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ABSTRACT Estimation of the noise power spectral density (PSD) plays a critical role in most existing single-
channel speech enhancement algorithms. In this paper, we present a novel noise PSD tracking algorithm,
which employs a log-spectral power minimum mean square error (MMSE) estimator. This method updates
the noise PSD estimate by performing a temporal recursive averaging of log-spectral MMSE estimate
of the current noise power to reduce the risk of speech leakage into noise estimate. A smoothing parameter
used in the recursive operation is adjusted by speech presence probability (SPP). In this method, a spectral
nonlinear weighting function is derived to estimate the noise spectral power which depends on the a priori
and the a posteriori signal-to-noise ratio (SNR). An extensive performance comparison has been carried
out with several state-of-the-art noise tracking algorithms, i.e., Minimum Statistics (MS), modified minima
controlled recursive averaging algorithm (MCRA-2), MMSE-based method, and SPP-based method. It is
clear from experimental results that the proposed algorithm exhibits more excellent noise tracking capability
under various nonstationary noise environments and SNR levels. When employed in a speech enhancement
framework, improved speech enhancement performance in terms of the segmental SNR (segSNR) improve-
ments and three objective composite metrics is observed.

INDEX TERMS Acoustic noise, speech enhancement, noise PSD estimation, log-spectral, minimum mean-
square error (MMSE) estimator, speech presence probability.

I. INTRODUCTION

Speech is one of the most important forms of human
communication, which plays an important role in many appli-
cations such as mobile communications, digital hearing aids
and human-computer interactions. However, in practical sce-
narios, clean speech signals will always, to some extent,
be degraded by surrounding interference noises. In most
situations, the interfering noise is usually nonstationary.
The nonstationary interference noise will bring great chal-
lenges to speech signal processing applications. In human-
computer interaction (e.g., automatic speech recognition), for
instance, the degraded speech leads to a significant decrease
of recognition accuracy. As a consequence, noise suppres-
sion technology [1]-[7] is of great importance, the aim of
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which is to suppress the disturbing noise component in
noisy speech while preserving the original quality and intel-
ligibility of clean speech. Single-channel noise suppression
approaches [8]-[10] based on short-time Fourier transform
(STFT, a sequence of Fourier transforms of a windowed
signal) are often used to achieve this.

Noise power spectral density (PSD) is defined as the noise
power per unit bandwidth. Noise PSD estimation is a crucial
component in designing single-channel speech enhancement
algorithms [11]-[17]. An underestimation of the noise PSD
leads to an unnecessary amount of residual noise in the
enhanced signal, while an overestimation introduces speech
distortions, which may result in a loss of speech intelli-
gibility. A conventional noise PSD method is to exploit a
voice activity detector (VAD) [18]-[21] to identify speech
pause periods, and then the noise PSD estimate is updated
during speech absence. Although this is effective for highly
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stationary noise, it often fails at low SNR (where SNR is the
ratio of signal power to the noise power) scenarios, especially
when the noise is nonstationary. In past decades, a significant
amount of work has been done to solve this problem. In gen-
eral, most state-of-the-art methods for noise PSD estimation
can be divided into four main groups [22], i.e., Minimum
Statistics (MS) methods [23], [24], time-recursive averag-
ing methods [25]-[27], subspace decomposition algorithms
[28], [29], and other techniques based on Bayesian estimation
principle [30]-[32].

In the first group of algorithms, the noise PSD is tracked
via Minimum Statistics (MS) algorithms [23], [24], which
rely on two assumptions that the noise and the speech are
statistically independent, and that the power of the noisy
speech signal frequently decays to the power level of the noise
signal (e.g., in speech pauses). The noise PSD is estimated
as the tracked minimum of the smoothed noisy spectrum
within a finite time window. The expectation of the minima
is smaller than the mean value of the spectral power, thus a
bias compensation factor is derived to correct the bias [24].
Since MS method will result in speech leakage into noise
PSD estimate when the time window is short, a sufficiently
long time window is required to reduce the amount of speech
leakage. Unfortunately, if the time window is chosen too long,
fast noise level changes will be tracked with a rather large
delay. Thus a trade-off is necessary, a typical size of window
is in the order of 1 s. As the minimum value in a window is
used, the noise PSD will always be underestimated or tracked
with a large delay in case of increasing noise power level.

