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ABSTRACT The localization of multiple signal sources based on Time Of Arrival (TOA) measurements
in wireless sensor networks is investigated in this paper. When the signal sources cannot be distinguished
by their signatures or other unique characteristics, the correspondence between the sources and the TOA
measurements at different sensors is unknown, which makes the multi-source localization problem quite
challenging. A self-clustering measurement combination method is proposed for the problem. The source
location estimate obtained by the hyperbolic localization algorithm is used as the clustering pattern, and the
scatter of the patterns of different subsets of TOA measurements is defined as a criterion function, which is
extremized by the combination of TOAmeasurements from the same source. A three-step heuristic clustering
algorithm is pursued to resolve the TOA ambiguity, and its mean square error performance and computational
complexity are also analyzed. The simulation and experiment indicate that the presented method has higher
location accuracy and lower complexity compared with the existing methods.

INDEX TERMS Clustering pattern, multi-source localization, time of arrival measurement, wireless sensor
networks.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) consist of a number of
nodes equipped with one or multiple spatially distributed
sensors [1], [2]. Compared to the traditional and single sen-
sor array comprising any number of sensors operating in
tandem [3], WSNs are not limited in physical size and pro-
cessing power for portable devices. WSNs also provide bet-
ter spatial coverage of area of interest, which increases the
probability to have a subset of sensors close to a source,
yielding higher quality recordings [4]. A common issue in
WSNs is the source localization, which is inherent to many
applications, such as target tracking, surveillance, video con-
ferences, robotics, and survivor localization in emergency
rescue operations [5]–[9].

The source localization is to estimate the location of
the source by sensing the signal emitted from the source.
The methods are mainly based on three types of physi-
cal measurements: the Received Signal Strength (RSS) or
energy [10]–[13], Direction Of Arrival (DOA) [14]–[17], and
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TOAor TimeDifference Of Arrival (TDOA) [18]–[26]. In the
RSS-based methods, a signal model that the energy of an
acoustical signal emitted omni-directionally from a point
source and propagating through ground surfaces decays at
inverse of distance square is used. The model is easily influ-
enced by the channel fading and the background noise so
that the methods always fail to provide satisfactory location
accuracy [27], [28]. The DOA-based localization methods
estimate the source location using a set of DOA generated
by the sensor array located at each node. The array requires
precision mechanical tolerances relative to the reference sen-
sor, which is very difficult during installations, and increases
equipment cost and processing power. Due to the spatial
resolution constraints, the location accuracy decreases as the
distance between the source and node increases. In con-
trast, each node in the TDOA-based methods only needs
one sensor to receive the source signal, and the equipment
cost and the installation complexity are lower. The location
accuracy is also not directly related to the baseline dis-
tance between sensors [29]. Considering these advantages of
TDOA, the TDOA-based localization methods are discussed
in this paper.
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These existing TDOA-based methods mainly focus on
the single source localization, or assume that the signals
from different sources are separable in time, frequency or
both for multi-source localization [23]–[26]. However, it is
very necessary to localize multiple sources simultaneously
in unfriendly environments where the sensors do not have
prior knowledge of individual signal feature, or the low cost
sources are not equippedwith unique signatures in their trans-
mitting signals. The correspondence between the received
signals at each sensor and the sources will be disorder such
that the localization problem becomes more complicated. In
other words, the difficulty lies in how to select one TOA
measurement from each sensor to form a combination of
TOA measurements corresponding to the same source for
localization. There exist some methods for the multi-source
localization problem. In [30], a count function given by
the number of sensors agreeing on a source occurring at
a space-time grid point is constructed, and estimates the
source locations as the space-time grid points where the count
exceeds a threshold. The method incurs high computational
complexity. Furthermore, it does not directly deal with the
association problem and the resulting location estimates are
not accurate. In [31], a parallelized and hierarchical approach
is used to solve the TOA association problem. First, for a
hypothesized source emission time (obtained by discretizing
the potential emission time) and an observed TOA, the source
must lie on a circle with a radius equal to the propaga-
tion distance. Intersections of circles at different pairs of
sensors generate candidate sources, and many of which are
‘‘ghost’’ (intersections corresponding to TOA measurements
from different sources). Then, the Bayesian process and linear
programming are used to refine these candidate sources. It is
obvious that the location accuracy is easily influenced by
the estimated propagation distance, and the computational
complexity is huge due to the large number of the hypoth-
esized emission times. In [32], the multi-source localization
problem is addressed using the TOA-based convex tech-
nique (CVX-TOA). The TOA measurements at each sensor
are arranged in increasing order to form a vector and then
a permutation matrix representing the source-measurement
association is applied to the vector, resulting in a permuted
version of TOA vector. The TOA measurements with the
same index in each vector corresponds to the same source,
and the problem is simplified by the convex relaxation and
approximation. The method requires multiple iterations to
approximate the real location. The computational cost is high
and the location accuracy is low. The method also estimates
the source emission time, which always needsmore sensors to
provide information. In [33], a Portable Impact Localization
System based on arrival Time Structure Analysis (TSA-PILS)
is developed to localize multiple impact sources, where a
search grid was constructed overlying the monitoring area
and a ray model are used to obtain the model travel times.
The minimum value of the errors between the real arrival
times and the model travel times resulted in an unambiguous
location of the source. This value is calculated by picking

one sensor as the reference and then summing the timing
errors of the remaining sensors relative to the reference. The
method incurs complexity increasing with the size of the
monitoring area, and the location accuracy heavily depends
on the grid size. In fact, the underlying patterns of the TOA
measurements from the same source can assemble in a cluster,
and these existing methods scarcely exploit the correlation of
the measurements provided by all sensors.

