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ABSTRACT Identification and treatment of chronic wounds (CWs) are considered economic and social
challenges, especially with respect to bedridden and elderly persons. CWs do not follow a predictive
course of healing within a particular period. Their treatment and management costs are very high. Also,
CWs decrease quality of life for patients, which cause severe pain and discomfort. In this paper, we proposed
a comprehensive wound healing assessment framework based on current appearance, texture, and prior
visual appearance analysis to handle different types of CWs depending on extracting various tissue types.
The framework provided an accurate evaluation tool for the CW healing process depending on extracting
and fusing significant features from the CWs RGB images. Non-negative matrix factorization (NMF) was
used to retrieve the most significant features to reduce computation time. The gradient boosted trees (GBT)
classifier was used to classify different tissue types. Finally, the healing assessment of the CWs depended
on calculating the improvement in the area of the necrotic eschar, slough, granulation, and healing epithelial
tissues. The framework was trained and tested using 377 RGB images from Medetec wound database and
national pressure ulcer advisory panel website. The proposed system achieved an average accuracy of 96%
for tissue classification, which helps in obtaining an accurate CW healing assessment. This result can be
considered as a promising result when compared to the other state-of-the-art techniques.

INDEX TERMS Wounds and injuries, wound healing, texture analysis, color analysis, tissue
segmentation.

I. INTRODUCTION
Awound can be defined as deterioration and injury in the
regular anatomical structure and function of the patient’s
skin. They emerge from various pathological operations that
can start either externally or internally in any human organ.
Wounds are divided into two main categories depending on
healing time, which are acute and chronic wounds [1]. Acute
wounds (AWs) emerge as a loss of skin tissue during a surgery
or accident, which naturally are repaired in a short time with a
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systematic healing process. However, chronic wounds (CWs)
do not follow a systematic healing process and take longer to
heal than AWs. The most common types of CWs are pressure
ulcers (PUs), venous and arterial ulcers (VAUs), diabetic foot
ulcers (DFUs), and burns. In 2010, CWs affected approxi-
mately 6.5 million patients in the USA, which cost $25 billion
for the treatment and management annually [2]–[4]. In this
paper, we will concentrate on CWs diagnosis and healing
assessment.

The first stage in assessing and handling CWs is to deter-
mine and recognize the wound’s area with its various tis-
sue types. During the wound healing process, the variety

80110 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-2504-6051
https://orcid.org/0000-0001-7264-1323


A. Khalil et al.: CW Healing Assessment System Based on Different Features Modalities and NMF Feature Reduction

and color of wound tissues are the prominent changes in
the CW area. Therefore, describing various wound tissues
and tracking the percentage of each tissue are a trusted
clinical technique for estimating the wound healing pro-
cess. In most clinical practices, wound assessment is pri-
marily based on visual inspection by a dermatologist, which
is subjective, time-consuming, and potentially error-prone.
Therefore, a computer-aided diagnosis (CAD) system is in
demand to process and analyze color images of CW. Such a
CAD system can be utilized to segment and classify different
wound tissues and present an objective, accurate assessment
for various types of CWs [5].

Implementing a non-invasive, automatic wound diagnosis
and monitoring system has great significance [1]. CAD sys-
tems can provide a cost-effective and quantitive solution for
precise observation for wound healing state [6]. Furthermore,
accurate diagnosis and monitoring of the CWs are crucial for
providing effective treatment. The CAD systems can be used
to monitor the wound healing by segmenting various tissues
and tracking the changes in tissues present in the wound,
or its surrounding areas, over time. From this perspective,
CW assessment could be based on the analysis of significant
regions within different tissue types, each having homoge-
neous color and texture features. The main tissues of the CWs
can be classified into four different types, which are necrotic
eschar (black color tissue), slough (yellow/white color tis-
sue), granulation (red color tissue), and healing epithelial
tissue (pink color skin) [1]. Fig. 1 shows the various tissue
types in some examples of different CWs.

