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ABSTRACT Cache-enabled heterogeneous networks (HetNets) have recently emerged as an attractive solu-
tion to meet the exponentially increasing demand on mobile data traffic. However, the power consumption
and the backhaul limitation of small base stations (SBSs) have become bottlenecks to deployHetNets. How to
relieve the burden of backhauls via wireless caching and enable the HetNets to operate in an energy-efficient
way are still open issues. Aiming to minimize the power consumption while guaranteeing QoS requirements
of users, in this paper, we address the problem of joint user association (UA) and resource allocation (RA) for
coded cache-enabled HetNets. First, based on the many-to-many matching game between the virtual SBSs
and users (VSU), we propose a low-complexity joint UA and power allocation (PA) algorithm (JUPVA).
Then, considering the unequal BA, we design a three-phase optimization algorithm (JURVA), which makes a
joint decision onUA, PA, and BA iteratively. The simulation results demonstrate that the proposed algorithms
yield significant performance improvement in terms of power consumption.

INDEX TERMS Coded caching, HetNets, many-to-many matching, resource allocation, user association.

I. INTRODUCTION
With the proliferation of mobile devices and the prosperity
of content providers, recent years have witnessed a dra-
matic increase in mobile multimedia services. The latest
Cisco VNI report predicts that mobile multimedia traffic will
account for 80% of overall mobile data traffic in 2021 [1].
Deploying heterogeneous networks (HetNets), which are
composed of small cell base stations (SBSs) and macro base
stations (MBSs), is a thriving solution to cope with this
challenge [2]. However, due to the dense deployment of
SBSs and the unprecedented data traffic growth, the base
stations (BSs) consume 60%-80% of the total power in
cellular networks, whichwill directly cause both serious envi-
ronment problems and sharp rising energy costs for network
operators [3]. Hence, both industry and academia advocate
‘‘green communications’’ that work towards reducing the
power consumption of HetNets [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Chunlong He.

In HetNets, even if users are uniformly distributed in
geography, traditional UA schemes based on signal-to-
interference-plus noise ratio (SINR) may still lead to an
extreme load imbalance. In this case, the resources of under-
loaded BSs cannot be fully utilized, while the users asso-
ciated to the overloaded BSs may not be well served due
to the insufficient resources [5]. Furthermore, the down-
load rate of a user is generally proportional to the wireless
resources that it occupies [6]. Thus, to fully utilize the system
resources and improve network performance, the UA and RA
strategies have to be jointly considered as a central prob-
lem, and directly affect the transmission power consumption
of BSs.

Accompanied with HetNets, caching contents at BSs is
regarded as a promising innovation to improve the user expe-
rience and significantly alleviate the backhaul congestion of
SBSs [7]. Uncoded caching systems are usually designed
to maximize the file hit rate or the proportion of files
received by the users in [8], [9]. Compared to the uncoded
caching, the coded caching provides higher probability of
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re-constructing the content at the desired receiver [10]–[12],
which results in a decrease of data transmission and power
consumption of backhauls. Actually, coded caching is well
suited to emerging HetNets which consist of a dense deploy-
ment of local-coverage SBSs with high data rates, along
with sparsely distributed, large-coverage MBS. For example,
authors in [13], [14] put forward a maximum-distance separa-
ble (MDS) encoded caching scheme to achieve energy-saving
edge computing in HetNets.

Although many works have been devoted to the optimiza-
tion of UA, RA and caching in HetNets, these aspects are
usually studied separately and rarely jointly considered. Real-
izing the great potentials and open issues, we address the
joint optimization problem of UA and RA in cache enabled
HetNets, which involves the following challenges:
• To improve the utilization efficiency of wireless
resource, the UA and RA strategies which are coupled
together should be prudently studied.

• Owing to the dense deployment of SBSs, it is significant
to minimize the power consumption of BSs and back-
hauls between SBSs and MBSs, while ensuring the QoS
of users.

• Many previous works indicate that coded caching pro-
vides a more feasible solution than uncoded scheme.
Hence, such a caching strategy should be jointly con-
sidered in future cache-enabled HetNets.

To address these challenges, we build a comprehensive model
which captures the key components of edge caching in
HetNets and the total power costs.

In this paper, we consider a downlink MDS encoded cache
enabled HetNets in which theMBS both assigns the SBSs and
allocates wireless resources to a set of users. To the best of our
knowledge, this is the first work that takes into account the
multi-association, bandwidth and power allocation, to mini-
mize the power consumption of HetNets by the aid of many-
to-manymatching game. Themain contributions of this paper
are summarized as follows:
• We model the system power consumption of HetNets
into four parts: transmission power, static power, cache
power and backhaul power. Then, we formulate a joint
problem to optimize UA and RA, and aim at minimizing
the total power consumption.

• Joint UA and PA with Virtual SBSs and users (VSU)-
based matching Algorithm (JUPVA): Based on the
assumption that the available bandwidth of each SBS is
subdivided equally among its associated users, the orig-
inal problem is transformed into UA and PA subprob-
lems. Then, we develop the virtual SBSs and users
(VSU)-based matching game to reformulate the UA
subproblem. Finally, given the SBSs-users mapping
information, the PA subproblem is amenable to Linear
programming (LP) techniques to allocate power for
users.

• Joint UA and RA with VSU-based matching algorithm
(JURVA): To solve the original power consumption min-
imization (PCM) problem, considering the unequal BA,

we introduce a simplified BA strategy and thus obtain
the joint UA and RA optimization with VSU-based
many to many matching. We design a centralized three-
phase iterative algorithm (JURVA) that determines the
UA, BA and PA successively.

• Simulation results show that the proposed JUPVA and
JURVA yield significant performance improvement in
terms of power consumption after a small number of
iterations. It is also shown that the proposed algorithms
converge to a two-sided swap stable matching.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III describes system
model and problem formulation. In section IV, a joint opti-
mization method is proposed to obtain the solution by
dividing the PCM problem into two subproblems, where
the VSU-based many to many matching and LP are also
discussed. Section V formulates the PCM problem as a
three-phase optimization and presents the proposed JURVA.
Simulation results are presented in Section VI and conclu-
sions are drawn in Section VII.

II. RELATED WORK
Since SBSs are closer to users and usually provide larger
bandwidth than the MBS, caching at the SBSs has attracted
significant attention in HetNets. Compared to the uncoded
caching, the careful placement of coded content in caches
leads to a more significant decrease of the end-to-end delay
and backhaul pressure for the HetNets [11]–[14]. For exam-
ple, [11] and [12] have found the optimal content placement
in all the SBSs by restructuring the contents with MDS codes
to reduce the backhaul rate. Focusing on the content place-
ment phase in HetNets, [13] investigates the tradeoff between
expected backhaul rate and energy consumption. Authors
in [14] jointly consider the coded caching and cooperative
caching issues, and propose a cooperative coded caching
scheme to optimize energy consumption.

