-
tural Support Program. Lang. Oper. Syst. (ASPLOS), London, U.K., 2012,
pp. 185–198. doi: 10.1145/2150976.2150997.

[30] R. H. B. Netzer and B. P. Miller, ‘‘Improving the accuracy of data
race detection,’’ in Proc. 3rd ACM SIGPLAN Symp. Princ. Pract. Par-
allel Program. (PPOPP), Williamsburg, VA, USA, 1991, pp. 133–144.
doi: 10.1145/109625.109640.

[31] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
‘‘Eraser: A dynamic data race detector for multi-threaded programs,’’ in
Proc. 16th ACM Symp. Oper. Syst. Princ. (SOSP), Saint-Malo, France,
2015, pp. 27–37. doi: 10.1145/268998.266641.

[32] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy, ‘‘Detect-
ing and surviving data races using complementary schedules,’’ in Proc.
23rd ACM Symp. Oper. Syst. Principles (SOSP), Cascais, Portugal, 2011,
pp. 369–384. doi: 10.1145/2043556.2043590.

[33] C. Flanagan, C. Flanagan, and S. N. Freund, ‘‘Atomizer: A dynamic atom-
icity checker for multithreaded programs,’’ in Proc. 31st ACM SIGPLAN-
SIGACT Symp. Princ. Program. Lang. (POPL), Venice, Italy, 2004,
pp. 256–267. doi: 10.1145/964001.964023.

[34] S. Lu, J. Tucek, F. Qin, andY. Zhou, ‘‘AVIO:Detecting atomicity violations
via access interleaving invariants,’’ in Proc. ACM 12th Int. Conf. Architec-
tural Support Program. Lang. Oper. Syst. (ASPLOS), San Jose, CA, USA,
2006, pp. 37–48. doi: 10.1145/1168857.1168864.

[35] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin, ‘‘2ndStrike: Toward
manifesting hidden concurrency typestate bugs,’’ in Proc. ACM 16th Int.
Conf. Architectural Support Program. Lang. Oper. Syst. (ASPLOS), New-
port Beach, CA, USA, 2011, pp. 239–250. doi: 10.1145/1950365.1950394.

[36] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng, ‘‘Do i
use the wrong definition?: DeFuse: Definition-use invariants for detect-
ing concurrency and sequential bugs,’’ in Proc. ACM Int. Conf. Object
Oriented Program. Syst. Lang. Appl. (OOPSLA), Reno/Tahoe, NV, USA,
2010, pp. 160–174. doi: 10.1145/1869459.1869474.

[37] W. Zhang, C. Sun, and S. Lu, ‘‘ConMem: Detecting severe concurrency
bugs through an effect-oriented approach,’’ in Proc. ACM 15th Ed. ASP-
LOS Architectural Support Program. Lang. Oper. Syst. (ASPLOS), Pitts-
burgh, PA, USA, 2010, pp. 179–192. doi: 10.1145/1736020.1736041.

[38] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian,
‘‘DCatch: Automatically detecting distributed concurrency bugs in cloud
systems,’’ in Proc. 22nd Int. Conf. Architectural Support Program.
Lang. Oper. Syst. (ASPLOS), 2017, pp. 677–691. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3037697.3037735

[39] L. Brutschy, D. Dimitrov, P. Müller, and M. Vechev, ‘‘Serializability for
eventual consistency: Criterion, analysis, and applications,’’ in Proc. 44th
ACMSIGPLAN Symp. Princ. Program. Lang. (POPL), Paris, France, 2017,
pp. 458–472. doi: 10.1145/3009837.3009895.

[40] M. Attariyan, M. Chow, and J. Flinn, ‘‘X-ray: Automating root-cause
diagnosis of performance anomalies in production software,’’ in Proc.
10th USENIX Conf. Oper. Syst. Design Implement. (OSDI). Hollywood,
CA, USA: USENIX Association, 2012, pp. 307–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387910

[41] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, ‘‘Performance debugging in
the large via miningmillions of stack traces,’’ inProc. 34th Int. Conf. Softw.
Eng. (ICSE), Zürich, Switzerland, 2012, pp. 145–155. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337241

[42] X. Yu, S. Han, D. Zhang, and T. Xie, ‘‘Comprehending performance from
real-world execution traces: A device-driver case,’’ in Proc. ACM 19th Int.
Conf. Architectural Support Program. Lang. Oper. Syst. (ASPLOS), Salt
Lake City, UT, USA, 2014, pp. 193–206. doi: 10.1145/2541940.2541968.

[43] C. Curtsinger and E. D. Berger, ‘‘Coz: Finding code that counts with causal
profiling,’’ in Proc. 25th Symp. Oper. Syst. Principles (SOSP), Monterey,
CA, USA, 2015, pp. 184–197. doi: 10.1145/2815400.2815409.