In this paper, a Self-Clustering Measurement Combination
(SC-MC) method is proposed for the multi-source localiza-
tion problem. The source location estimate acquired by the
hyperbolic localization algorithm is used as the clustering
patterns, and the volume of the scattered patterns of differ-
ent subsets of TOA measurements is defined as a criterion
function to measure the clustering quality of a combination
of TOA measurements from different sensors. The SC-MC is
formulated as an optimal problem, and a three-step heuristic
clustering algorithm is presented to resolve the TOA ambigu-
ity. The method does not require a grid search, and has higher
location accuracy and lower computational cost.

The remainder of the paper is organized as follows.
In Section II, the signal model is introduced. In Section III,
the SC-MC problem is formulated and a three-step heuris-
tic clustering algorithm for multi-source localization is pre-
sented. The performance of the algorithm is analyzed in
Section IV. In Section V, simulation and experiment results
are shown. Section VI concludes this paper. For the ease of
reading, some proofs are included in the Appendix.

II. SIGNAL MODEL
Consider M distributed sensors deployed at known locations
denoted by the column vectors si ∈ R2, i ∈ [1,M ] within
a two-dimensional region that we wish to monitor. These
sensors are synchronized by the Pulse Per Second (PPS) of
Global Position System (GPS). The problem is to localize N
sources whose locations are denoted by the vectors uj ∈
R2, j ∈ [1,N ], as shown in Fig. 1(a).

Note that we focus on a propagation environment in which
either a line-of-sight (LOS) path exists or scatterers are near
the sources or the sensors to provide a near LOS path. Accord-
ingly, the lth, l ∈ [1,N ] TOA measurement t ji,l generated by
the jth source at the ith sensor can be expressed by

t ji,l = ||uj − si||/c+ tj + γ
j
i,l, (1)

where c is the signal propagation speed (acoustic sensors are
used in this paper and c = 340 m/s unless stated otherwise),
||·|| denotes the two-norm of a vector, and tj is the time where
the jth source signal starts to be emitted from uj. γ

j
i,l is the

TOA measurement noise, and these noises are assumed to be
mutually independent and identically distributed zero-mean
Gaussian variables with the standard deviation σ .
There exists one important problem that the correspon-

dence between the sources and the TOA measurements at
different sensors are unknown during the localization pro-
cess. When different sources are not equipped with distinct
signatures for identifying themselves or the sensors are not
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FIGURE 1. (a) A monitoring area with M = 8 sensors and N = 6 sources.
(b) The order of TOA measurements at different sensors (the bars with the
same color mean that these TOA measurements correspond to the same
source).

able to detect such signatures due to lack of prior information,
the sensors can only sense the arriving signals without know-
ing fromwhich sources these signals originate [32], as shown
in Fig. 1(b). The simple strategy that associates the jth TOA
measurement at each sensor to localize the source will fail.
To capture the challenging problem, the paper proposes a
SC-MC method.

III. MULTI-SOURCE LOCALIZATION
A. HYPERBOLIC LOCALIZATION ALGORITHM
We firstly review the hyperbolic localization algorithm [18].
For the combination {t j1,l, · · · , t

j
i,l, · · · , t

j
M ,l} of TOA mea-

surements from the same source uj, the location estimate
ûj can be directly obtained by the hyperbolic localization
algorithm. Let rj,i = ||uj−si|| be the distance between the jth
source and the ith sensor, and the TDOA 1tj,i,1 = t ji,l − t

j
1,l

with respect to the TOAmeasurement of the reference sensor
(say s1), is used to obtain the range difference of arrival

rj,i,1 = c ∗1tj,i,1 = rj,i − rj,1, i = 2, 3, · · · ,M . (2)

Let ϕj = [uTj , rj,1]
T be an unknown column vector, and takes

the squares of (2) to obtain the following equation

r2j,i,1 − sTi si + sT1 s1 = −2[(si − s1)T , rj,i,1]ϕj. (3)

Then, the weighted least square estimation ϕ̂j of ϕj can be
obtained as

ϕ̂j = arg min {(hj − 0jϕj)
T9−1j (hj − 0jϕj)}

= (0Tj 9
−1
j 0j)−10Tj 9

−1
j hj, 9j = c2BjQBj, (4)

where

hj =
1
2


r2j,2,1 − sT2 s2 + sT1 s1
r2j,3,1 − sT3 s3 + sT1 s1

...

r2j,M ,1 − sTM sM + sT1 s1

 ,

0j = −


(s2 − s1)T rj,2,1
(s3 − s1)T rj,3,1

...
...