FIGURE 1. The various tissue types in different CWs: (a) diabetic foot
ulcer, (b) venous leg ulcer, (c) pressure ulcer, and (d) burn.

Generally, the wound healing process can be recognized
as the tissue color gradually progresses from black to yellow

to red as the wound heals. At first, the wound mostly
appears covered with necrotic eschar and slough tissues.
Then, the granulation tissue begins to grow slowly from the
base of the wound and replaces the necrotic eschar and slough
tissues. Also, the granulation tissue begins to fill the wound
cavity. Once the wound is filled with granulation tissue, heal-
ing tissue begins to grow from the wound edges to color the
whole area of the wound. Therefore, monitoring and tracking
the changes in each tissue type present a reliable method to
assess the wound healing process [4], [7].

The rest of this paper is organized into five sections.
Section 2 introduces the current related work in CW diag-
nosis and wound healing assessment. It also discusses the
limitations of the current work and how we overcame these
limitations in our proposed framework. In Section 3, the pro-
posed wound healing framework is discussed. The main
building blocks of the proposed system are elucidated in
more detail. Section 4 describes the used dataset and exper-
imental results. The discussion is presented in Section 5.
Finally, Section 6 concludes the paper and discusses the
future research directions of the authors.

II. RELATED WORK
The CW diagnosis and monitoring are considered an active
research area in the medical image analysis field. There are
many research groups that are working in different wound
types. For example, Veredas et al. [8] introduced a wound
area detection system based on statistical color models. They
created color histogrammodels based on the k-means cluster-
ing approach for four various wound tissue types, which are
granulation, slough, necrosis, and periphery tissues. From a
Bayesian perspective, they utilized back-projections of color
pixels on the generated histogram models to calculate an
estimation of the posterior probability of a pixel to belong
to the four tissue classes. The resulting probabilistic model
had been complemented with topological models of tissue
distribution. Then, Gaussian and morphological filters are
used as noise reduction techniques. Finally, they applied the
region growing techniquewith thresholding approaches to get
the final region of interest (ROI) of the wound and healing
areas. In this paper, the authors only presented a tissue clas-
sification system for PU images based on identifying three
wound tissues in addition to the periphery tissues.

Hani et al. [4] developed a system that detects the begin-
ning of a PU healing by using the hemoglobin content
as a marker. They applied the principal component analy-
sis (PCA) technique to whiten the data. They used inde-
pendent component analysis (ICA) technique to extract gray
level hemoglobin from PU images. Then, they implemented
a k-means clustering technique to segment detected regions
of granulation tissue. In this paper, the authors did provide
an effective measure for the healing process for PUs. They
detected and segmented the granulation tissue and ignored
the other tissue types.

Song and Sacan [3] proposed an automatic image seg-
mentation and wound region identification system for

VOLUME 7, 2019 80111



A. Khalil et al.: CW Healing Assessment System Based on Different Features Modalities and NMF Feature Reduction

DFU images. They tested four various segmentation tech-
niques, which are k-means, edge detection, thresholding, and
region growing. They proposed a parameter optimization
procedure to fine-tune each tested segmentation technique
automatically. Their proposed system was based on two dif-
ferent artificial neural networks (ANNs) for identification,
which are multi-layer perceptron (MLP) and radial basis
function (RBF) networks. In this paper, the authors only
identified the area of the DFU without further analysis.

Loizou et al. [7] presented a system to assess the progress
of wound healing for DFUs based on texture analysis. They
used the snake approach to segment wound areas. Then,
fifteen various texture and four different geometrical features
are extracted from the segmented images. The first drawback
of this system was that it needed a more robust initialization
method for the segmentation technique. Second, the ground
truth (GT) of the DFU images was not generated or approved
by an expert.