The joint optimization of UA and RA policy in cache-
enabled wireless networks has also been widely stud-
ied [15]–[18]. Due to the limited radio resource of BSs,
user’s downlink data rate is seriously affected by the channel
condition and the allocated radio resource. Thus, UA and RA
policies need to be well designed to improve the network
performance in cache enabled HetNets. In [15], a system
utility optimize problem is introducedwhich jointly considers
UA, RA, caching and computing offloading policies. In [16],
a green content caching and mobile UA mechanism is pro-
posed to maximize the number of users requests served by
the SBSs for energy-harvesting enabled HetNets. With given
caching policy, authors [17], [18] jointly optimize UA and
RA for a general HetNet, aiming to improve the network
throughput and the total utility, respectively. However, pre-
vious works [16]–[18] which have jointly designed cache,
UA and RA policies, have not considered the energy con-
sumed by the dense deployment of SBSs.

Of relevance to our work are [13], [14], [19] where they
focused on the optimization of energy consumption for coded
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cache-enabled HetNets. Authors in [13], [14] considered the
caching and backhaul transport power consumption at higher
layers separated from the transmission power of the associ-
ated SBSs. Due to the property of MDS coded caching, users
have potential to associate with multiple SBSs for high-data-
rate service. Thus, the authors in [13] mentioned the multi-
UA approach to effectively exploit the advantage of MDS
coded caching, however, the formulated energy optimization
problem only focused on the caching and backhaul energy
consumption. In another work [14], Jia et al. designed a
cooperative content delivery scheme to share the coded file
packets in the SBS cluster, i.e., each user can be served
by one SBS, and other SBSs in the same cluster can assist
the local SBS, by sending the coded packets to the local
SBS via the link. However, the energy consumption [14] is
only includes content caching, cooperative content transmis-
sion and backhaul content transmission, and the transmission
power of association SBSs is also neglected. Finally, with the
assumption that each popular multimedia file is coded and
distributively stored in multiple energy harvesting enabled
SBSs, X. Huang et al. investigated on-grid energy reduction
problem which jointly consider UA and RA schemes [19].
However, they only focused on the transmission power of
BSs, ignored the caching and backhaul power consumption.
Therefore, the potential of reducing power consumption was
not fully exploited in [13], [14], [19].

Last but not least, matching theory has been widely
researched on resource allocation in future wireless net-
works [20]–[28]. A concise introduction and survey on
matching theory applications was provided in [20]. Several
works [21]–[24] have explored matching to improve the per-
formance of different scenarios. Zhang et al. [25] derived a
joint optimal carrier matching and PA scheme to minimize
the end-to-end distortion in video transmission applications.
Matching-based schemes for user pairing have been devel-
oped for NOMA communication scenarios in [26], aiming
to improve the sum rate. In order to solve the RA prob-
lem for device-to-device (D2D) communications underlaying
cellular networks, [27] proposed a many-to-many match-
ing algorithm for obtaining a sub-optimal solution to max-
imize the system sum rate. In [28], the matching theory is
adopted to maximize the cumulative sum of the mean opinion
score (MOS). Compared with the above matching methods,
we comprehensively propose a novel VSU-based matching
algorithm to solve the multi-UA problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we firstly introduce the system model of the
MDS coded cache-enabled HetNets, and then formulate a
problem to minimize the power consumption.

To preserve the readability of the paper, some major nota-
tions are summarized in Table 1.

A. SYSTEM MODEL
We consider a downlink HetNets as shown in Fig. 1. The
MBS also known as the control BS, provides the coverage

TABLE 1. Main notations.

FIGURE 1. System model of the cache-enabled HetNets.

and supports efficient radio resource control procedures,
while SBSs, known as data BSs, provide high rate data
transmission.

1) TRANSMISSION MODEL
As shown in Fig. 1, a two-tier macrocell-small cell HetNets
where one MBS is overlaid by SBSs. Let K and U denote
the set of K SBSs and the set of U users, respectively. The
MBS has access to a library of N files, and each file F =
{F1, . . . ,FN } has the same size of B (bits). Each SBS is
equipped with a cache device which has a capacity of C bits.
A SBS can be viewed as a relay and connects to the MBS
via backhaul links. We assume that each user u ∈ U can
be served simultaneously by qu(1 ≤ qu ≤ K ) SBSs. If the
requested file is not completely retrieved from the associated
SBSs, the missing proportion of the file has to be transported
from the MBS via the backhaul links.

The SINR of the signal received by user u ∈ U from the
serving SBS k ∈ K is given by

SINRku =
Pkugku∑

v∈K ,v6=k
Pvugvu + σ 2 (1)
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FIGURE 2. Illustration of MDS encoded caching in SBSs.

where Pku is the transmit power from SBS k to user u, and
gku denotes the channel gain from SBS k to user u. σ 2 is
the variance of additive white Gaussian noise.

∑
v∈K ,v 6=k

Pvugvu

denotes the inter-SBSs interference Ivu of user u received
from all other nonserving SBSs. The achievable transmit rate
from SBS k to user u is given by:

Rku = Wkulog2(1+ SINRku) (2)

where Wku denotes the bandwidth that SBS k allocates to
user u.

2) CACHE MODEL
We apply the MDS-coded caching scheme at SBSs. The
cached content in different SBSs needs to be coordinated.
In contrast to the case of caching uncoded fragments, the ben-
efit from MDS codes is that the encoded packets are all
independent from each other so that a certain number of
randomly encoded packets will be sufficient to recover the
file.

An illustration of the MDS coding scheme is shown
in Fig. 2. Each file Fj(1 ≤ j ≤ N ) is split into n frag-

ments, i.e., Fj =
{
f j1, . . . , f

j
n

}
. The n fragments are encoded

into Ej packets
{
ej1, . . . , e

j
Ej

}
[13]. In the placement phase,

an encoded packet ejEj is sent to each SBS independently.
Each SBS stores equal fraction of file Fj. Let xku be the
association variable between user u and SBS k . If user u is
associated with SBS k , xku = 1; otherwise xku = 0. In the
delivery phase, a user requesting the file Fj contacts qu SBSs,
and qu =

∑
k∈K

xku. we define qjk as the cached fraction

of the file Fj at each SBS k , i.e., the user u can receive a
total of

∑
k∈K

xkuqjk fraction of the requested file Fj from its

associated
∑
k∈K

xku SBSs. If
∑
k∈K

xkuqjk ≥ 1, the user u can

recover the requested file Fj according to the property of
MDS coding. Otherwise, the MBS has to send the remaining
fraction (1−

∑
k∈K

xkuqjk ) of the requested file to the SBSs.

For example, the user u4 in Fig. 1 requests the file Fj from∑
k∈K

xku = 3 SBSs, i.e., SBS2, SBS3 and SBS4. The user

receives at most a fraction 3qjk of the encoded file Fj.
If 3qjk < 1, the MBS has to send the missing (1 − 3qjk )
fraction of the requested file to the associated SBSs via
backhaul links. After receiving the residual fraction of the
file from the MBS, the associated SBSs act as relays, and
send the missing encoded packets of the requested file to the
user.