In the second category of algorithms, the noise PSD
estimate is updated by recursively averaging the previous
estimated noise PSD and the current noisy speech power
spectrum, in which the smoothing factors are controlled by
the speech presence probability (SPP). The representative
methods of this class include minima controlled recursive
averaging (MCRA) method [25] and its two modifications,
i.e., improved MCRA (IMCRA) [26] and MCRA-2 [27]. The
main distinction between MCRA, IMCRA and MCRA-2 is
reflected in the way the SPP is calculated. In MCRA, the SPP
is determined by the ratio of the smoothed noisy speech power
spectrum to its local minimum obtained by minimum statis-
tics technique [24], and for that reason this method is referred
as the minima controlled recursive averaging (MCRA) algo-
rithm. The presence of speech is detected when the ratio is
above a certain fixed threshold. MCRA-2 employs the con-
tinuous spectral minimum-tracking algorithm [33] to obtain
the minimum and is not constrained within a search window.
Moreover, unlike the fixed threshold in MCRA, frequency-
dependent thresholds are used in MCRA-2 to calculate the
SPP. In IMCRA method, the SPP estimation is based on a
Gaussian statistical model and obtained from the ratio of the
likelihood functions of speech presence and speech absence.
The derivation of IMCRA method involves two iterations of
smoothing and minimum tracking. The first iteration provides
a simple speech-presence detector for each frequency bin,
while the second iteration of smoothing excludes high-energy
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speech components, thus allowing for smaller windows in
minima tracking. However, since these approaches are pro-
posed on the basis of the MS principle [24], they still show
a considerable tracking delay in case of the increasing noise
power level.

In the third family of methods, the decomposed noise-only
subspace is used to update the noise PSD estimation.
A famous subspace decomposition based approach, called
subspace noise tracking (SNT) algorithm was proposed
in [28]. The SNT is based on eigenvalue decompositions
of correlation matrices that are constructed using time
series of noisy discrete Fourier transform (DFT) coefficients.
An improvement of this method, called minimum subspace
noise tracking (MSNT) algorithm [29], exploits the limited-
rank structure of the clean speech signal. MSNT combines
the subspace structure and the minimum statistics tracking
to estimate noise PSD. In comparison to, e.g., MS-based
noise PSD trackers, the subspace decomposition based noise
tracking algorithms allow for the faster noise tracking for
many nonstationary noises [34]. However, the improved noise
tracking performance of the subspace based noise trackers is
accompanied by a significant increase in the computational
complexity.

In the fourth group of methods, the derivation of the noise
spectral power estimators is based on Bayesian estimation
principle and assumed statistical model. In [30], [31], min-
imum mean square error (MMSE) estimator derived by min-
imizing the mean square error (MSE) of spectral power is
used to estimate the instantaneous noise power and a first-
order recursive smoothing technique is employed to update
the noise PSD estimate. However, for noise power estimation,
the simple bias compensation in [30] is motivated heuris-
tically, whereas the bias compensation in [31] is derived
rigorously based on assumed signal model. The SPP-based
approach [32] is a further modification of the MMSE-based
approach [31]. In the SPP-based method, the noise PSD
estimate is obtained by the sum of the previous noise PSD
estimate weighted by the conditional probability of speech
presence and the periodogram of noisy speech weighted by
the conditional probability of speech absence. These MMSE
algorithms [31], [32] achieve fast noise spectral power track-
ing and are demonstrated to have a more robust noise estima-
tion performance [34]. More recently, a model-based noise
PSD estimation method was reported in [35] and [36], where
different codebooks were trained for different noise and
speech types. This model-based method [35] performs best
for noise-types for which the algorithm is trained. However,
since the number of models increases with the product of
the codebook, this might lead to an intractable computational
complexity.

Although the spectral mean-square error (MSE) distortion
metric is mathematically tractable and also leads to good
results in [30]-[32], it appears to be not perceptually mean-
ingful. In fact, human ear has a logarithmic response to sound
(whether speech or noise) intensity changes [37] and it is
argued that a distortion metric based on the MSE of the log-
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spectral is perceptually more relevant, and more appropriate
for speech processing [38]. Based on such facts it was pre-
sented in [3] and [13] to estimate speech spectral amplitude
by minimizing the log-spectral MSE. Recently, an algorithm
was presented in [39] to track the speech and noise in the log-
power spectral domain. Motivated by these facts, the noise
is naturally regarded as ‘“‘target” signal (not speech signal
in [3], [13]), and we therefore exploit this distortion metric for
noise estimation and develop a noise spectral power estimator
that minimizes the MSE of log-spectral power. Moreover,
speech estimators [3], [13] focus on reconstructing the instan-
taneous speech spectral amplitude, while noise tracking algo-
rithms are interested in estimating the noise PSD (expectation
of instantaneous noise spectral power). In this algorithm,
the noise PSD estimation is obtained by recursively aver-
aging the log-spectral MMSE estimate of the current noise
power. The smoothing parameter is adjusted by the speech
presence probability determined by the smoothed posteriori
SNR. For the noise spectral power estimate, we derive a
nonlinear spectral weighting function, which relies on the a
priori and the a posteriori SNR. In this work, we consider
the standard “‘decision-directed” (DD) estimator for the a
priori SNR estimation. Experimental results show that for
different nonstationary noises the proposed noise PSD tracker
achieves a more accurate and rapid noise PSD estimate, and a
better speech enhancement performance in terms of both the
segmental SNR [22], [40] and three composite measures [41].
The remainder of this paper is organized as follows.
Section II explains the used notation, and the signal model
employed to derive the noise spectral power estimator.
In Section III, we propose to employ Log-spectral MMSE
estimate of noise power to recursively update the noise
PSD estimate, which reduces the probability of speech leak-
age. Section IV gives a detailed derivation of the proposed
Log-spectral MMSE noise power estimator. In Section V,
we evaluate the performance of the proposed algorithm
and make comparisons with four state-of-the-art methods,
MS [24], MCRA-2 [27], MMSE-based algorithm [31], and
SPP-based algorithm [32], in terms of tracking performance,
and overall performance in a noise suppression framework.
Conclusions are finally presented in Section VI.