Wang et al. [6] proposed a wound analysis system that runs
on Android smartphones. They applied the accelerated mean-
shift algorithm to segment wound images. The healing status
is assessed based on the red-yellow-black color evaluation
model. They detected the foot outline by finding the largest
connected component in the segmented image. In this paper,
the authors did not compute a score for the healing status of
the wound.

Seixas et al. [9] implemented a segmentation approach for
skin wound images. Their system is based on proposing an
approach to find a seed for the region growing segmenta-
tion technique. Also, they utilized the energy of each color
channel for the RGB images to enhance the range of the
possible values for each tissue type. The main concern of this
article was to find a good seed for the wound segmentation
technique. The authors did not present any results of the
evaluation of their proposed segmentation method.

Wang et al. [10] proposed a deep learning technique to
segment and analyze the area of the wounds automatically.
They proposed a deep convolutional neural network (CNN)
to segment the wound area. Also, CNN is used to extract
the significant features to detect infection via support vector
machines (SVM) technique and predicted the healing pro-
cess via Gaussian process (GP) regression. In this paper,
the authors did not compute a score for the healing status of
the wound.

Badea et al. [11] proposed a classification system that
distinguishes burn wounds from healthy skin based on a CNN
network. The proposed CNN was based on the MatConNet
architecture. The authors did not make any preprocessing
procedure for the tested images.

Wang et al. [5] implemented a boundary determination
system for DFU images based on a simple linear iterative
clustering (SLIC) technique to make superpixel segmenta-
tion on a smartphone. Different color and texture features
were extracted from segmented images to be supplied to
the classifier. They proposed a cascaded two-stage SVM

classifier to determine the wound boundaries. Finally, they
refined the detected wound boundary by using the conditional
random field method. The authors intended to recruit more
clinicians to delineate CW boundaries to minimize the effect
of intra-/inter-observer differences. Also, they planed to
improve the CW classification model to add more flexibility
to their system.

Goyal et al. [12] proposed an automatic segmentation sys-
tem for DFU images based on a fully CNN network. They
implemented a two-tier transfer learning method by training
the fully convolutional network (FCN) for the segmentation
of a DFU and its surrounding skin. In this paper, the authors
did not determine different pathologies for DFU as a multi-
class classification problem. Also, they did not develop a
user-friendly interface for their system.

Garcia-Zapirain et al. [13], [14] proposed a classification
framework for PUs images based on 3D CNN networks,
which depended on retrieving and representing various fea-
tures. They represented these features as different modalities
of PU RGB images. These modalities were fused and pro-
vided to the 3D CNN with multiple paths to detect PU area
and its various tissues. The authors did not discuss the healing
assessment of CW. Table 1 lists a summary of some current
related work.

In summary, the basic limitations of the current studies in
wound analysis can be formulated in the following points.
First, the automatic wound segmentation is not a trivial com-
putational task; this technique has many challenges, such
as vague boundaries, irregular shape, heterogeneous tissue
colors, and various skin colors [8]. Therefore, a segmentation
technique is needed to extract each tissue type from the
CW images precisely. Second, most of the CW images are
captured by using a regular camera with variable lighting con-
ditions, which affects the wound images’ quality [7]. Third,
the assessment of the wound healing rate is considered a
challenging task that depends on the segmentation of various
tissue types [5], [9].

To overcome the limitations mentioned above, we pro-
posed a wound healing assessment framework to analyze
various CWs types based on color, texture, and prior visual
appearance analysis. Eleven features are extracted to sum-
marize the image contents as well as assess the healing
process. These features are five color spaces, local entropy,
local range, local standard deviation, gray level co-occurrence
matrix (GLCM), scale-invariant feature transform (SIFT),
and prior visual appearance. Then, non-negative matrix fac-
torization (NMF) is used to retrieve the most significant
features. Tissue classification is done be supplying the
extracted features to the gradient boosted trees (GBT) clas-
sifier. We classified four different types of tissues, which are
eschar, slough, granulation, and healing tissues in addition to
the other background skin and objects. Finally, we evaluated
the tissue healing rate depending on the changes in the area
of each tissue type to represent the wound healing process
visually.
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TABLE 1. A summary of some current related work (AUC: Area under the curve, ACC: Accuracy, DSC: Dice similarity coefficient, Sens.: Sensitivity,
Spec.: Specificity, MCC: Matthews correlation coefficient, and PAD: Percentage area distance).