3) POWER CONSUMPTION MODEL
The system power consumption can be divided into four
parts: transmission power, caching power, static power and
backhaul power, which will be detailed in the following.

The transmission power of SBSs is determined by UA
indicators xku and PA variables Pku, which is given by

Ptr =
∑
k∈K

∑
u∈U

Pkuxku (3)

Moreover, the maximum transmission power of each SBS
should not exceed its power constraint Pmaxk .

The caching power of each SBS is proportional to the cache
power efficiency wkca(watt/bit), the caching power1 of all
SBSs is given by

Pca = C ·
∑
k∈K

wkca (4)

The static power Pkst is the power consumed by SBS k
for baseband processing and cooling. The static power of all
SBSs is given by

Pst =
∑
k∈K

Pkst (5)

The power consumption of backhaul links is given by

Pbh = eMBS · R0 ·
∑
u∈U

max(1−
∑
k∈K

xkuqjk , 0) (6)

where R0 denotes the minimum rate requirement of the user,
eMBS (J/bit) is the backhaul energy consumption efficiency,
and qjk indicates the fraction of the requested file Fj. Only if
caching at SBSs reduces the amount of encoded packets to
be transmitted from MBS to SBSs, the backhaul power Pbh
can be reduced. Under the assumption that the cache fraction
qjk is fixed, Pbh mainly depends on

∑
k∈K

xku, i.e., the number

of SBSs each user u is connected. That is to say, the UA
indicators xku determine the backhaul power consumption as
well.

Based on the analysis above, the power consumption of the
network is given by

Ptotal = Ptr + Pca + Pst + Pbh (7)

1Since we focus on the joint UA and RA optimization problem under
given MDS coded caching strategy, where cache updating is not involved,
the energy consumption for content updating in the caches can be ignored.
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B. PROBLEM FORMULATION
Given that the MDS-coded caching placement is known, our
goal is to minimize the total power consumption by joint
optimization of UA, PA and BA. We formulate a power
consumption minimization (PCM) problem as follows:

min
xku,Pku,Wku

Ptotal (8)

s.t.
∑
k∈K

Rku ≥ R0, ∀u (8a)∑
u∈U

Pkuxku ≤ Pmax
k , ∀k (8b)∑

u∈U

Wkuxku ≤ Wmax
k , ∀k (8c)∑

k∈K

xku ≤ qu, ∀u (8d)

Pku ≥ 0, ∀(k, u) ∈ K × U (8e)

Wku ≥ 0, ∀(k, u) ∈ K × U (8f)

xku ∈ {0, 1} , ∀(k, u) ∈ K × U (8g)

0 ≤ qjk ≤ 1, ∀j ∈ F , k ∈ K (8h)

where (8) guarantees the QoS requirement R0 for each
user. Constraint (8) is the maximum power limit for each
SBS. (8) denotes that the total bandwidth that each SBS
allocates to its associated users cannot exceed its avail-
able bandwidth. (8) states that each user is allowed to be
served by qu(1 ≤ qu ≤ K ) SBSs. (8) and (8) impose non-
negativity constraint on power and bandwidth variables. The
constraint (8) keeps the association indicators xku binary.
(8) limits the cache fraction of the requested file at each SBS.

The discrete nature of user association (i.e., indicators xku)
and the continuous nature of resource assignment (i.e., vari-
ablesPku andWku), lead the problem (8) to aMINLP problem.
This type of problem even in conventional single-association
HetNets is intractable. When it comes to the case of multi-
association systems, due to the superimposition of multiple
SBSs on the same user, the solution of this problem is more
complicated. Therefore, to solve the problem (8), we propose
two heuristic algorithms. In the first method, based on the
assumption that the available bandwidth of a SBS is subdi-
vided equally among its associated users, the original PCM
problem is simplified to the UA and PA subproblems. It’s
found that the two sided matching model is appropriate to
capture the structure of the UA subproblem. Since one user
can be assigned with multiple SBSs and one SBS can serve
multiple users, a many-to-many matching scheme is adopted.
For the second method, under the unequal BA, we propose
a three-phase iterative algorithm that optimizes UA, BA and
PA successively. Based on the characteristic of the BA and PA
subproblems, we adopt bisection and LP to solve the problem.

IV. JOINT OPTIMIZATION OF USER ASSOCIATION
AND POWER ALLOCATION
To reduce the computational complexity, first, we adopt an
equal share strategy to allocate the bandwidth of each SBS.

The problem (8) is transformed into

min
xku,Pku

Ptotal (9)

s.t.
Wk∑

u∈U
xku

log2(1+ SINRku) ≥
R0∑

k∈K
xku
, ∀u (9a)

Wku =
Wk∑

u∈U
xku
, ∀(k, u) ∈ K × U (9b)

(8b), (8c), (8d), (8e), (8f ), (8g), (8h) (9c)

The constraint (8) sets the rate requirement of each user,
i.e., the user u achieves equal rate R0∑

k∈K
xku

from its associ-

ated SBSs. Wmax
k is the available bandwidth of SBS k , and∑

u∈U
xku denotes the number of users served by the SBS k .

(8) denotes that each user u associated with the same SBS k
is allocated with equal bandwidth. The discrete UA decision
xku and the PA variables Pku should be determined by solving
problem (8). Without loss of generality, the output of the
UA decision xku is the prerequisite of the PA variables. The
problem (8) is challenging because the objective is nonconvex
and xku and Pku are mix integer variables. In the following,
we divide (8) into two subproblems, i.e, UA and PA.We resort
to LP andVSU-basedmatching to cope with the two subprob-
lems, respectively.

A. LINEAR PROGRAMMING FOR POWER ALLOCATION
If user association xku is fixed, the first term in the objective
function (8) along with the following four constraints (8),
(8), (8) and (8) forms the SBS transmission power problem
which is independent of backhaul power consumption. Actu-
ally, the backhaul power consumption turns to a constant
due to the given UA indicators xku and cache fraction qjk .
In addition, according to (7), the power consumption of each
SBS k is determined by the dynamic transmission power
consumption Ptr , with Pca and Pst fixed for SBSs. Then,
the reformulation of the PA subproblem for all SBSs can be
rewritten as

min
Pku

∑
k∈K

∑
u∈U

Pkuxku (10)

s.t. c
∑

j∈K ,j 6=k

Pjugju − Pkugku + cσ 2
≤ 0, ∀u (10a)

∑
u∈U

Pkuxku ≤ Pmax
k , ∀k (10b)

Here, constants a, b and c are defined as a =
Wmax
k∑

u∈U
xku

, b =

R0∑
k∈K

xku
, c = (2b/a− 1), respectively. Obviously, (8) is a linear

combination of power variables Pku. (8) and (8) are affine
functions of power variables Pku. Therefore, the problem (8)
is transferred to solving a tractable LP.
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FIGURE 3. Illustration of many to many matching.