(sM − s1)T rj,M ,1

 ,
Bj = diag{rj,2, · · · , rj,4, · · · , rj,M }. (5)

In (4), Q is the covariance matrix of the TDOA vector
[1tj,2,1, · · · ,1tj,i,1, · · · ,1tj,M ,1]T with diagonal elements
of 2 and other elements of 1, and Bj is the diagonal matrix
formed by the elements rj,i. Since Bj contains the true source
location uj and is unknown, it is firstly approximated through
an initial estimate of ϕj, say ϕ̂j,1, When setting Bj to identity
matrix. Then, the diagonal element rj,i is approximated by
||ϕ̂j,1(1 : 2)− si|| (ϕ̂j,1(1 : 2) denotes a subvector formed by
the first two elements of ϕ̂j,1). Finally, the location estimate
ûj = ϕ̂j(1 : 2) is obtained by (4). More details can be found
in [18].

B. SELF-CLUSTERING MEASUREMENT COMBINATION
The Self-Clustering Measurement Combination (SC-MC)
method effectively aggregates the location estimate patterns
of the associated TOAmeasurements to find the combination
of TOA measurements from the same source.

The location estimate ûj approximately obeys a normal dis-
tribution with mean vector uj and positive-define covariance
matrixΣ j = E[(ûj−uj)(ûj−uj)T ]. The sample points drawn
from the normal distribution tend to fall in a cluster, whose
center and shape are determined by the mean vector and
the covariancematrix, respectively. The squaredMahalanobis
Distance (MD) [34] between the sample points and the cluster
center uj is given as

β2j = (ûj − uj)
T (Σ j)−1(ûj − uj). (6)

The loci of the sample points of constant density are ellip-
soids for which the βj is constant. The volume of ellipsoids
measures the scatter of the sample points about mean and is
given by

Vj = v2|Σ j|
1/2β2j , (7)

where v2 is the volume of a two-dimensional unit sphere.
Thus, the determinant |Σ j|

1/2 of the covariance matrix is
used as a criterion function to measure the scatter of the
sample points (|Σ j|

1/2 and Vj are interchangeable throughout
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the paper because they are mathematically equivalent) [34].
A larger |Σ j|

1/2 means that the sample points are more scat-
tered.

For a combination of TOAmeasurements from two ormore
sources, e.g., {t j1,l, · · · , t

j
i−1,l, t

λ
i,l, t

j
i+1,l, · · · , t

j
M ,l},

λ ∈ [1,N ] and λ 6= j, in order to distinguish from
the previous variables, ϕ̂j, ûj, rj,i,1, 0j,hj, 9j are replaced by
ϕ̂
e
j , û

e
j , r

e
j,i,1, 0

e
j ,h

e
j , 9

e
j . From (4), the ghost target location

estimate ûej = ϕ̂
e
j (1 : 2) is obtained based on the equation

ϕ̂
e
j = (0eTj 9

e−1
j 0ej )

−10eTj 9
e−1
j hej . (8)

In the above equation, the mean and the covariance matrix
of ûej are assumed to be E{ûej } = uej and Σe

j = E{(uej −
ûej )(u

e
j − û

e
j )
T
}, respectively.

In fact, the actual source location estimate is ûj = ϕ̂j(1 : 2),
where ϕ̂j(1 : 2) is calculated as

ϕ̂j = ((0ej +10j)
T9e−1

j (0ej +10j))
−1

×(0ej +10j)
T9e−1

j (hej +1hj). (9)

The derivation can be found in Appendix A. The ghost target
location estimate ûej has a deviation compared with ûj and
is not optimum. From Appendix B, the determinant |Σe

j |

is larger than |Σ j|, which points out that the sample points
drawn from the normal distribution with mean vector uej and
covariance matrix Σe

j are more scattered than those drawn
from the normal distribution with mean vector uj and covari-
ance matrix Σ j.
For a given combination of TOAmeasurements, if the TOA

measurements stem from the same source, e.g., {t j1,l, · · · , t
j
i,l,

· · · , t jM ,l}, the location estimates corresponding to its sub-

sets of TOA measurements, e.g., {t j1,l, · · · , t
j
i,l, · · · , t

j
M−2,l},

are clustered around the true source location uj. Otherwise,
the location estimates corresponding to different subsets of
TOA measurements will deviate from uj and are more scat-
tered, as shown in Fig. 2. It is obvious that the volume of the
ellipsoids corresponding to the false combinations of TOA
measurements becomes larger.