FIGURE 2. The proposed healing assessment framework for CWs.

III. THE PROPOSED CW HEALING
ASSESSMENT FRAMEWORK
The ultimate aim of the proposed system is to develop an
objective non-invasive system for CWs healing assessment.

It utilizes eleven different features to extract the main char-
acteristics of the wounds. The proposed system classifies
different types of CW tissues from RGB images and assesses
the healing process in different types of wounds. Fig. 2
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shows the architecture of the proposed system that consists
of five processing stages. First, the preprocessing stage is
implemented to remove noise, eliminate illumination effects,
and improve the contrast of the processed images. Second,
the feature extraction stage is conducted to retrieve different
significant features from CWs images. Third, the feature
reduction stage is implemented to reduce the number of pro-
cessed features, which decreases the computation time of the
proposed system. Then, the classification stage is developed
to classify different types of wound tissues in addition to the
background objects and skin. Finally, the healing assessment
stage is implemented to assess the healing process of the
images depending on calculating the variation of the area
of each extracted tissue type. In the following subsections,
the stages of the proposed system will be discussed in detail.
Basic Mathematical Notations: n represents a voxel in the

CW RGB colored image. R indicates a 3D finite arithmetic
lattice of A × B × C voxels, where R = {n = (a, b, c) :
0 ≤ a ≤ A−1, 0 ≤ b ≤ B−1, 0 ≤ c ≤ C−1}, and C is the
number of color channels. In a CWRGB colored image, C =
3 and l ∈ L = {0, 1, . . . ,L−1} presents the integer intensity
levels in each RGB color channel, g = {gn : n ∈ R, gn ∈ L}.
Sseg indicates the segmentation map of the CW image, where
0 presents the background objects and skin, 1 presents the
necrotic eschar tissue, 2 indicates the granulation tissue,
3 represnts the healing epithelial tissue, and 4 represnts the
slough tissue. Finally, s ∈ Sseg = {0, 1, 2, 3, 4} presents the
binary labels for the segmented CW RGB colored images.

A. DATA PREPROCESSING
The preprocessing stage is implemented to enhance the con-
trast of the RGB images (gn) in addition to reducing the effect
of the light reflection. We applied a contrast-limited adap-
tive histogram equalization (CLAHE) technique with 8 × 8
tiles [15]. A bell-shaped histogramwas used with distribution
parameter α = 0.4. CLAHE divides the image into tiles with
a predefined size. Then, it computes the contrast transform
function for each tile separately. Finally, it combines neigh-
boring tiles by using bilinear interpolation to avoid including
artifacts in the boundaries. Therefore, the generated contrast-
enhanced image (gcon) is supplied to the next stage to extract
the features from the CW images.

B. FEATURE EXTRACTION
In this stage, we extracted different significant features to
classify various tissue types from the contrast-enhanced
CW colored images gcon. The most significant information
elicited from the processed images comprises color, texture,
SIFT [16], and prior appearance features. These four feature
categories are discussed in the following paragraphs.
Color Features: We chose five different color spaces to

handle some common issues in the captured RGB images.
The used color spaces are the original RGB, normalized
RGB, HSV, CIE 1976 L*a*b*, and CIE 1931 XYZ. In addi-
tion to the original RGB color space, the normalized RGB
color space (gnRGB) is calculated to eliminate the distortions