B. MANY TO MANY MATCHING GAME FORMULATION
FOR USER ASSOCIATION
Given the resource constraint of each SBS, the UA subprob-
lem is NP-hard as well. The characteristic of the multi-user
association subproblem implies that many-to-many matching
model is appropriate to solve this problem. We define users
in set U and SBSs in setK as two sets of players in this many-
to-many matching relation. In the following, we describe the
method for preference calculation for different players and
then demonstrate the VSU-based swap matching. Finally,
the stability of the proposed VSU-based swap matching algo-
rithm is analyzed.

We assume U and K are two disjoint sets of selfish and
rational players, which aim to maximize their own utilities.
If user u is assigned to SBS k , thenwe say u and k arematched
with each other and a matching pair µ is formed [26]–[29].
The UA subproblem is reformulated as a many-to-many
matching model (Fig. 3) defined as follows [26]–[28]:
Definition 1 (Many-to-Many Matching): A matching µ is

the outcome of the considered user association subproblem
and can be defined as a function from the sets U

⋃
K into the

set of all subsets of U
⋃

K such that every u ∈ U and k ∈ K
satisfy the following constraints:

a) µ (u) ⊆ K;
b) µ (k) ⊆ U ;
c) |µ(u)| ≤ qu,∀u ∈ U
d) |µ(k)| ≤ ∞,∀k ∈ K
e) u ∈ µ(k) if and only if k ∈ µ(u)

where µ (u) is the set of partners for user u and µ (k) is the
set of partners for SBS k under the matching model µ. The
condition a) indicates that each user is matched with a subset
of SBSs; b) implies that each SBS is matched with a subset
of users; conditions c) and d) set the quoto ofµ (u) andµ (k),
respectively. Each user can be associated with up to qu SBSs,
and each SBS can serve multiple users at the same time.

To model the matching µ, the preferences of the players
(i.e., users and SBSs) need to be well defined, which are
described as follows.

1) USER’s PREFERENCES
From the user’s perspective, each user u seeks to maximize its
own utilityVu(k) which is determined by its achieved rateRku.
In order to maximize the total utilities, each user tends to

calculate the preferences over the SBS by ranking the SBS
set depending on the value of their utilities.

2) SBS’s PREFERENCES
From the SBS’s perspective, the preference lists of SBSs
can be computed based on the transmission power that can
provide to it’s associated users. Note that, the preference of
SBS k is based on the benefit Vk (u) (i.e., the reverse of power
cost), i.e., if the SBS k chooses the user u, this user accepts
this SBS if and only if the power consumption is reduced by
this assignment.
Remark 1: The UA subproblem reformulated as many to

many matching game has externalities, also known as peer
effects.
Since each user can be associated with qu SBSs, and each

SBS can be matched with a subset of users, the users rank
the SBSs using their predefined utilities and then form their
preference lists.

According to the equation (2), the preference value Vu(k)
for the user u is a function of the interference from other users.
Due to the interference, the preference value Vu(k) not only
depends on the SBSs they matched with, but relates to other
users. We define this type of matching as the matching game
with externalities [26], where each player has a dynamic pref-
erence list over the opposite set of players. This is different
from the conventional matching games in which players have
fixed preference lists [30]. However, the matching problem
of dynamic quotas motivates us to develop a new scheme that
significantly differs from existing deferred acceptance (DA)
approaches in wireless networks. At first, we introduce the
concept of swap matching, which is defined as follows:
Definition 2 (Swap Matching): For a given pair of asso-

ciation up ∈ µ(ki), uq ∈ µ(kj) in a matching µ, where
up /∈ µ(kj), uq /∈ µ(ki), a swap matching µ

ip
jq =

µ\
{
(ki, up), (kj, uq)

}
∪
{
(ki, uq), (kj, up)

}
can be defined as

up ∈ µ
ip
jq(kj), uq ∈ µ

ip
jq(ki) and up /∈ µ

ip
jq(ki), uq /∈ µ

ip
jq(kj).

In the definition 2, the word ‘‘swap matching’’ has two
transformation forms, i.e., ‘‘swapping’’ two users accessed
to different SBSs or ‘‘switching’’ one user to other avail-
able SBS [28]. For brevity, we use ‘‘swap matching’’ to
characterize all types of ‘‘transfer matching’’ in this paper.
In other words, a swap matching enables users up and uq
to swap one of their matched SBSs, while keeping other
users’ and SBSs’ matchings unchanged. In particular, since
we introduce ‘‘virtual’’ users (SBSs), one of the users (SBSs)
involved in the swap can be a ‘‘virtual’’ user (SBS). However,
due to the players’ selfish interests, players involved in the
swap operation may not be approved. Next, by introducing
‘‘swap blocking pair’’, we are interested to obtain a stable
state, in which there are no players that are not matched to
one another but they all prefer to be partners.
Definition 3 (Swap Blocking Pair): Given a matching µ

and a SBS pair (ki, kj) ∈ K with ki and kj matched in
µ(ki) andµ(kj), respectively. If there exist the user up ∈ µ(ki)
and the user uq ∈ µ(kj) satisfying:
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a)∀x ∈
{
ki, kj, up, uq

}
,Vx(µ

ip
jq) ≥ Vx(µ)

b)∃x ∈
{
ki, kj, up, uq

}
,Vx(µ

ip
jq) > Vx(µ)

the swap matching µipjq is approved. (ki, kj) or (up, uq) is
defined as a swap blocking pair in µ.
The definition 3 implies that the swap operations are exe-

cuted between swap blocking pairs, and the utilities of all the
involved players should not be decreased after swap opera-
tions or at least one player’s utility will increase, i.e., swap
operations allow a given SBS k to swap its matching if and
only if it is beneficial for achieving high utility.

The swap operations are performed within a finite number
of iterations. The user preferences do not change in one
iteration, and each user should rebuild its preference list once
the matching game is over for all users. Thus, the iterative
swap operations continue until no new swap blocking pairs
are required. Since swap matching allows swap operations
after a matching decision has been made, users can update
their preference lists based on the new interference conditions
resulting from other users’ matching. This helps the users to
try for a different SBS kj that may provide lower transmission
power than the current association SBS ki.
Remark 2: The objective is to minimize the total power

consumption for downlink transmission in the network. Since
the centralized scheme assumes the availability of all infor-
mation and calculates the associations centrally, the incen-
tives of the users or SBSs do not need to be considered
separately. During swap operations, the MBS checks whether
the two users (SBSs) can benefit each other by swap their
current matchings. In a nutshell, two arbitrary users (SBSs)
can be arranged by the MBS to form a swap blocking pair
and the externalities are well handled [26].
Consequently, the MBS ensures that the players keep exe-

cuting approved swap operations in order to achieve a stable
state, called as a two-sided swap stable, which is defined as
follows [29]:
Definition 4 (Two-Sided Swap Stable): A matching µ is

two-sided swap stable if there does not exist a swap-blocking
pair (ki, kj).
Proposition 1: The swap matching algorithm is guaranteed

to converge to a pair wise stable matching.
Proof: We prove this proposition by contradiction. Sup-

pose that there exist a user u and a SBS k with u /∈ µ (k) and
k /∈ µ (u) that block our matchingµ, such that both u�kµ (k)
and k�uµ (u) are satisfied simultaneously. If u�kµ (k) is
true, it means that the SBS k must propose to be paired with
the user u in some earlier swap operations. However, at the
same time, both u /∈ µ (k) and k /∈ µ (u) are true. Then,
in the latter swap operations, at the proposal time of SBS k ,
only user u that has a higher utility value than Vk (u) can
be associated to the SBS k which means µ (k)�ku. This
contradicts the initial supposition u�kµ (k). Therefore, there
is no blocking pair in the final matching µ, i.e., µ is stable.