Il. SIGNAL MODEL AND NOTATION

Let y(n) denotes a noisy speech signal, which consists of a
clean speech signal x(n) contaminated with additive noise
signal d(n), i.e., y(n) = x(n) + d(n), where n is the discrete
time index. The noisy signal y(n) is segmented into over-
lapping frames, followed by windowing with a square-root-
Hann window. Subsequently, each frame is transformed by
applying the short-time Fourier transform (STFT). The noisy
speech signal in the time-frequency domain is expressed as

YU, k)y=X(,k)+ D(,k) (1)

where X (I, k) and D(l, k) represent the complex STFT coef-
ficients of the clean speech and additive noise term, respec-
tively. Furthermore, / is the frame index and & is the frequency
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index. It is assumed that X(/, k) and D(/, k) are condition-
ally independent across time and frequency, and obey zero-
mean complex Gaussian distributions with model parameters
E{IX(,KPP} = al k) and E{IDU, K} = ra(l, k),
respectively, where E {-} denotes the statistical expectation
operator. A (I, k) and A4(l, k) denote the PSDs (or variances)
of the speech and the noise signals, respectively. In the sequel,
the indexes / and k will be omitted for simplicity, whenever
it is possible. The STFT coefficients can be represented in
terms of their amplitude and phase, denoted as ¥ = Ré,
X = AéP and D = Ne/. We will call N2 the (instantaneous)
noise spectral power.

Further, we use the terms a priori SNR & and the a posteriori
SNR y, defined as

A R?

X
= —_— d = —, 2
& y and y py )

respectively. A hat symbol is used to denote the estimated
quantities of variables, e.g., N2 is an estimator of noise spec-
tral power N2.

IlIl. TEMPORAL RECURSIVE SMOOTHING OF NOISE
LOG-SPECTRAL POWER MMSE ESTIMATION

The temporal-recursive averaging algorithms, MCRA [25],
IMCRA [26], obtain the noise PSD estimation by recursively
smoothing the noisy speech spectral power R? [32], i.e.,

A (LK) =an, KAg (L —1,k) 4+ (1 —an, k)R> (1, k).
3)

As the minimum values in a long time window are used to
avoid speech leakage into noise PSD estimate, these methods
show a slow response to fast increases in noise level [42].
In this paper, the noise PSD is estimated by recursively
averaging a (instantaneous) noise spectral power estimator
N? instead of noisy spectral power R2, given by

Aa (LK) =an( kAg (U —1,k) + (1 —an(, k)N (1, k).
“)

Compared to recursive averaging technique with fixed
smoothing factor, SPP-based recursive averaging technique
is a more general and widely used method. Similar to MCRA
and IMCRA, the time-varying smoothing parameter oy (I, k)
is also adjusted by an estimate p(/, k) of SPP

an( k) =an+ (1 —an)p (. k) &)

where o,(0 < «, < 1) is a smoothing parameter which
usually has a value range of [0.8, 0.95] as suggested in [22]
and is empirically set to 0.8 in this work. Utilizing noise
spectral power estimate NZ instead of noisy spectral power R”
has the benefit of reducing the amount of speech component
leaking into noise PSD estimate. Therefore, an extremely
accurate SPP estimator is not necessary. For N2 the Log-
spectral MMSE estimator of the noise power N2 is exploited.
Different from IMCRA, this work uses a simpler estimation
method for p(/, k) that allows for faster tracking.
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A. SPEECH PRESENCE PROBABILITY ESTIMATION

Since the noise PSD estimate is updated with noise spectral
power estimate N2, the risk of speech leakage is reduced.
Accordingly, there is no need to design an extremely accurate
SPP estimator. In this work, we employ a very simple SPP
estimator, which depends on the smoothed posteriori SNR.
Considering the correlation of speech presence in the neigh-
boring time-frequency points [43], we calculate the smoothed
posteriori SNR over a time-frequency region

Al Ak

U =25 3y =D ©)

j=0 i=—Ak

where M = (2Ak + 1) - (Al + 1) is the number of neghboring
time-frequency points which are averaged. Ak and Al denote
number of the adjacent frequency bins and successive time
frames, respectively, set to 1 and 2. Then, the smoothed
posteriori SNR is compared against a threshold to decide
speech present regions as follows

it 7, k) > (k)