For ease of analysis, it assumes that the lith, li ∈ [1,N ]

TOA measurement t
j
li
i
i,li at the ith sensor corresponds to

the jlii th, j
li
i ∈ [1,N ] source. In particular, jl11 = l1

(the jth TOA measurement at the 1st sensor corresponds
to the jth source). For the candidate combination Cj,p =

{t j1,j, · · · , t
j
li
i
i,li , · · · , t

j
lM
M
M ,lM }, p ∈ [1,NM−1] of the jth source,

ûj,p,d ∈ R2, d ∈ [1,D] are assumed to be the location esti-
mates corresponding to its D subsets of TOA measurements,
and the ellipsoid volume Vj,p is approximated by

Vj,p ≈

∣∣∣∣∣ 1D
D∑
d=1

(ûj,p,d − ūj,p)(ûj,p,d − ūj,p)T
∣∣∣∣∣
1/2

,

ūj,p =
1
D

D∑
d=1

ûj,p,d . (10)

FIGURE 2. The scatter of the location estimates corresponding to subsets
of different combinations of TOA measurements. C1,p,p ∈ [1,6] are the
candidate combinations of TOA measurements for the 1st source in Fig. 1,
where there are (p− 1) TOA measurements from other sources, and V1,p
is the volume of ellipsoid. (a)The colored dots represent the location
estimates corresponding to subsets of different combinations and are
obtained through 100 Monte-Carlo runs under σ = 0.01 scenario. (b) The
colored ellipses represent the error ellipses of the location estimates of
different combinations with a 0.9 confidence interval.

The goal is to find the optimal combination of TOA mea-
surements that minimizes the criterion function defined by
the ellipsoid volume,

Ĉj,p = arg min
Cj,p

Vj,p. (11)

When the location estimate patterns are clustered, the TOA
measurements containing the patterns are also clustered, and
the relationship between the patterns and the TOA measure-
ments is made explicit.

C. A THREE-STEP HEURISTIC CLUSTERING ALGORITHM
The problem to find the optimal combination of TOA
measurements is known to be NP-complete [35], [36]. The
Exhaustive Maximum Likelihood (EML) method calculates
the volume of the ellipsoids corresponding to all possible
combinations of TOA measurements. When the number of
sources or sensors increases, the number of combinations
will increase dramatically so that the computational complex-
ity is unacceptable. For this reason, a more efficient, albeit
suboptimal, heuristic clustering algorithm of the SC-MC is
proposed (see Fig. 3). It starts by selecting the initial sensors
and combining their TOA measurements, thus obtaining the
potential source locations. Then, the TOA measurements of
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FIGURE 3. Flow chart of a three-step heuristic clustering algorithm of the
SC-MC.

FIGURE 4. Comparison of average location errors of different initial
sensors. C1 and C2 are two correct combinations of TOA measurements
for the 1st source in Fig. 1. In C1, s2, s3, s4 and s5 are used. In C2, s1, s3,
s6, s7 are used. The sensors in C1 are only on one side of the monitoring
area. The average location errors are obtained by 1000 Monte-Carlo runs
under different noise levels.

the remaining sensors are matched with the potential source
locations to reject many false combinations of TOAmeasure-
ments. Finally, construct grouping matrices based on the cho-
sen combinations of TOA measurements to estimate jointly
multiple source locations.

1) SELECT THE INITIAL SENSORS TO ESTIMATE THE
POTENTIAL SOURCE LOCATIONS
Since the SC-MC method finds an approximation solution
to a problem with NP-complete, it might suffer from con-
vergence to a local minimum; thus the choice of the initial
sensors should provide as accurate estimates of the potential
source locations as possible, which requires that the sensors
should surround the monitoring area [37]. As shown in Fig. 4,
the location error will be larger if the sensors are only on one
side of the monitoring area.

Specifically, select n, n ≥ 4 (the closed-form solution
of the hyperbolic localization algorithm requires at least
4 sensors within a two-dimensional area [18]) sensors and
combine their TOA measurements, as shown in Algorithm 1.
Based on the TOA measurements with indices in each row of
the matching matrix Ej, the N (n−1) potential source locations

ûj,k , k ∈ [1,N (n−1)] for the jth source can be obtained by the
hyperbolic localization algorithm.

Algorithm 1 Combine the TOA Measurements of the n
Initial Sensors
for j = 1 to N do

k = 0
Ej is an empty matrix
for l2 = 1 to N do

...

for ln = 1 to N do
k = k + 1
Row(Ej)k = [j, l2, · · · , ln]; // the n indices
are stored in the kth row of Ej
Row(Ej)k ⇒ ûj,k ; // estimate the potential
source locations

end
end

end

2) MATCH THE TOA MEASUREMENTS OF THE REMAINING
SENSORS TO REJECT MANY FALSE COMBINATIONS
The remaining sensors are added one by one and their
TOA measurements are matched with the potential locations
ûj,k , k ∈ [1,N (n−1)] to reject many false combinations of
TOA measurements.

From the potential source location ûj,k to the sensor pair
(1,m),m = n + 1, the model propagation time difference
MTj,k,1,m is given by

MTj,k,1,m = (||ûj,k − sm|| − ||ûj,k − s1||)/c. (12)

The TDOA error TEj,k,1,m is defined by

TEj,k,1,m = MTj,k,1,m − (t j
l̂m
m

m,l̂m
− t j1,j),

l̂m = arg min
lm∈[1,N ]

MTj,k,1,m − (t j
lm
m
m,lm − t

j
1,j). (13)

The basic idea of this step is that if the TOA
measurements in a combination are from the same source,
the corresponding hyperbolas will intersect at the same
location uj in a noise-free environment. Since the TOA
measurements are corrupted by noises, the credibility of the

combination{t j1,j, · · · , t
j
l4
4
4,l4
, · · · , t j

l̂m
m

m,l̂m
} from the same source

is represented by TEj,k,1,m, where a smaller TEj,k,1,m implies
a higher credibility. Therefore, a total number of N n−1

errors TEj,k,1,m are sorted in ascending order and the indices
{j, · · · , 4, · · · , l̂m} of the top ρ combinations are recorded in
the matching matrix Ej, which is a ρ-by-mmatrix. In order to
avoid missing the true combination, ρ is generally assigned
to a large value, e.g., ρ = N (n−1)/2.