in RGB images that are generated from lights and shad-
ows [17]. It separates chromatic from achromatic informa-
tion, while it keeps the proportional relationships of the
components of the CWs RGB images. The HSV color
space (gHSV ) is used to remove the effect of the changes
in the illumination. The hue (H ) component has only the
intensity value of the color image that is not affected by
illumination changes. Also, the saturation (S) component
provides a higher contrast to the processed image [18]. The
two CIE color spaces (gLab and gXYZ ) are used to get better
perceptual accuracy [5]. Also, they can handle the differences
in the skin colors [6].
Texture Features: We extracted four different features,

which are local entropy (gent ), local standard deviation (gstd ),
local range (grng), and GLCM (gGLCM ). The prepro-
cessed color images gcon were converted to 8-bit grayscale
images (gr ) to calculate various texture features. Local
entropy of the grayscale CWs image calculates the entropy
value for n × n neighborhood pixels around the processed
pixel. We chose a window of size 9 × 9 to calculate the
local entropy. Local range of the grayscale images compute
the range values of a 3 × 3 neighboring pixels around the
processed pixel. The range value is calculated by subtracting
the maximum value from the minimum value. These values
are computed by applying dilation and erosionmorphological
filters to the processed window. Similarly, the local standard
deviation of the grayscale image is calculated by computing
the standard deviation of 3 neighboring pixels around the
processed pixel.

GLCM is a statistical technique for examining the texture
by revealing the spatial distribution of the gray levels in
the processed images. It considers the spatial relationship of
pixels by computing how frequently a pair of pixels occurs
in an image with particular values in a specified spatial
relationship. Therefore, the generated GLCMmatrix contains
the number of times for each pixel values in grayscale with
all grayscale levels. Fig. 3 shows how the GLCM matrix is
calculated from the gray image. For our purpose, we used a
256 × 256 matrix for each tissue type, and a neighborhood
system with eight different displacements {(a, b + 1), (a −
1, b + 1), (a − 1, b), (a − 1, b − 1), (a, b + 2), (a − 2, b +
2), (a − 2, b), (a − 2, b − 2)}. We selected 100 images from
different types of CWs that had been labeled by three different
experts to calculate the GLCM matrices for each tissue type.
Finally, we calculated 40 probability values for each pixel in
the testing images according to eight various neighborhood
distances and five different tissues including the background
objects and patient’s skin. Algorithm 1 lists the main steps of
creating the GLCM features for CWs images.
SIFT Features: SIFT feature is calculated for each pixel

in the processed CWs images to have a scale-invariant rep-
resentation. First, SIFT searches for stable features in mul-
tiple scales (σ ) of the processed image using a continu-
ous function of scale. It divides scale space into octaves.
In each octave, a Gaussian kernel is convolved with the
processed image to produce a set of scale space images.
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FIGURE 3. The GLCM matrix calculation.

Algorithm 1 The GLCM Features Generation for CWs
Images
Data: The labeled RGB images, testing RGB images,

and neighborhood distances.
Result: The GLCM tissue matrices and the probability

values for pixels in the tested RGB images.
for Labeled RGB Images do

Smoothing the RGB images and eliminate the noise;
Generate the equivalent grayscale image;
foreach Neighborhood Distance do

foreach Tissue Type do
Calcuate the GLCM;

end
end

end
foreach Testing Image do

Smooth the RGB image;
Generate the equivalent grayscale image;
foreach Pixel do

Retrieve the GLCM values for each tissue type
and each neighborhood distance;
Calculate the probabilities of the pixel;

end
end

Then, the difference of Gaussian (DOG) is calculated by
subtracting adjacent Gaussians. Second, a histogram of local
gradient directions for each pixel is calculated at the selected
scale. Each pixel’s feature represents stable 2D coordinates
with scale and orientation. Finally, the descriptor for each
pixel is calculated as a 128-element vector. A histogram of
gradient directions was calculated for locations in the 16×16
neighborhood of the processed pixel. Themost frequent value
of the gradient directions in the histogram presents the local