I(l, k) =1 speech present
else
I(l,k) =0 speech absent
end 7)

where W(k) is the threshold, which controls the trade-off
between the update speed of noise PSD estimation and the
amount of speech leakage. The higher the value, the faster
the tracking speed, but the higher the risk of speech leakage.
The speech presence probability /(/, k) is smoothed over time
using the following first-order recursion:

P k) = appd — 1, k) + (1 — apI (L, k) 8)

where o,(0 < & < 1) is a smoothing parameter, set to 0.2 in
our experiment as adopted in [25]. The smoothing parame-
ter ay is obtained by substituting (8) into (5). Here, using
averaged priori SNR reduces random fluctuations in p(/, k),
at the same time fast react to changing noise levels is achieved
(minimum tracking is abandoned). Additionally, similar to
MCRA-2, we exploit frequency-dependent thresholds W (k)
instead of the fixed threshold in MCRA method, set to

5 1 <k<K/8
W(k)=16.5 K/8 <k <3K/8
8 3K/8 <k <K/2+1.

where K is the window length as well as STFT length.

IV. LOG-SPECTRAL POWER MMSE ESTIMATOR

A. DERIVATION OF THE WEIGHTING FUNCTION

To estimate the noise PSD, in this section we derive an
estimator of the noise spectral power N2, which minimizes
the MSE of the log-spectral power, given by

szexp (E{logN2|Y}>. ©)
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In [3] the MMSE estimator of the speech spectral magnitude
in logarithmic domain was derived by exploiting moment
generating function. Similar to [3], the moment generating
function of log N2 given Y, i.e., logN?|Y, is exploited to
derive the noise spectral power estimator according to (9).
Let P = log N2, then the moment generating function of P
given Y takes the form

Mpyy (1) = E{exp (uP) Y}
= E{N*"|Y}. (10)
By exploiting the first derivation of Mpjy (u) at © = O,
the estimator in (9) is obtained as

N? =exp {E {10gN2|Y}} = exp [M;’IY (n) |M:0]. (11)

Therefore, we need to evaluate the moment generating func-
tion Mpjy (1) and then to obtain the estimator N 2 using (11).
By applying Bayes’ theorem, Mp|y (1) can be expressed as

+o0 27 2u % ,9 ,9d9d
Mpyy (1) = = +O{0 2: S¥in, O (v, 6) "
o Jo fX1|n,0)f(n,0)d0dn

Under the assumed complex Gaussian distributions,
f (Y|n,0) and f (n, 0) are given by

1 Y — ne?|?
f¥n.0) = — CXP{—A—} (13)
6) = — " (14)
f@n0) = — exp{—)\d}.

By substituting (13) and (14) into (12), followed by
using [44, Egs. 8.406.3, 6.631.1, and 9.212.1] we obtain

Mpy (W) =MT (u+ 1) @ (—p, 1; —n) 15)

with A = ﬁ*ﬁi’d and where I" (-) is the gamma function, ® (-)

is the confluent hypergeometric function [44, Eq. 9.210.1],
and 7 satisfies the relation

__r
s+

The first derivative of Mpjy (1) at © = 0in (11) is then
given by

n (16)

L Mppy 2) lymo =~ 1) o

du T du "=
—_—

part 1

d
+ an {C'(e + D} =0

part 2
+ d {O(—p, 1; —m)} | amn
d/J, s, 1 n lL=0
part 3

According to the basic derivative rules, the part 1 in (17) is
given by

d
m {A*} =0 = log 2. (18)

VOLUME 7, 2019



Q. Zhang et al.: Fast Nonstationary Noise Tracking

IEEE Access

For the derivation of the part 2, we can obtain the derivative
of I' (u + 1) through the derivative of log I" (i + 1). Exploit-
ing the series expansion of logI" (i + 1) [44, Eq. 8.342.1],
we obtain
d d

—Iu+Dh=Tw+1D_—logl'(p+1) =-c (19

du du
where c is the Eulers constant. For the computation of part 3,
utilizing [44, Eq. 9.210.1] and derivative rules, it can be
written as

d o (= 1
Zp e p L= o = = ]; — @
Now, summing the results of (18), (19) and (20), and followed
by utilizing (11), (16) and [44, Egs. 8.211.1 8.214.1], the Log-
spectral MMSE estimator of noise power is obtained as

. 1 \? 0 et
N? = <—) exp {/ —dt}Rz. 1)

14§ e !
The noise spectral power estimation is obtained from the
noisy speech through a multiplicative nonlinear weighting
function which depends only on the a priori and the a pos-

teriori SNR. The weighting function is defined as

N2 1 \?2 0 ot
Gy = - = <—> exp / —dt (22)
R 1+ & e !