The process is repeated for m ∈ [n + 2,M ], where the
TDOA error TEj,k,1,m and ρ are updated. The step is per-
formed for j ∈ [1,N ] and the number of false combinations
is greatly reduced. More details can be found in Algorithm 2.
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Algorithm 2 Match the TOA Measurements of the
Remaining Sensors

for j = 1 to N do
ρ = N (n−1)/2;
for m = n+ 2 to M do

for k = 1 to ρ do
//calculate TDOA error
TEj,k,1,m =

MTj,k,1,m − (t j
l̂m
m

m,l̂m
− t j1,j)+ TEj,k,1,m−1;

Row(Ej)k = [Row(Ej)k , l̂m]; // associate
the index of TOA measurement

end
[Val,Ind] = sort(TEj,1 : ρ,1,m); //ρ errors
TEj,1 : ρ,1,m are sorted in ascending order; Val is
the error set and Ind is the index set
ρ = ρ/2; // each time takes half the number of
combinations previously taken
U is an empty matrix;
for k = 1 to ρ do

TEj,k,1,m = Val(k); //update TDOA error
Row(U)k =Row(Ej)Ind(k); //the Ind(k)th
row of Ej is assigned to the kth row of U

end
Ej = U; // update the matching matrix

end
end

3) CONSTRUCT GROUPING MATRICES TO ESTIMATE
JOINTLY MULTIPLE SOURCE LOCATIONS
After the above matching step, there are ρ chosen combi-
nations of TOA measurements for each source. From (10),
the volume of ellipsoid corresponding to each combination in
thematchingmatrixEj, j ∈ [1,N ] is easily obtained. For each
source, ρ volume of ellipsoids is sorted in ascending order
and the top ρ2 (ρ2 and the following ρ3 are usually assigned
to some large values to avoid missing the true combinations,
e.g., ρ2 = N , and ρ3 = 2N ) related combinations are kept
in Ej.

By considering the N matching matrices Ej where each
matrix contributes ρ2 combinations, there are (ρ2)N differ-
ent possibilities to construct one N -by-M grouping matrix,
whose jth row corresponds to the jth source. In general,
each TOA measurement can be used for only one source
and the grouping matrix with duplicated indices in a column
would be deleted. However, if one sensor has two very close
TOA measurements whose interval is less than τ (discussed
in V-B), they can be replaced by each other, which does not
lead to significantly larger location error and the grouping
matrix should also be accepted. More details can be found in
Algorithm 3. The number of the grouping matrices is much
less than (ρ2)N . Let V

g
q be the sum of the volume of ellipsoids

corresponding to the N combinations in matrixGq. The final

Algorithm 3 Construct Grouping Matrices of the N
Sources
q = 0
for q1 = 1 to ρ2 do

for q2 = 1 to ρ2 do
...

for qN = 1 to ρ2 do

F =


Row(E1)q1
Row(E2)q2

...

Row(EN )qN

 ; // construct one
N -by-M grouping matrix
if F does not have duplicated index in each
column then

q = q+ 1;
Gq = F;

else
assuming that the ith column has
duplicated indices x
if the ith sensor has one TOA
measurement t satisfying |t − t

jxi
i,x | < τ

then
q = q+ 1;
Gq = F;

end
end

end
end

end

selected grouping matrix Ĝq is as follows

Ĝq = arg min
Gq

V g
q . (14)

Based on the TOA measurements with indices in each row
of Ĝq, the location estimates of theN sources can be obtained
by the hyperbolic localization algorithm.

To further reduce the computational cost, theN sources can
be subdivided into two cells, e.g., {u1,u2, · · · ,u[N/2]},
{u[N/2]+1,u[N/2]+2, · · · ,uN } ([·] rounds the element to the
nearest integer). The matching matrices in each cell are used
to construct independently grouping matrices, and then the
top ρ3, e.g., ρ3 = 2N grouping matrices in each cell are
selected to construct jointly the final grouping matrices.