pixel orientation. Finally, the features were organized in a
128-elements feature vector that is normalized to make the
features independent from intensity variations (gSIFT) [19].
Prior Appearance Feature: The prior appearance map (gp)

for the CW image is generated based on the prior color
information of various tissue types of the CWs. The prior
probability of each pixel is calculated based on its color value
and Euclidean distance to different tissue classes. The prior
appearance feature is computed by applying three essential
stages. First, 100 CWs labeled preprocessed RGB images
were used to generate the databases (DBT ,T ∈ 1, 2, 3, 4)
of four CW tissue types. Each tissue database contains the
highest 200 repeated color values. Second, we calculate the
Euclidean distance (Dn,T ) between each pixel in the pro-
cessed images and the generated four tissue databases. Then,
the lowest ten values are chosen from each tissue class.
Finally, the probabilities of the currently processed pixel with
different tissue types are calculated by Eq. 1 and used as the
prior visual appearance feature. All the extracted features are
aggregated in one feature vector and supplied to the feature
reduction stage. Fig. 4 shows a graphical representation of the
prior appearance feature calculation.

Pp =
NT∑

T∈{1,2,3,4} NT
(1)

where T is the type of the CW tissue, which equals 1 for
eschar, 2 for granulation, 3 for healing, and 4 for slough
tissues. NT is the total number of pixels of a specific tissue
that have a Euclidean distance greater than or equal to a
threshold.

After extracting all features, the feature vector for each
pixel is generated by concatenating the output from each
extracted feature. The generated feature vector has 182 ele-
ments, which will be time-consuming if all of these elements
will be processed. Therefore, we applied NMF to reduce the
number of elements in the feature vectors.
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FIGURE 4. A graphical representation for the calculation of the prior appearance feature.

C. NMF-BASED FEATURE REDUCTION
After generating the feature vector for each pixel, it is
supplied to the NMF technique to reduce the feature vec-
tor dimensionality. NMF is a dimension reduction method,
which is based on a low-rank approximation of the feature
space, as shown in Eq. 2. Also, it guarantees that the features
are non-negative by generating additive models [20].

X (i, j) ≈ W (i, k)H (k, j) (2)

where X is a i × j non-negative matrix that represents the
extracted feature for all pixels in the processed image. K is a
positive integer where k < min(i, j). NMF calculates two
non-negative matrices, which areW (i, k) and H (k, j). It min-
imizes the norm of the difference of X − WH . W can be
considered as the reduced features and H as the impor-
tance of these features. Therefore, the product of W and H
presents a reduced approximation of the data stored in the X
matrix. To optimize the performance of our proposed system,
we tested different values of k (from 2 to 100). We found that
k = 10 gave the best performance among the other values.

D. TISSUE CLASSIFICATION
In this stage, the reduced feature matrix is supplied to a
classifier to assign each pixel in the processed CW image a
label corresponding to a tissue type. Asmentioned previously,
we want to detect four various types of tissues, which are
eschar, slough, granulation, and healing tissues, in addition
to the patient’s skin and other background objects. The GBT
classifier is used to classify the processed pixels into these
five tissue groups. GBT is an ensemble boosting algorithm,
which generates a prediction model by using an ensemble
weak predictionmodels. It is based on independent sequential
predictors that learn from previous ones. The main objective

of the GBT is to minimize the loss function (O(oi, o
p
i )), which

is calculated by the mean square error between the target (oi)
and predicted (opi ) outputs (Eq. 3). Therefore, the new pre-
dicted value (opin ) is calculated based on the previous pre-
dicted values and the learning rate (α) (Eq. 4) [21].

O(oi, o
p
i ) =

∑
(oi − o

p
i )

2 (3)

opin = opi − 2α
∑

(oi − o
p
i ) (4)

The highest performance is obtained with a number of trees
equal to 140 and maximal depth equal to 7 at α = 0.1.
We compared the results of the GBT classifier with six other
state-of-the-art techniques. The GBT classifier outperforms
the results of the other tested techniques.