After estimating noise spectral power N2 with (21), the noise
PSD estimation is updated via (4) and (5) as

Aa(l, k) = p(l, k)hg(l — 1, k)
+(1=p(L, k) {anid(l—l, o +(1 —a,,)GNzRZ]
(23)

B. PRIORI SNR ESTIMATION FOR NOISE PSD ESTIMATION
It is observed from (22) that the weighting function takes the
priori and posteriori SNRs as parameters. As these parameters
are unknown in practice, it is necessary to make an estima-
tion. We have known that noise PSD tracking performance
depends on the particular priori SNR estimator used. For the
a priori SNR estimate, the DD approach and the ML approach
are proposed in [2]. The DD approach is based on a heuristic
knowledge and is widely accepted in literature. In this work,
the standard DD priori SNR estimator is exploited to estimate
the a priori SNR used for noise PSD estimate:

. A%l —1,k)
§(l, k) = max|ans ————
gl —1,k)
R%(1, k)
+(1 — ans) [A— - 1] ,Emin] (24)
Ad(l —1,k)
where &qin = —15 dB is the minimum value allowed for the

priori SNR &, ays is the smoothing factor, id is the estimated
noise PSD, and A2(I — 1, k) is the speech spectral power esti-
mate obtained in the previous frame. The smoothing factor
ans typically lies in the range [0.9, 0.99] [45] and is set to
0.98 in this work.
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C. SAFETY NET

Moreover, as in MMSE-based algorithm [31], in order to
ensure that the noise PSD estimator continues to work prop-
erly in the extreme situation where the noise power level
abruptly changes from one level to another, an effective and
simple safety-net presented in [42] is adopted. In the safety-
net, some memory resources are required to store the pre-
vious 0.8 seconds of the smoothed periodogram S(I, k) of
noisy speech |Y(/, k)|2, where S(/, k) is given by S(I, k) =
0.1 S(I — 1,k) + 0.9|Y(l, k)|>. The minima Spin(l, k) of
S(l, k) is used as a reference value. Then, the noise PSD
estimation )A»d(l , k) obtained with (23) is checked whether
it fulfills the condition: A4(/, k)/Smin(l, k) < 1.5. If that
happens, the final noise PSD estimation is updated by

5l k) = max [1.5 Sin(L, k), N2(1 k)].

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, several comparisons and experiments are car-
ried out to evaluate the performance of noise PSD trackers
and demonstrate the superiority of proposed algorithm over
other four state-of-the-art methods. Performance evaluations
are conducted on the NOIZEUS database, which contains
30 IEEE sentences produced by three female and three male
speakers [22], [46]. Clean speech signals are corrupted by
five distinct types of noise sources at five input SNR levels,
namely -5, 0, 5, 10, and 15 dB. The noise sources are mod-
ulated white Gaussian noise, babble noise from NOISEX-
92 database [47], passing car noise, passing train noise, and
traffic noise. The modulated white Gaussian noise is obtained
through modulating white Gaussian noise by the following
function

f(n) =0.140.5sin (Znnf ’;’;’d - rr) (25)
s

where n is the discrete-time index, f; the sampling frequency,
and f,0g = 0.2 Hz denotes the modulation frequency. The
passing car noise, passing train noise, and traffic noise are
taken from Freesound database [48]. Speech and noise sig-
nals used in our experiments are sampled at a frequency of
fs = 8 kHz. All noise PSD trackers employ a overlapping
square-root-Hann window for spectral analysis and synthesis.
The window length as well as the DFT length is K = 256
samples (32 ms), and the amount of the overlap between
successive frames is 50%.

In section V-A, we first compare the noise estimation accu-
racy of all noise trackers in five different noise environments.
Subsequently, in section V-B the noise PSD estimators are
integrated into a noise suppression framework and the speech
enhancement performance is compared. Finally, the compu-
tational complexity is analyzed in section V-C.

A. NOISE ESTIMATION ACCURACY

The noise estimation accuracy is measured using the aver-
aged logarithmic spectral error distance between the esti-
mated noise PSD id(l , k) and the ideal reference noise PSD
Ma(l, k). The ideal reference noise PSD A;([, k) is calculated

80989



IEEE Access

Q. Zhang et al.: Fast Nonstationary Noise Tracking

@ (b)
0.5 T T T -

-0.5 3
10
0 -
— —10p
g
— =20
©
2 30
— — — = noise periodogram : = = = noise periodogram
3 —40f — ] deal =30y m— ] deal "
5 - = = MS I === MS u
= =50 = = = MCRA-2 ' = = = MCRA-2 '
MMSE —40f, MMSE .
—601 s SPP | s SPP !
70 ) ) s Proposed ~50 I == Proposed )
2 4 6 8 0 2 ) 4 6 8
time [s] time [s]
FIGURE 1. (a) Clean speech signal. (b) Speech signal contaminated with modulated Gaussian white noise at an overall input SNR
of 0 dB. (c) Comparison between proposed approach and the four state-of-the-art noise estimators for a single frequency bin k = 36.
(d) The estimated noise PSDs averaged over all frequency bins.
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FIGURE 2. (a) Clean speech signal. (b) Speech signal degraded by passing train noise at an overall input SNR of 0 dB. (c) Comparison