C. THE PROPOSED VSU-BASED MATCHING ALGORITHM
Based on the above definitions, we propose a novel VSU-
based swap matching algorithm to solve the UA subproblem.

Note that, the virtual SBSs and users are named as Vs and Vu,
respectively. The proposed VSU-based matching algorithm is
detailed in Step 1 of Algorithm 1, which consisting of three
steps: initialization phase, VSU-based swap-matching phase,
and final matching phase output.

Algorithm 1 Joint User Association and Power Allocation
With VSU-Based Swap Matching Algorithm (JUPVA)
Step 1: User Association

Step 1.1: Initialization
1) Each user u discovers the SBSs in the vicinity;
2) SBSsK∪Vs and usersU∪Vu are randomlymatched

with each other subject to constraints.
Step 1.2: VSU-based swap-matching phase
In each round, for each matched user up ∈ U ∪ Vu
1) The SBS ki ∈ K ∪ Vs searches for another user

uq ∈ U ∪ Vu\{up} to form a swap-blocking pair (up, uq)
along with up ∈ µ(ki), uq ∈ µ(kj).

2) If µipjq is approved, user up exchange its match ki
with uq for kj, update the current matching state toµ = µipjq

3) Else if there does not exist such a blocking pair, up
keeps it matching state.

4) Repeat step 2 until there is no blocking pair in the
current round, iterations will not stop until no user can form
a swap blocking pair with any other users in a new round.
Step 2: Power Allocation.

Repeat
1) Update the user associationmatrixX by solving the

VSU-based swap matching problem above.
2) Update power level P by solving LP using the

matlab software.
Until convergence

Step 3 :End of algorithm.

Initially, the SBSs and users randomly match with each
other subject to |µ(u)| ≤ qu and |µ(k)| ≤ ∞ [31]. Then, each
user up keeps searching for other users U ∪ Vu\up to check
whether there is a swap-blocking pair, i.e., the swap process
is to keep searching approved swap matchings µipjq among
the players so as to reach a two-sided swap stable matching.
Unlike traditional matching models reformulated to solve
UA subproblem, users (SBSs) involved in swap matchings
may be a virtual user (SBS) in this paper. However, we do
not consider the utilities of Vs and Vu. Therefore, different
from [26], [27], since we introduce Vs and Vu, the degree of
freedom for swap matchings is more extensive, and the swap
space contains: both SBSs and users that belong to potential
swap-blocking pairs are virtual; one of those SBSs (users)
that belongs to potential swap-blocking pairs is virtual; nei-
ther SBSs nor users that belongs to potential swap-blocking
pairs is virtual, i.e., the diversity of potential swap-blocking
pairs keeps searching the lower total power consumption after
each swap operation. Finally, the swap matching operations
terminate when there is no swap blocking pair, and the final
two-sided swap stable state is reached.
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FIGURE 4. Illustration of swap matching operations.

For a better understanding of the VSU-based match-
ing, we show the illustration of swap matching operations
in Fig. 4. Through greedily swap operations among all users
(U ∪ Vu) within infinite domain, the VSU-based matching
algorithm proceeds with reducing the total power consump-
tion from initial random matching. The proposed algorithm
must obey the quoto criterion and guarantee each user’s rate
requirement R0 after each swap operation.
Proposition 2: Starting from the initial randomly associ-

ation state, the proposed VSU-based matching algorithm is
guaranteed to converge to a final matching.

Proof: The proposed VSU-based swap matching is
developed to achieve the two-sided swap stability. Since the
number of SBSs and users in the HetNets are finite, a SBS
cannot have infinite gains, which implies a SBS can carry on
a fixed number of swaps to reach the maximum gain, i.e., the
minimum power consumption. Therefore, the algorithm is
guaranteed to terminate after a finite number of iterations and
the termination occurs when there is no swap blocking pair to
improve his current association, i.e., no user will have desire
to deviate from the current associations. That is, the swap
operation continues if and only if at least one association
(SBS-user matching) is executed. Therefore, in every swap,
if the system power consumption is reduced, eventually,
the process approaches the convergence state as the solution
of the problem exists in the finite domain. Consequently,
after finite number of iterations, the algorithm converges and
terminates.

V. JOINT OPTIMIZATION OF USER ASSOCIATION,
BANDWIDTH ALLOCATION, AND
POWER ALLOCATION
The problem (8) is non-convex with respect to variables
(i.e., Pku and Wku) and is also tightly coupled with UA indi-
cators Xku. Compared with the problem (8), the problem (8)
has a higher computation complexity. To achieve its global
optimal solution, we need to fully search the feasible resource
space along with all possible combinations of UAs. Thus,
even for a centralized system, it may be infeasible to solve the
problem (8) at each association slot. In this section, we pro-
pose a three-phase iterative algorithm (JURVA) to solve the
problem (8). First, by adopting the Lagrange decomposition
dual method, the BA is transformed to a convex optimization
problem, and then solved by bisection algorithm. Second,
we design the iterative algorithm for the joint UA, BA and
PA optimization problem.

A. JOINT OPTIMIZATION OF USER ASSOCIATION AND
BANDWIDTH ALLOCATION
Similar as the assumption in [32], [33], we assume that the
UA is carried out in a large time scale compared to the
change of channel. That is, the channel can be regarded
as almost stationary during the UA and RA period. Thus,
we use the maximum tolerable interference to simplify the
interference value

∑
v∈K ,v 6=k

Pvugvu and assume the interference

experienced by the user u when associated with SBS k as
a constant [32], [34]. With the help of this approximation
method and Lagrange decomposition dual method, the origi-
nal transmission power consumption of all SBSs can be trans-
formed into subproblems that can be independently solved by
each SBS.