[44] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen, ‘‘Performance debugging for distributed systems of black
boxes,’’ in Proc. 19th ACM Symp. Oper. Syst. Principles (SOSP), Bolton
Landing, NY, USA, 2003, pp. 74–89. doi: 10.1145/945445.945454.

[45] R. Fonseca, M. J. Freedman, and G. Porter, ‘‘Experiences with tracing
causality in networked services,’’ in Internet Netw. Manage. Conf. Res.
Enterprise Netw. (INM/WREN), vol. 10, 2010, p. 7.

[46] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan, ‘‘Black-box problem
diagnosis in parallel file systems,’’ in Proc. 8th USENIX Conf. File Storage
Technol. (FAST), San Jose, CA, USA, 2010, p. 4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855511.1855515

[47] W. Xu, L. Huang, A. Fox, D. Patterson, andM. I. Jordan, ‘‘Detecting large-
scale system problems by mining console logs,’’ in Proc. ACM SIGOPS
22nd Symp. Oper. Syst. Principles (SOSP), Big Sky, MT, USA, 2009,
pp. 117–132. doi: 10.1145/1629575.1629587.

[48] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, ‘‘The mys-
tery machine: End-to-end performance analysis of large-scale Internet
services,’’ in Proc. 11th USENIX Conf. Oper. Syst. Design Implement.
(OSDI), Broomfield, CO, USA, 2014, pp. 217–231. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2685048.2685066

[49] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, ‘‘Non-intrusive
performance profiling for entire software stacks based on the flow recon-
struction principle,’’ in Proc. 12th USENIX Conf. Oper. Syst. Design
Implement. (OSDI), Savannah, GA, USA, 2016, pp. 603–618. [Online].
Available: http://dl.acm.org/citation.cfm?id=3026877.3026924

[50] J. Mace, R. Roelke, and R. Fonseca, ‘‘Pivot tracing: Dynamic causal
monitoring for distributed systems,’’ in Proc. ACM 25th Symp. Oper.
Syst. Principles (SOSP), Monterey, CA, USA, 2018, pp. 378–393.
doi: 10.1145/2815400.2815415.

[51] J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, ‘‘Visual, log-based
causal tracing for performance debugging of MapReduce systems,’’ in
Proc. IEEE 30th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2010,
pp. 795–80. doi: 10.1109/ICDCS.2010.63.

[52] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno,
M. L. Roberts, S. Setty, and B. Zill, ‘‘IronFleet: Proving practical
distributed systems correct,’’ in Proc. ACM 25th Symp. Oper.
Syst. Principles (SOSP), Monterey, CA, USA, 2015, pp. 1–17.
doi: 10.1145/2815400.2815428.

[53] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. Anderson, ‘‘Verdi: A framework for implementing and formally ver-
ifying distributed systems,’’ in Proc. 36th ACM SIGPLAN Conf. Program.
Lang. Design Implement. (PLDI), Portland, OR, USA, 2015, pp. 357–368.
doi: 10.1145/2737924.2737958.

[54] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey,
‘‘P: Safe asynchronous event-driven programming,’’ in Proc. 34th Proc.
ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI), Seattle,
WA, USA, Jun. 2013, pp. 321–332. doi: 10.1145/2491956.2462184.

[55] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat,
‘‘Mace: Language support for building distributed systems,’’ in Proc. 28th
ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI),
San Diego, CA, USA, Jun. 2007, pp. 179–188.
doi: 10.1145/1250734.1250755.

[56] C. Killian, K. Nagaraj, S. Pervez, R. Braud, J. W. Anderson, and R. Jhala,
‘‘Finding latent performance bugs in systems implementations,’’ in Proc.
18th ACM SIGSOFT Int. Symp. Found. Softw. Eng. (FSE), Santa Fe, NM,
USA, Nov. 2010, pp. 17–26. doi: 10.1145/1882291.1882297.

[57] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang, ‘‘Practical
software model checking via dynamic interface reduction,’’ in Proc. 23rd
ACM Symp. Operating Syst. Princ. (SOSP), Cascais, Portugal, Oct. 2011,
pp. 265–278. doi: 10.1145/2043556.2043582.