IV. PERFORMANCE ANALYSIS OF THE SC-MC
A. CRAMER-RAO LOWER BOUND FOR MULTI-SOURCE
LOCATION
Cramer-Rao Lower Bound (CRLB) that provides a lower
bound on the mean square error of the location estimate
is widely used to assess the performance of an estima-
tor. In this paper, the CRLB of the location estimates
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û = [ûT1 , · · · , û
T
N ]

T is given by

P
N∑
j=1

E{||ûj − uj||2}

≥

N∑
j=1

trace(�j),

�j = c2σ 2(8T
j Q
−18j)−1, ej,i = si − uj,

8j =



ej,1(1)
rj,1

−
ej,2(1)
rj,2

ej,1(2)
rj,1

−
ej,2(2)
rj,2

ej,1(1)
rj,1

−
ej,3(1)
rj,3

ej,1(2)
rj,1

−
ej,3(2)
rj,3

...
...

ej,1(1)
rj,1

−
ej,M (1)
rj,M

ej,1(2)
rj,1

−
ej,M (2)
rj,M


, (15)

where ej,i(1) and ej,i(2) are the first and second elements of
the vector ej,i, respectively [18].

B. COMPUTATIONAL COMPLEXITY ANALYSIS
For simplicity, each hyperbolic localization and each match-
ing of TOAmeasurement is counted as one operation (in fact,
the complexity of each hyperbolic localization is higher than
each matching of TOA measurement). The analysis is shown
in Table 1.

The number of the operations and the grouping matrices
are N n(1 + 2N − N

2M−n−1
) + ρDN and 2(ρ2)

N
2 + (ρ3)2

in SC-MC, respectively. In contrast, in the EML method,
the number of the operations and the grouping matrices are
NMD and N (M−1)N , respectively. The number of computa-
tions in the EML method increases exponentially and is far
higher than SC-MC.

V. NUMERICAL SIMULATIONS AND EXPLOSION
EXPERIMENTS
The section includes three subsections of performance com-
parison, parameter analysis, and explosion experiments.
In V-A, the location performance of the SC-MC is compared
with the Genie-Aided method (GA) [32], EML, TSA-PILS
and CVX-TOA. In V-B, the relationship between the location
accuracy of the SC-MC method and some parameters is
discussed. In V-C, the explosion experiments were carried out
to verify the SC-MC method.

A. PERFORMANCE COMPARISON
The location performance of the SC-MC is compared with
the GA, EML, TSA-PILS and CVX-TOA by their computa-
tional efficiency and location accuracy. The GA method with
ideal source-measurement associations is used as a reference
relative to other methods [32]. The details about CVX-TOA
and TSA-PILS can be found in Section I. TSA-PILS is a
direct approach that finds the source location by searching
all possible positions and selecting the one that best explains
the TOA measurements. SC-MC and CVX-TOA are the
indirect approaches that estimate the location of the source

FIGURE 5. Comparison of the location accuracy of different methods
under σ = 0.005 condition. (a) the locations of the sensors and the
sources; (b) the CDF of MLE for the first 3 sources; (c) the CDF of MLE for
the first 4 sources; (d) the CDF of MLE for the 5 sources.

based on the positioning parameters such as TOA or TDOA.
In CVX-TOA, the occurrence time of each source also needs
to be estimated, which is not required in SC-MC. The loca-
tion accuracy is characterized by the Cumulative Distribution
Function (CDF) of the Multi-source Location Error (MLE),
which is computed as

MLE =
1
N

N∑
j=1

||uj − ûj||. (16)

The CDF of the MLE is given by

fMLE(κ) = Pr(MLE ≤ κ), (17)

where the right-hand side represents the probability that the
MLE takes a value less than or equal to κ .

In this simulation, M = 6 sensors are deployed in a mon-
itoring area of approximately 2500 meters by 2500 meters.
N = 5 sources are located at u1 = [150, 100]T ,u2 =
[−50, 200]T ,u3 = [−200, 80]T ,u4 = [−100,−70]T , and
u5 = [50,−150]T , as shown in Fig. 5(a). Three scenarios
with different number of the sources are considered, where
the first 3 sources, the first 4 sources and all 5 sources are
used separately.

For each scenario, 1000 Monte-Carlo runs are performed
to obtain the CDF of MLE (the computational cost of EML
is huge and its CDF curves are not shown for N = 4
sources and N = 5 sources), and the results are shown in
Fig. 5(b), (c), and (d). It is quite clear that the SC-MC, EML,
and GA have almost the same CDF curve, which indicates
that SC-MC and EML can find the correct combinations
of TOA measurements. The location error of TSA-PILS is
similar to GA and SC-MC in the case of fewer sources
(N = 3), but becomes higher when the number of the sources
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TABLE 1. The number of computations for SC-MC and EML.

TABLE 2. Comparison of the estimation bias of different methods (m).

TABLE 3. CRLB versus AMSE of SC-MC, TSA-PILS, and CVX-TOA (m2).

is more (N = 4 or 5). Especially, the larger location error
of TSA-PILS indicates the mismatch that the ghost target
location estimate corresponding to the false combination of
TOA measurements is accepted eventually, often occurred in
the case of more sources, such as N = 5. In the CVX-TOA,
the location error increases sharply when the number of the
sources increases and the location accuracy is the worst.

Table 2 gives the Estimation Bias (EB) of SC-MC, TSA-
PILS, and CVX-TOA, where the EB is computed by

EB =
1
N

N∑
j=1

||E{ûj − uj}||. (18)

From Table 2, the SC-MC has the smallest estimation bias,
and the estimation bias of TSA-PILS is smaller than CVX-
TOA, which indicates that the SC-MC has the best consis-
tency.