Thus, under fixed user association, the original PCM prob-
lem can be transformed to optimize the transmission power
of each SBS individually. For the SBS k ∈ K, we denote
Kk as the set of users associated with it. The optimal BA
subproblem to minimize the power consumption for each
SBS k can be formulated as

min
Wku

∑
u∈U

xkuPku =
∑
u∈Kk

(
2R̄u/Wku − 1

)σ 2
+ Ivu
gku

(11)

s.t. Wkulog2(1+ SINRku) = R̄u, ∀u (11a)∑
u∈Kk

Wku = Wmax
k (11b)

Wku > 0, ∀u ∈ Kk (11c)

Pku > 0, ∀u ∈ Kk (11d)

where, R̄u =
R0∑

k∈K
xku

denotes the average rate requirement of

user u. The equality constraint (8) replaces the inequality
constraint (8) in (8) to fully exploit the available bandwidth
of SBS k . (8) and (8) denote all associated users in SBS k
should be assigned bandwidth resource and power resource,
respectively.
Theorem: (8) is a convex problem.
Proof: When Wku > 0,

∂2[(2R̄u/Wku − 1)σ
2
+Ivu
gku

]

∂2Wku
> 0 (12)

Thus, Pku = (2R̄u/Wku − 1)σ
2
+Ivu
gku

is a convex function with
respect to Wku. According to [35], the constraints (8) and (8)
of the problem (8) satisfy Slaters conditions. It is clear that
(8) defines a convex problem.
We adopt Karush-Kuhn-Tucker (KKT) conditions of (8)

to obtain the optimal solution. Let λ and µku denote the
dual variables for the constraint (8) and (8), respectively. The
Lagrangian function is given as follows

L(Wku, λ, µku) =
∑
u∈Kk

(
2R̄u/Wku − 1

)σ 2
+ Ivu
gku

+λ

∑
u∈Kk

Wku −Wmax
k

− ∑
u∈Kk

µuWku (13)

VOLUME 7, 2019 94135



F. Yin et al.: Energy-Aware Joint UA and RA for Coded Cache-Enabled HetNets

Here, we defineW ∗ku, λ
∗ and µ∗ku as the primal and the dual

optimal points with zero duality gap for user u ∈ Kk . Based
on the KKT conditions, the following equations should be
satisfied:

2R̄u/W
∗

ku
(σ 2
+ Ivu)R̄u ln 2

gkuW ∗ku
2 = λ∗ (14)∑

u∈Kk

W ∗
ku
= Wmax

k (15)

W ∗ku > 0 (16)

We define the equation

λ = f (Wku) = 2R̄u/Wku ((σ 2
+ Ivu)R̄u ln 2/gkuW 2

ku (17)

Obviously, ∂f (Wku)/∂Wku < 0, when Wku > 0, i.e., (17)
is monotonically decreasing with respect to Wku. Thus,
Eqs. (14)-(16) can be solved via the bisection method: Start-
ing from a random λ, Wku can be calculated for users
u ∈ Kk . If

∑
u∈Kk

W
ku
> Wmax

k , λ is increased; otherwise, λ is

decreased. This algorithm terminates when the gap between
the sum of Wku and Wmax

k is lower than a given threshold.
Moreover, this procedure is repeated until the proposed algo-
rithm converges. Given that the binary UA and BA decision
variables, i.e., xku andW ′ku are now determined, the next step
is to solve the PA subproblem demonstrated in section V-B.

B. POWER ALLOCATION FOR FIXED USER ASSOCIATION
AND BANDWIDTH ALLOCATION
This stage allocates the minimum power to each user by
taking both network resources and QoS requirements into
account. For the given UA and BA, the PA subproblem can
be formulated as

min
Pku

Ptotal (18)

s.t. W ′kulog2(1+ SINRku) ≥ R̄u, ∀u (18a)

(8b), (8c), (8d), (8e), (8f ), (8g), (8h) (18b)

Here, we substitute the equally BA variablesWku =
Wk∑

u∈U
xku

in

(8) with the valueW ′ku, which has already beenworked out via
bisection algorithm in V-A. Then, by the aid of the approach
proposed in Section III. A, we convert (18) into a LP problem,
which can be solved by available software packages [35].

C. JOINT USER ASSOCIATION AND RESOURCE
ALLOCATION WITH VSU-BASED MATCHING
In the previous subsections, we have obtained the UA vari-
ables through VSU-based swap matching algorithm, and a
KKT optimal bandwidth allocation for fixed user association
in V-A, as well as the PA with fixed UA and BA in V-B.
The proposed three-phase iterative algorithm for joint UA,
BA and PA is summarized in Alg. 2, which is referred as
JURVA. Note that, during the execution of JURVA, the MBS
determines UA, BA and PA, and the decision made by the
MBS is broadcasted to all SBSs and all users.

Algorithm 2 Joint User Association, Bandwidth Allocation
and Power Allocation With VSU-Based Swap Matching
Algorithm (JURVA)

Initialization: t = t + 1
1) UA Phase:
Run the step 1 in Algorithm 1 to obtain association

vectors Xku.
2) BA Phase:
For fixed user association vectors Xku, according to

(11), obtain the optimal bandwidth allocation indicators
W ′ku via the bisection method.

3) PA Phase:
For the fixed bandwidth allocation indicators W ′ku,

obtain the optimal power allocation P′ku by using Linear
programming similar to step 2 in Algorithm 1.
Until convergence

FIGURE 5. Proposed framework for solving the PCM problem.

The proposed centralized framework corresponding to
JURVA for joint UA, BA, and PA phases is shown in Fig. 5.
The proposed JURVA comprises three main phases: the UA
phase, BA phase and PA phase. The UA phase matches the
users to the SBSs. Then, the BA phase focuses on the BA of
users in the associated SBSs. Finally, the PA phase performs
admission controls, bandwidth updating and transmit power
allocation. In other words, the MBS allocates the SBSs to
each user randomly in the initialization phase. During the
resource allocation phase, the MBS performs UA, BA and
PA iteratively so as to obtain a joint solution, i.e., x∗ku, W

∗
ku

and P∗ku, which minimize the total power consumption.

VI. SIMULATION RESULTS
A. SIMULATION SETTING
This section presents simulation results to evaluate the
proposed algorithms along with other benchmarks for com-
parison on top of MATLAB and CVX. In the following sim-
ulations, six BSs are deployed in a 1km × 1km area. Due to
the property of MDS codes, each user is allowed to be served
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FIGURE 6. Comparison on power consumption: (a) Total power consumption vs. number of users (b) Transmission power consumption
of SBSs vs. number of users (c) Backhaul power consumption vs. number of users.

TABLE 2. Simulation parameters.

by multiple SBSs, and the overlapped SBSs are deployed
to meet the multi-association condition, which can provide
higher probability of re-constructing the content. To realize
the overlapping coverage of SBSs, one MBS is located at the
center and five SBSs are evenly distributed on the circle with
radius r1 = 100 m. Each SBS has a coverage area S of radius
r2 = 100 m. Simulation parameters including channel model
and system assumptions are summarized in Table 2.