[58] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat, ‘‘Life, death,
and the critical transition: Finding liveness bugs in systems code,’’
in Proc. 4th USENIX Conf. Netw. Syst. Design Implement. (NSDI),
Cambridge, MA, USA, Apr. 2007, p. 18. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1973430.1973448

[59] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S. Gunawi,
‘‘SAMC: Semantic-aware model checking for fast discovery of deep bugs
in cloud systems,’’ in Proc. 11th USENIX Conf. Operating Syst. Design
Implement., Broomfield, CO, USA, Oct. 2014, pp. 399–414. [Online].
Available: http://dl.acm.org/citation.cfm?id=2685048.2685080

99134 VOLUME 7, 2019

http://dx.doi.org/10.1145/2150976.2150997
http://dx.doi.org/10.1145/109625.109640
http://dx.doi.org/10.1145/268998.266641
http://dx.doi.org/10.1145/2043556.2043590
http://dx.doi.org/10.1145/964001.964023
http://dx.doi.org/10.1145/1168857.1168864
http://dx.doi.org/10.1145/1950365.1950394
http://dx.doi.org/10.1145/1869459.1869474
http://dx.doi.org/10.1145/1736020.1736041
http://dx.doi.org/10.1145/3009837.3009895
http://dx.doi.org/10.1145/2541940.2541968
http://dx.doi.org/10.1145/2815400.2815409
http://dx.doi.org/10.1145/945445.945454
http://dx.doi.org/10.1145/1629575.1629587
http://dx.doi.org/10.1145/2815400.2815415
http://dx.doi.org/10.1109/ICDCS.2010.63
http://dx.doi.org/10.1145/2815400.2815428
http://dx.doi.org/10.1145/2737924.2737958
http://dx.doi.org/10.1145/2491956.2462184
http://dx.doi.org/10.1145/1250734.1250755
http://dx.doi.org/10.1145/1882291.1882297
http://dx.doi.org/10.1145/2043556.2043582

C. Zhang et al.: Understanding and Statically Detecting Synchronization Performance Bugs

[60] J. Simsa, R. Bryant, and G. Gibson, ‘‘dBug: Systematic evaluation of
distributed systems,’’ in Proc. 5th Int. Conf. Syst. Softw. Verification
(SSV), Voncouver, BC, Canada, Oct. 2010, p. 3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1929004.1929007

[61] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou, ‘‘MODIST: Transparentmodel checking of unmod-
ified distributed systems,’’ in Proc. 6th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), Boston, MA, USA, Apr. 2009, pp. 213–228. [Online].
Available: http://dl.acm.org/citation.cfm?id=1558977.1558992

CHEN ZHANG is currently pursuing the bach-
elor’s degree with the College of Computer,
National University of Defense Technology
(NUDT). His research interests include distributed
systems and computer networks.

JIAXIN LI received the Ph.D. degree in computer
science and technology from the National Uni-
versity of Defense Technology (NUDT), in 2018,
where he is currently an Associate Professor with
the College of Computer. His research interests
include distributed systems, and computer net-
works and communications.

DONGSHENG LI received the Ph.D. degree
in computer science and technology from the
National University of Defense Technology
(NUDT), in 2005, where he is currently a Professor
and a Ph.D. Supervisor with the College of Com-
puter. His research interests include distributed
systems, cloud computing, and big data process-
ing. He received the Chinese National Excellent
Doctoral Dissertation, in 2008.

XICHENG LU is currently a Professor and a Ph.D.
Supervisor with the College of Computer, National
University of Defense Technology (NUDT). He
has been a member of the Chinese Academy of
Engineering, since 1999. His research interests
include parallel and distributed processing, and
computer networks.

VOLUME 7, 2019 99135

	INTRODUCTION
	CHARACTERISTICS STUDY
	STATIC DETECTION

	BUG STUDY
	METHODOLOGY
	ROOT CAUSE ANALYSIS
	TIME-CONSUMING OPERATION
	NESTED LOOP
	RECURSIVE CALL
	HIGH FREQUENCY LOCK

	FINDINGS
	FURTHER DISCUSSION

	SYNCHRONIZATION PERFORMANCE BUG DETECTION
	CRITICAL SECTION IDENTIFICATION
	LOOP IDENTIFICATION
	INNER LOOP IDENTIFICATION
	EXPENSIVE LOOP IDENTIFICATION
	TIME-CONSUMING OPERATION ANALYSIS
	NESTED LOOP ANALYSIS
	RECURSIVE CALL IDENTIFICATION

	FURTHER FALSE POSITIVE PRUNING

	IMPLEMENTATION
	EVALUATION
	BENCHMARK
	EXPERIMENTAL SETUP
	EVALUATED APPLICATION

	RESULTS
	FURTHER EVALUATION
	PERFORMANCE OVERHEAD

	RELATED WORK
	BUG STUDY
	PERFORMANCE BUG STUDY
	DISTRIBUTED SYSTEM BUG STUDY

	BUG DETECTION
	PERFORMANCE BUG DETECTION
	LCbug DETECTION
	DCbug DETECTION

	OTHERS
	PERFORMANCE PROBLEM DIAGNOSIS
	MODEL CHECKING

	CONCLUSION
	REFERENCES
	Biographies
	CHEN ZHANG
	JIAXIN LI
	DONGSHENG LI
	XICHENG LU