To further evaluate the location accuracy of these methods,
the Average Mean Square Error (AMSE) of the location
estimate is compared with the CRLB given in Section IV-A.
The AMSE is defined by

AMSE =
1
N

N∑
j=1

E{||uj − ûj||2}. (19)

Table 3 lists the AMSE results. It can be observed that the
AMSE of TSA-PILS and CVX-TOA increase dramatically

TABLE 4. Comparison of the computation time of different methods (s).

as the noise level σ increases and are far higher than CRLB.
The AMSE of SC-MC is closer to CRLB and can even attain
the CRLB when the noise level σ is lower. The above results
show that SC-MC has very excellent location accuracy in the
case of high noise level and dense sources.

Based on the above three scenarios, a comparison of the
computation times of different methods is shown in Table 4.
These simulations are performed on an Intel(R) Core(TM)
i5-7300HQ computer with 2.5GHz CPU and 8GB RAM
using MatLab scripts. When the number N of the sources
increases, the number of the combinations increases, which
leads to higher computational cost for all methods. The
computation cost of GA is the lowest since the hyperbolic
localization algorithm is noniterative and gives an explicit
solution. The EML method tries all possible combinations
of TOA measurements and then select the most likely one,
which leads to the highest computational cost. In contrast,
SC-MC significantly reduces the computational cost com-
pared with EML. Because a grid search step is needed in
the TSA-PILS method, its computational cost is much higher
than the SC-MC. In the CVX-TOA, the location estimate is
obtained by a convex optimization technique, which requires
multiple iterative operations, and the computation cost is
higher than the GA, SC-MC, and TSA-PILS. This results
show that the SC-MC is more computationally efficient than
the existing methods.

B. PARAMETER ANALYSIS
This subsection mainly discusses the relationship between
the location accuracy of the SC-MC method and the sensor
location error, the TOA measurements interval τ (proposed
in III-C.3), TOA measurement noise σ , the number N of
targets, and the number M of sensors.
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FIGURE 6. Comparison of the location accuracy under different sensor
location error conditions. The M = 6 sensors and N = 5 sources in
Fig. 5(a) are used.

FIGURE 7. Comparison of the ellipsoid volume and location error
between C1,1 = {t1

1,1, t1
2,1, t1

3,3, t1
4,5, t2

5,4, t1
6,3} and

C1,2 = {t1
1,1, t1

2,1, t1
3,3, t1

4,5, t1
5,5, t1

6,3} , where the M = 6 sensors and

N = 5 sources in Fig. 5(a) are used. The interval 1t = |t2
5,4 − t1

5,5| ≈ 0.03
s. 1000 Monte-Carlo runs are performed under σ = 0.01 scenario, and the
163 runs where the ellipsoid volume of C1,1 is smaller than C1,2 are
demonstrated. (a) the ellipsoid volume of C1,1 and C1,2; (b) the location
error of C1,1 and C1,2.

In generally, the sensors have errors in their locations
and an excellent localization method should be robust for
the errors. For ease of illustration, we only consider the
zero-mean Gaussian errors, where σx and σy are the standard
deviation, and these errors are mutually independent. From
Fig. 6, the location accuracy is slightly reduced as the sensor
location errors increase, which indicates that the SC-MC
method can tolerate the sensor location errors.

The TOA measurements interval at each sensor is related
to the source emission times interval and the distance
between the sources. For the large source emission times
interval, the TOA measurements interval is large. When
the source emission times interval is small and the dis-
tance between the sources is large, the TOA measure-
ments interval is also large. For the combination C1,1 =

{t j1,l, · · · , t
j
i−1,l, t

λ
i,l, t

j
i+1,l, · · · , t

j
M ,l} (proposed by (8)) where

the TOA measurement tλi,l comes from the λth source, when

the interval1t = |tλi,l−t
j
i,x | (the xth, x 6= l TOAmeasurement

at the ith sensor comes from the jth source) is large, the loca-
tion estimates corresponding to subsets of TOA measure-
ments is very scattered and the ellipsoid volume is very large,
which is helpful to identify the false combination. When the
interval 1t is small, it is possible that the ellipsoid volume
of C1,1 is smaller than C1,2 = {t

j
1,l, · · · , t

j
i,x , · · · , t

j
M ,l}, and

the location error of C1,1 is not significantly larger than C1,2,
as shown in Fig. 7.

FIGURE 8. Comparison of the location accuracy under different σ
conditions. (a) the locations of the M = 6 sensors and the N = 6 sources;
(b) the CDF of MLE for different σ .

FIGURE 9. Comparison of the location accuracy under different N
conditions. (a) the locations of the sensors and the sources; (b) the CDF
of MLE for different N .