We introduce two many-to-many matching algori-
thms [26], [27] to solve the proposed UA subproblem, and
compare them to the proposed VSU-based matching algo-
rithm in terms of power consumption. It’s worth mention-
ing that, the matching theory is used to allocate users to
sub-channels for NOMA networks [26] and assign D2D
pairs to resource blocks in D2D communications [27],
respectively. Both of them apply the matching-based algo-
rithms to improve the rate rather than the power cost.
However, we adopt them as comparison baselines, because:
i) To the best of our knowledge, this is the first work
that discuss the joint multi-UA and RA in MDS coded
cache-enabled HetNets so as to minimize the total power
consumption in terms of transmission and backhaul power
consumption. Since the optimized model we considered is
different from previous works, we can only choose some
conventional technology algorithms [26], [27] as the bench-
marks, though it is unfair to do so. ii) The swap match-
ing [26], [27] is an efficient algorithm to tackle a kind
of optimization problems. Since the multi-UA problem
which is formulated as a many to many two-sided matching

with externalities, is similar to the matching models
in [26], [27]. This type of matching is more complex than
traditional matching problems without externalities, tradi-
tional DA matching algorithm could not be applied to solve
it. Therefore, [26] and [27] introduce the concept of swap
matching. Actually, we improve the swap matching algori-
thms [26], [27] comprehensively, and propose a novel VSU-
based swap matching algorithm, which is proven to be a
pairwise stable. Based on the above reasons, we choose
[26], [27] as the benchmarks in our study. For convenience,
we abbreviate the two matching algorithms [26], [27] for
USMA-2 and RADMT, respectively. Note that, the simula-
tion results do not consider the fixed cache and static power
consumption.2

B. PERFORMANCE EVALUATION
To evaluate the performance of the proposed VSU-based
matching scheme, we first set the user’s quoto constraint
qu = 3. Fig. 6 plots the total power consumption of JUPVA,
USMA-2 and RADMT under different number of users.
As shown in Fig. 6a, with the number of users increases,
the sum power consumption of the three schemes increase,
and the proposed JUPVA yields a better performance than
the USMA-2 and RADMT schemes. Note that, we adopt
the same LP scheme for PA (i.e., step 2 of Alg.1) to the
two benchmarks as well. Specifically, when the number of
network users is 25, the gains are about 35.25% and 23.64%
compared to the USMA-2 and RADMT scheme. The reason
is that the VSU-based swap matchings not only contain all
types of swap blocking pairs such as ‘‘hole’’ and ‘‘dummy’’
in [26]–[28], but superinduce other ‘‘virtual’’ swap probabil-
ities. In another word, under the circumstances of Vs and Vu,
the proposed JUPVA extends the freedom of swap matching
operations and thus results in lower power consumption.

2We assume homogeneous SBSs have the same storage space and caching
hardware in this paper, during the cache placement phase, the storage space
in each SBS is fully occupied with MDS encoded packets. i.e. each SBS has
equal cache power consumption. Thus, the assumption that the static power
and cache power consumption are equal at each SBS is justifiable, and neither
of them will affect the resource variables (e.g., xku, Pku and Wku) in this
paper.

VOLUME 7, 2019 94137



F. Yin et al.: Energy-Aware Joint UA and RA for Coded Cache-Enabled HetNets

FIGURE 7. Total power consumption v.s. the quoto constraint qu.

Fig. 6b shows the transmission power consumption ver-
sus the number of users. As the number of users increases,
the transmission power of SBSs increases, but the power of
the proposed JUPVA keeps increasing with the smoothest
speed than benchmarks. A key observation from Fig. 6b is
that, the transmission power of SBSs is reduced by up to
53.22% and 44.15% compared to RADMT and USMA-2.
The reason is that, the introduction of Vs and Vu leads to
more potential swap blocking pairs between SBSs and users,
and the VSU-based matching optimizes the number of swap
links effectively, which ensures that the proposed JUPVA
keep tracking the optimal SBSs-users matching found so far,
and finally obtain the minimum power value. In summary,
the VSU-based matching combined with the PA at each SBS,
offers a significant advantage in energy-saving at SBSs.

Fig. 6c shows the backhaul power consumption for dif-
ferent schemes. Since we focus on the UA and PA in the
proposed JUPVA, from the equation (6), we observe that the
backhaul power consumption between the MBS and SBSs
only depend on the UA states xku except for the given qjk ,
constant eMBS and R0. Thus, with the increase number of
users, the backhaul power value of the three algorithms are
almost equal. However, due to the fewer swap matching links
in USMA-2 or RADMT, the curves of those are monotonous.

Fig. 7 presents the total power consumption of the pro-
posed JUPVA with different quoto constraints of each user.

The quoto constraints of each user are set as qu = 2, 3, 4
and other parameters are the same as those in Table 2. In this
paper, since the motivation of the proposed RA scheme is
to exploit multi-association property for encoded cache Het-
Nets, with the quoto qu increasing from 2 to 4, it is possible
to reduce the total power consumption, and so thus our algo-
rithm does.

Fig. 8 illustrates the power consumption varying with the
cache size. In order to observe that how qjk affects the power
consumption of different algorithms, we set the fraction qjk
according to a certain distribution to simplify the analysis.
When the user’s quoto constraint qu = 3 and the number
of users u = 10, we set the cache fraction of the requested
content qjk to obey uniform distribution, and the mean value
of qjk are set 0.05, 0.1,. . . , 0.35, respectively. From Fig. 8a,
we observe that the increase of qjk leads to the decrease of
the total power consumption. The simulation results are in
line with our intuition. This is because the cache fraction of
the requested file in the associated SBSs increases, i.e., the
increased content hit ratio can reduce the backhaul conges-
tion. As shown in Fig. 8b, theMBS only needs to transmit less
fraction content through the backhaul links, which reduces
the backhaul power consumption. All of the three algorithms
achieve the reduced backhaul power consumption with the
increase of content hit ratio.

In Fig. 8c, the proposed JUPVA presents more stable per-
formance than other two benchmarks. The reasons for this
result can be summarized into the following aspects. Firstly,
though the transmission power of SBSs which depends on
the PA variables Pku and UA indicators xku is independent of
the cache fraction value qjk , users can fetch more encoded
file packets from the cache of SBSs with the increased cache
size. Secondly, the virtual users and SBSs can introduce
more potential swap links and then hold the swap matching
operations smoothly. Thirdly, the LP applied to PA subprob-
lem optimizes the transmission power of SBSs effectively.
Besides, the potential swap blocking pairs in USMA-2 and
RADMT are finite, thus, the USMA-2 and RADMTmaintain
fluctuate with the increasing cache fraction, but the proposed
JUPVA maintains an upward trend.

FIGURE 8. Comparison on power consumption: (a) Total power consumption vs. cache fraction (b) Backhaul power consumption vs. cache
fraction (c) Transmission power consumption of SBSs vs. cache fraction.
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FIGURE 9. The transmission power of SBSs for proposed algorithms.

FIGURE 10. The backhaul power consumption for proposed algorithms.

We also set the quoto of user qu = 3, and other parameters
are the same as those in Table 2. As shown in Fig. 9, the trans-
mission power consumption of the JURVA scheme can reach
up to 46.12%, 66.04%, 85.51% gains over the JUPVA for
9 users, 15 users, 25 users, respectively. As the users gets
more densified, the power consumption of SBSs increases.
Since our joint algorithms aims tominimize the system power
consumption, the associated SBSs that serve users consume
the lowest transmission power. Thus, the results verify that
the JURVA is more advantageous than JUPVA when BA is
combined with UA and PA.