between proposed method and the four state-of-the-art noise estimators for a single frequency bin k = 36. (d) The estimated noise
PSDs averaged over all frequency bins.
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FIGURE 3. (a) Clean speech signal. (b) Speech signal degraded by modulated Gaussian white noise at an overall input SNR of 0 dB.
(c) Comparison between proposed approach and the four state-of-the-art noise trackers for a single frequency bin k = 36. (d) The
estimated noise PSDs averaged over all frequency bins.
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noise, (c) passing car noise, (d) passing train noise, (e) traffic noise.
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TABLE 1. Performance comparison in terms of segSNR [dB].

noise source input SNR noisy MS [24] MCRA-2 MMSE- SPP-based Prop.
[dB] [27] based [32]
[31]

-5 -5.72 -5.05 -4.83 -4.65 -3.76 -2.67

modulated 0 -3.12 -2.68 -2.32 -2.19 -1.11 -0.50
white noise 5 -1.72 0.08 0.50 0.85 1.75 2.39
10 3.01 322 3.48 3.86 4.69 4.88

15 6.57 6.79 6.36 7.34 7.96 8.07

-5 -6.92 -5.02 -4.67 -4.06 -4.27 -3.86

0 -4.58 -2.68 -2.23 -1.89 -2.05 -1.88

babble noise 5 -1.87 0.07 0.59 0.85 0.60 0.77
10 1.26 3.22 3.56 3.89 3.73 3.64

15 4.8 6.58 6.27 7.15 7.00 6.72

-5 -5.41 -3.39 -3.68 -1.41 -1.37 -0.38

passing car 0 -2.89 -0.91 -1.16 0.80 0.94 1.76
noise 5 0.07 1.84 1.59 3.14 3.46 3.85
10 3.31 4.87 4.26 5.80 6.20 6.22

15 6.83 7.99 6.90 8.91 9.30 9.10

-5 -3.72 -2.27 -2.56 -2.27 -1.49 -0.74

. . 0 -0.99 0.46 0.08 0.41 1.27 1.92
e train 5 1.94 3.36 2.70 3.16 4.09 4.60
10 5.15 6.47 5.27 6.13 7.22 7.23

15 8.32 9.52 7.55 9.22 10.02 10.06

-5 -5.08 -3.20 -3.66 -3.38 -2.23 -1.40

0 -2.49 -0.55 -1.09 -0.65 0.46 1.13

traffic noise 5 0.53 242 1.66 2.25 3.48 3.80
10 3.87 5.63 4.58 5.38 6.74 6.77

15 7.59 9.08 7.27 8.97 9.72 9.88

wo Spech estimatr m o follons (281 14
FFT [4] Windowing K
10 ra(l, k)
LogErr LK Z Z o810 |:5»d(l, k)iH @B en

Noise PSD I I-frame |
estimation : delay :
AR
S(k) .
X(-1k)

Estimation of
a priori SNR

FIGURE 5. Block diagram of the standard DFT-based single channel
speech enhancement scheme.

by employing a recursive temporal smoothing of noise peri-
odograms [28], [34] i.e.,

Aa(l,k) = agha(l = 1K) + (1 —aq) DA K (26)

with a smoothing parameter oy = 0.9 [28], [34]. The aver-
aged logarithmic spectral error distance (LogErr) is defined
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k=1 I=1

where L and K indicate the number of signal-frames and fre-
quency bins respectively. The lower LogErr value, the better
the tracking capability.

To illustrate the noise tracking performance of the pro-
posed method in comparison to four competing trackers,
we consider an example where three speech signals obtained
from one female and two male speakers are concatenated and
is degraded by modulated white Gaussian noise at an overall
SNR of 0 dB. In Fig. 1, the estimated noise PSDs are shown
for proposed method and four competing noise estimators
together with ideal reference noise PSD. The clean and noisy
speech signals are shown in Fig. 1(a) and Fig. 1(b), respec-
tively. Fig. 1(c) exhibits the results of noise PSD estimation at
frequency bin k = 36. This frequency bin index corresponds
to the DFT band centered around 1125 Hz. Fig. 1(d) displays
the estimated noise PSDs averaged over all frequency bins.
It is observed that the proposed noise estimator tracks the
increases and decreases in noise level much better than other
four approaches. As expected, MS is not capable of tracking
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FIGURE 8. Performance comparison in terms of C,,,. (a) modulated Gaussian white noise with f,,,4 = 0.2 Hz, (b) babble noise,

(c) passing car noise, (d) passing train noise, (e) traffic noise.

the changes when noise PSD increases. MCRA-2 is based on
the minimum-tracking principle and therefore also shows a
relatively large delay in tracking the increasing noise PSD.
Compared to MS and MCRA-2, the MMSE and SPP algo-
rithms perform better, but still have a tracking delay when
the noise PSD rises.