From Fig. 7, when one sensor has two TOA measurements
whose interval 1t is less than a threshold τ , the two TOA
measurements can be replaced by each other and the group-
ing matrix with duplicated indices should also be accepted.
Taking into account the location error of the hyperbolic local-
ization algorithm itself, the interval threshold τ has a positive
correlation with the noise σ , and in this paper, 0.05 ≤ τ ≤
0.15.
Fig. 8(b) depicts that the location accuracy decreases

with the increase of the noise level σ . When σ increases,
the location error of the hyperbolic localization algorithm
also increases and the location estimates corresponding to
subsets of TOAmeasurements becomemore scattered, which
results in a decrease in the sensitivity of the ellipsoid volume
measuring the scatter of the location estimates and an increase
in the mismatch probability.

From Fig. 9(b), the location accuracy decreases with the
increase of N . When the number N of the sources increases,
the number of the initial combinations of TOAmeasurements
increases exponentially and the possibility that there exists
a false combination minimizing the criterion function also
increases. The SC-MC method needs to pick out the true
combination of TOA measurements from more false combi-
nations, which leads to a higher mismatch probability.

From Fig. 10(b), the location error is reduced with the
increase of the number M of the sensors. More sensors
mean more source location information, which are helpful to
identify the false combinations of TOA measurements more
effectively and improve the location accuracy.

C. EXPLOSION EXPERIMENTS
The explosion experiments were carried out in an open field
of approximately 160 meters by 160 meters, and the locations
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FIGURE 10. Comparison of the location accuracy under different M
conditions. (a) the locations of the sensors and the sources; (b) the CDF
of MLE for different M.

FIGURE 11. The experiment scene. (a) the firecracker; (b) the microphone
and wireless node; (c) the locations of the microphones and the
firecrackers.

FIGURE 12. Comparison of the computation time of SC-MC and TSA-PILS.

of theM = 5 microphones and the N = 4 sources consisting
of firecrackers are provided by GPS, as shown in Fig. 11(c)
(the locations relative to a randomly selected reference point
are shown). The wind speed can be ignored and the sound
speed is c = 343 m/s. The time corresponding to the peak
of the blast wave of the firecracker is used as the TOA
measurement.

In the experiments, the CVX-TOA method is not suitable
due to the small number of the microphones. Table 5 and

TABLE 5. Location error of SC-MC and TSA-PILS (m).

Fig. 12 show the location error and computation time of
SC-MC and TSA-PILS, respectively. It can be observed that
TSA-PILS has larger location error and higher computation
time than the proposed SC-MC method, which is consistent
with the previous simulation results.

VI. CONCLUDING REMARKS
In this paper, a self-clustering measurement combination
method is proposed for the multi-source localization prob-
lem. The method exploits the correlation between the TOA
measurements at different sensors, and a three-step heuristic
clustering algorithm is used to find the combination of TOA
measurements from the same source and then estimate the
location of the source. Simulation and experiment indicate
that the method has higher location accuracy and lower com-
putational cost compared with the existing methods. The
presence of false or missing measurements will be considered
in the future work.

APPENDIX A
Corollary 1: ûej has a deviation compared with ûj.
Proof:For the combination {t j1,l, · · · , t

j
i−1,l, t

λ
i,l, t

j
i+1,l, · · · ,

t jM ,l}, λ ∈ [1,N ] and λ 6= j, (2) should be

rej,i,1 = c(tλi,l − t
j
1,l) = ||uλ − si|| − ||uj − s1||. (20)

Let 1uλ,j = uλ − uj, therefore, (3) can be written as

re
2

j,i,1 − sTi si + sT1 s1 + 2sTi 1uλ,j − ||1uλ,j||
2

= −2[(si − s1 −1uλ,j)T , rej,i,1]ϕj. (21)

The estimate

ϕ̂j = ((0ej +10j)
T9e−1

j (0ej +10j))
−1

×(0ej +10j)
T9e−1

j (hej +1hj), (22)

where

(1hj)(i) = (2sTi 1uλ,j − ||1uλ,j||
2)/2,

(10j)(i, :) = [(1uλ,j)T , 0]. (23)

The other elements in the column vector1hj and matrix10j
are 0. In fact, 1uλ,j is unknown and can only get the ghost
estimate

ϕ̂
e
j = (0eTj 9

e−1
j 0ej )

−10eTj 9
e−1
j hej . (24)

Therefore, the ghost target location estimate ûej = ϕ̂
e
j (1 : 2)

(the first two elements of ϕ̂ej are the estimated location vector)
has a deviation compared with ûj = ϕ̂j(1 : 2).
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APPENDIX B
Corollary 2: The determinant |Σe

j | of the covariance matrix
of ûej is larger than |Σ j| of ûj.
Proof: From (24), it assumes that ûej = ûj + ej,1,uej =

uj + ej,2, ej,3 = ej,1 − ej,2, the covariance matrix

Σe
j = E{(uej − û

e
j )(u

e
j − û

e
j )
T
}

= E{(uj − ûj − ej,1 + ej,2)(uj − ûj − ej,1 + ej,2)T }
= E{(uj − ûj − ej,3)(uj − ûj − ej,3)T }
= E{(uj − ûj)(uj − ûj)T } + ej,3eTj,3
= Σ j + ej,3eTj,3. (25)

ej,3eTj,3 is a positive-definite matrix, and the determinant |Σe
j |

is larger than |Σ j|.
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