Fig. 10 shows the total backhaul power consumption versus
the number of users for the proposed JURVA and JUPVA.
In Fig. 10, with the number of users increases, the backhaul
power consumption also increases. Actually, for given cache
fraction of the requested files, the backhaul power consump-
tion is only related to the actual UA indicators xku, and RA
(i.e., BA and PA) only determines the transmission power.
Thus, the backhaul power consumption of JURVA is almost
the same as JUPVA. However, since UA indicators xku are
statistically for all users over the backhaul links, the opti-
mized UA links accessed to the SBSs also lead to the lowest
backhaul power consumption.

FIGURE 11. The total power consumption for proposed algorithms.

Fig. 11 demonstrates the overall power consumption in
terms of transmission power consumed by all SBSs and
backhaul power consumption between the MBS and SBSs.
Quite evidently, the proposed JURVA consumes less power
than JUPVA. As shown in Fig. 10 and Fig. 11, the differ-
ence between the overall power consumption and the back-
haul power is trivial, which means that the backhaul power
accounts for a large proportion of the total power consump-
tion in JURVA. In other words, both the proposed JURVA
and JUPVA effectively reduce the transmission power rather
than backhaul power consumption. In view of these, we will
put forward to the backhaul power minimization problem in
future work. Moreover, Fig. 11 further justifies that JURVA is
superior to JUPVA in terms of transmission power consump-
tion as well, i.e., considering both BA and PA results in amore
power-saving solution than taking the PA into account solely.

C. CONVERGENCE ANALYSIS OF JUPVA AND JURVA
In order to provide practical evidence of the convergence
event, Fig. 12 shows the convergence behaviors of the two
proposed algorithms within a single snapshot. Fig. 12a shows
the convergence of JUPVA and Fig. 12b shows the conver-
gence of JURVA algorithm. In each subfigure of the Fig. 12,
we show the system power consumption with the increasing
outer-most loop iterations for different number of users U .
As observed, in each iteration, the UA and the PA/RA algo-
rithm are implemented once, respectively, and the system
power consumption is reduced little by little before reaching
the convergence state. As expected, as the number of itera-
tions increases, the power consumption gradually decreases
after each iteration, both of those two algorithms converge
within 200 iterations even if the number of users U = 20.
Since the PCM problem discussed herein is non-convex and
NP-hard, the optimal solution needs to search all possible
feasible solution space. Moreover, in the proposed VSU-
based matching model, since the number of players, i.e., (vir-
tual) users and (virtual) SBSs, are large in terms of their
associations, it is not feasible to implement in a wireless
system. Thus, we mostly focused on two-sided swap stable,
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FIGURE 12. Convergence of proposed algorithm. (a) The convergence of
JUPVA. (b) The convergence of JURVA.

and the VSU-based swap matching algorithm that applied to
UA subproblem is developed based on this concept.

In the proposed JUPVA and JURVA, each swap match-
ing reduces the system power consumption compared to
the power before that particular matching. And the step
1.2 of JUPVA is the evidence of this statement. Through
swap operations, for a user, we define possible preferred
SBSs for the tagged user. This implies that the tagged
user will associate to its most preferred SBSs or replace
an existing user of that SBSs only if the system power
is minimized by this swap operation. Therefore, after each
swap process, the system power consumption is min-
imized. Eventually, the process approaches the conver-
gence state, i.e, the solution of the PCM problem exists
in a finite domain. Consequently, after finite number of
iterations, the JUPVA/JURVA algorithm converges and
terminates.

D. COMPLEXITY ANALYSIS OF JUPVA AND JURVA
Given the convergence of the proposed two algorithms,
we then discuss the computational complexity of the pro-
posed VSU-based many to many matching algorithm. For the
initialization phase, the complexity mainly lies in the process
of sorting the usersąŕ SINR, which isO(U2) in average. Note
that during the swap-matching phase, a number of iterations
are operated to reach the final matching. In every iteration,
the MBS searches for swap-blocking pairs and the users

execute all the approved swap operations over correspond-
ing SBSs. So the complexity of the swap-matching phase
lies in the number of both iterations and attempts of swap
matchings in each iteration.

Firstly, we define Vs and Vu as the number of virtual SBSs
and users, respectively. And we assume that each user asso-
ciates to a maximum of qu SBSs and a SBS can serve qs users
at the same time. Thus, in each iteration of swap-matching
phase, at most 1

2 (U + Vu) qsqu (K + Vs − qu) swap match-
ings need to be considered when Uqu = Kqs.
Proposition 3: Given the number of total iterations L,

the computational complexity of UA process can be approx-
imated as O(L (U + Vu) qsqu (K + Vs − qu)).

Proof: When Uqu = Kqs, each player remains
matched before and after every matching, and thus, any
swap matching µipjq consists of two users and two SBSs. For
the user up, there exist qu (K + Vs − qu) possible combi-
nations of ki and kj in µ

ip
jq since there are (K + Vs) SBSs

and each user can associate qu SBSs. On the other hand,
for the SBS kj, at most qs possible users need to be con-
sidered. That is to say, a swap matching µipjq with up fixed
has qsqu (K + Vs − qu) possible combinations. Since there
are (U + Vu) users, at most 1

2 (U + Vu) qsqu (K + Vs − qu)
swap matchings need to be considered in each iteration of
UA process. Therefore, given the number of total iterations L,
the computational complexity of UA process can be presented
by O(L (U + Vu) qsqu (K + Vs − qu)).

In addition to the UA process, all RA operations occur in
constant time, so we can ignore the complexity of the band-
width and power allocation operations. Mainly, the running
time of the UA process dominates the computation time of the
entire JUPVA and JURVA algorithms. As shown in Fig. 12a
and Fig. 12b, the iterations of this outermost loop is propor-
tional to the number of usersU . When the number of users in
the system is less, the number of swap operations is relatively
less compared to the case when the number of users in the
system is higher. In this case, the outermost loop terminates
in less number of iterations, which is obvious in Fig. 12a and
Fig. 12b.

VII. CONCLUSION
In this paper, a joint optimization of user association, power
and bandwidth allocation for MDS encoded cache-enabled
HetNets is considered. The aim is to minimize the sys-
tem power consumption including the transmission power
at SBSs and the backhaul power between the MBS and
SBSs. At first, by adopting the equal bandwidth alloca-
tion approach, we decompose the original problem into a
lower level resource allocation problem, i.e., power alloca-
tion subproblem via linear programming after solving the
user association subproblem by virtual SBSs and users-based
many-to-many matching game. Secondly, considering the
unequal BA, we propose a three-phase based algorithm to
further reduce the power consumption in a centralized and
iterative way. Simulation results show the fast convergence
of the proposed algorithms, and the advantages of caching
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coded contents in SBSs as well as the benefits of utilizing
virtual SBSs and users-based matching.
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