In Fig. 2, we show a second example where the same
speech signal is corrupted by noise originating from passing
train at an overall SNR of 0 dB. It is observed again that
the proposed method exhibits better performance of handling
both fast increases and decreases in noise level than other
four reference approaches. For a rapidly increasing noise
PSD, i.e., in the time-interval from 0-4 seconds, the pro-
posed algorithm has a shortest tracking delay. When the noise
is decreasing, e.g., in the time-span from 5 till 8 seconds,
the proposed method, MS, MMSE and SPP exhibit similar
performance. Compared to MS, the MCRA-2 algorithm is
slightly better in tracking the increasing noise level, but it
has the tendency to overestimate the noise PSD when the
noise is decreasing. Fig. 3 shows another example where four
different speech signals spoken by two male and two female
speakers are concatenated and is corrupted by modulated
white noise at an SNR of 0 dB. It is evident from Fig. 3 that the
proposed noise tracker shows a better tracking performance
than other competing methods.

The quantitative evaluation results of noise tracking per-
formance of all noise PSD estimators are given in Fig. 4 in
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TABLE 2. Comparison of the computational complexity in terms of
normalized processing time.

MS | MCRA-2
0.67 0.51

MMSE
0.38

Approach
Proc. Time

SPP | Prop.
0.21 1

terms of LogErr measure. It can be observed from the results
in Fig. 4 that the proposed algorithm clearly outperforms
other four competing methods in terms of LogErr for almost
all noise sources and SNR levels, except for babble noise at
10 and 15 dB input SNR, where MMSE performs slightly bet-
ter. As the proposed method can quickly update the noise PSD
estimate, the superiority in terms of tracking performance is
obvious especially at low SNR conditions. However, with the
increase of SNR, the proposed tracker updates noise estimate
quickly which may lead to overestimation of noise, and shows
an increase in terms of LogErr.

B. NOISE SUPPRESSION PERFORMANCE

In order to investigate the impact of noise PSD trackers on
noise suppression performance, the estimated noise PSDs are
then incorporated into a DFT domain-based single channel
speech enhancement system. The block diagram of the stan-
dard DFT-based single channel speech enhancement frame-
work is depicted in Fig. 5. For the speech estimator, this work
employs an MMSE amplitude estimator, which is derived
under the assumption that the speech DFT coefficients
follow a generalized-Gamma distribution with distribution
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FIGURE 9. Waveforms of enhanced speech signal obtained using different noise estimators. (a) clean speech signal. (b) noisy speech signal
corrupted by traffic noise at an overall input SNR of 5 dB. The enhanced speech signals with: (c) MS, (d) MCRA-2 method, () MMSE-based method,
(f) SPP-based algorithm, (h) Proposed algorithm. (g) shows the ideal noise PSD and estimated noise PSDs obtained with different noise trackers.

parameters y = 1 and v = 0.6 [4]. In this speech enhance-
ment system, we estimate the priori SNR using the decision-
directed approach with a smoothing parameter «gg = 0.98.

The speech enhancement performance is evaluated in
terms of the segSNR metric and three composite objective
metrics. The segmental SNR (segSNR) is defined as fol-
lows [22], [40]

segSNR
L-1 N 2
1 IN
=~ @ { 10log;, Lo ¥ (N £ 1)
L N . 2
=0 » (x(lN +n) — x(IN + n))

n=0
(28)
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where L and N denote the number of frames in the
signal and the frame length, respectively, and ®(x) =
min{max(x, —10), 35}. For the segSNR computation, only
the signal segments containing speech are taken into
account. The segSNR values are limited in the range
of [—10dB, 35dB] thereby avoiding the need for a
speech/silence detector. The segSNR measure results
obtained with different noise PSD tracking algorithms are
given in Table 1. It is found that the proposed noise
PSD tracker yields larger segSNR improvements than all
other algorithms for almost each noise source except for
babble noise. For babble noise, MMSE obtains slightly
higher segSNR values in case of input SNR more than
5 dB. However, the segSNR measure, which is widely
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FIGURE 10. Spectrograms of (a) clean speech signal and (b) noisy speech signal corrupted by traffic noise at an overall input SNR of 5 dB. The
spectrograms of enhanced speech signals using: (c) MS, (d) MCRA-2 method, () MMSE-based method, (f) SPP-based algorithm (g) Proposed

algorithm.

used to evaluate noise reduction performance of speech
enhancement algorithms, yields a poor correlation coeffi-
cients with subjective measure. For this, three composite
objective metrics are employed to evaluate the enhancement
performance.

The three composite objective metrics are Ciig, Cpak,
and Cy,, which are obtained by linearly combining
existing widely used measures, segSNR, weighted-slope
spectral (WSS) distance [49], perceptual evaluation of
speech quality (PESQ) [50], log likelihood ration (LLR) and
Itakura-Saito (IS) distance measure [51]. The three composite

80996

metrics are given below [41]:

Cyig = 3.093 — 1.029LLR + 0.603PESQ — 0.009WSS

Chak = 1.634 + 0.478PESQ—0.007WSS+0.063segSNR

Covi = 1.59440.805PESQ—0.512LLR —0.007WSS

(29)

Csig» Cpax and C,,; are designed to provide the high cor-
relations with three subjective measures, i.e., Mean opinion
score (MOS) predictor of speech distortion (SIG), MOS pre-
dictor of background intrusiveness (BAK), and MOS predic-
tor of overall speech quality (OVRL).
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The scores of three composite objective metrics obtained
with all noise PSD estimation methods are shown in Figs. 6-8.
Since the three composite measures provide very high corre-
lation coefficients with subjective measures, especially Coy;
measure has the highest correlation with the real subjective
test, the evaluation results of composite measures are more
important than segSNR measure. From the scores in Figs.
6-8, we observe that the proposed noise estimator is clearly
superior to other noise tracking methods for all noise types
and SNR conditions, except for babble noise at 15 dB.

Figs. 9 and 10 present the enhanced waveforms and
spectrograms obtained with different noise estimators for a
speech example which is degraded by the traffic noise at
5 dB input SNR. In this way, the enhancement performance
of speech enhancement algorithm combined with different
noise estimators can be seen more directly. Fig. 9(a)-(b) and
Fig. 10(a)-(b) show waveforms and spectrograms of clean
speech and noisy speech, respectively. Fig. 9(c)-(f) display
the enhanced speech waveforms obtained using four com-
peting noise trackers, and the respective spectrograms are
shown in Fig. 10(c)-(f). Fig. 9(h) and Fig. 10(g) show the
enhanced waveform and spectrogram using proposed algo-
rithm, respectively. Additionally, Fig. 9(g) also shows the
estimated noise PSDs together with ideal reference noise
PSD. Clearly, the proposed method performs better than other
four competing algorithms. In general, the proposed approach
shows a good tradeoff between noise suppression and speech
distortion as it obtains higher segSNR and higher three com-
posite measures.

C. COMPUTATIONAL COMPLEXITY ANALYSIS

To investigate the computational complexity of proposed
algorithm and other four competing algorithms, we com-
pare the execution time of Matlab implementations of these
algorithms in this section [32]. The Matlab implementations
of these methods run on a PC with a Intel Core 17-7700
processor. Table 2 shows the execution times of all five
methods, normalized by the execution time of the proposed
method. It is observed that the proposed algorithm exhibits
a higher computational complexity than other methods. The
computational complexity of the proposed method is mainly
determined by the computation of the nonlinear weighting
function (22), as exponential operation of the special expo-
nential integral function needs to be computed.

However, in a practical system, all nonlinear weighting
functions can be computed offline for the relevant range of
the parameters and stored in a lookup table. In this way,
the noise PSD tracker can be implemented with significantly
reduced execution time (normalized execution time: 0.52).
The computation complexity is not an issue then. In addition,
since more and more computational power will be available
with improved technology, this problem will be easily solved.
Notice, that the numbers as given in Table 2 are rough esti-
mates since there will be some changes depending on the
implementation details. The number in Table 2 reflects all
processing steps of the proposed algorithm.

VOLUME 7, 2019

VI. CONCLUSION
A crucial component of single-channel speech enhancement
algorithms is the estimation of noise PSD. This paper devel-
ops a novel algorithm for noise PSD estimation. In this
method, a nonlinear weighting function of the log-spectral
power MMSE estimator is derived to estimate instantaneous
noise spectral power, which depends on the a priori and the
a posteriori SNR. Then, the noise PSD estimation is updated
by performing a temporal recursive averaging of log-spectral
MMSE estimation of the current noise power. The smoothing
parameter in the temporal recursive smoothing operation is
adjusted by a simple estimate of speech presence probability.
Experimental results of LogErr measure demonstrate that
the proposed algorithm achieves faster and more accu-
rate noise PSD tracking. Additionally, evaluation results of
segSNR and three composite measures (Csig, Cpak, Covi)
show that the enhancement performance of proposed method
is clearly superior to other competing methods in the pres-
ence of various noise sources and levels. The overall perfor-
mance improvements of the proposed noise tracker come with
an increase of computational complexity, which is mainly
determined by the nonlinear weighting function computa-
tion. However, in a practical system, all weighting func-
tion can be evaluated offline and stored in a lookup table,
thus the proposed method can be implemented with a sig-
nificant decrease in computational complexity. As a result,
the proposed method leads to a better tradeoff between the
computational complexity and the overall performance. The
techniques developed in this paper are of importance for
many applications, such as hearing aids, speaker identifica-
tion, human-computer interactions and many others.
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