E. HEALING ASSESSMENT
The final phase of our proposed framework is the healing
assessment stage. In general, the CW heals as it gradually
changes from necrotic eschar (black) to slough (yellow) to
granulation (red) to healing (pink) tissues [4]. The healing
process is entirely dependent on the initial severity of the CW.
In the late grades of CW (3rd and 4th grades), it is entirely
manifestedwith necrotic eschar tissue or superimposed layers
of the slough and necrotic tissues. As CW progresses in the
healing process, the granulation tissue begins to appear and
fills the wound cavity. Finally, it transformed into a healing
epithelial tissue with pink color, which gradually grows from
the wound edges to close it.

We assessed the healing process of the CW by calculating
the differences between the areas of each tissue type in two
or more consecutive images for the same CW. A histogram
of tissue class labels was constructed for each image. Finally,
the final healing assessment (HA) is provided as a cumulative
percentage of the healing process in all extracted tissues,
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FIGURE 5. Some examples of the output of the assessment process: (a) A PU case and (b) A DFU case.

as shown in Eq. 5.

HA =
(E1 + S1 + G2 + H2)− (E2 + S2 + G1 + H1)

4 ∗ (E1 + S1 + G1 + H1)
∗ 100

(5)

where E1 and E2 are the total necrotic eschar labeled pixels
in the first and second CW images, respectively. Similarly,
S1 and S2 indicates the change in the slough tissue, G1 and
G2 presents the change in the granulation tissue, and H1 and
H2 pointed out to the changes in the healing tissue. Fig. 5
shows two examples of the healing assessment process, which
include the original CWRGB images, segmented images, and
the healing assessment histogram. Fig. 5 (a) presents a PU
case, whereas Fig. 5 (b) presents a DFU case.

IV. EXPERIMENTAL RESULTS
We used 377 CW images to train and test our proposed frame-
work from two different sources. First, the Medetec wound
database [22] was used, which contains 341 RGB images of
various types of open CWs. Medetec includes 158 images
for PUs, 44 images for DFUs, 120 images for VAUs, and
19 images for burns. In addition to Medetec wound database,
we obtained 36 PU images from the national pressure ulcer
advisory panel website (https://www.npuap.org/). Therefore,
we have 377 CW images in total from both datasets for four
various types of open CWs.

On the other hand, we had 22 image sets for assessing the
healing processing for different types of CWs. Each image set
had two or more images of the same CW taken at different
periods during the treatment process. All processed images
have dimensions from 560× 400 to 1024× 1024 pixels and
were taken by using a regular camera at a 30 cm distance.
The GT for different types of tissues was generated by three
graduate students. Three dermatologists refined and approved
the GT for all images. The majority vote technique is used to
choose the final GT images for CWs. The proposed system
is implemented by using Matlab 2018a on a Dell workstation
with 64GBRAMand dual Intel XeonCPUE5-2620V4 quad-
core processors at 2.10 GHz.

We utilized three different metrics to evaluate the per-
formance of the proposed healing assessment framework.
These metrics are accuracy (ACC), true positive rate (TPR)/
sensitivity, and positive predictive value (PPV)/precision,
as listed in Eqs. 6, 7, and 8 [23], [24]. ACC indicates the ratio
between the correctly classified pixels to the total number of
all processed pixels. TPR indicates the correctly classified
positive pixels to the total number of all positive pixels. PPV
indicates the correctly classified positive pixels to the total
number of predicted positive pixels.

ACC =
TP+ TN

TP+ TN + FP+ FN
(6)
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FIGURE 6. The resulting ACC by testing different values of the k parameter in NMF technique for different
types of CW.

TABLE 2. The accuracy (%) of different types of tested CWs images by using NMF (k = 10) and 10-fold cross-validation.

TABLE 3. The accuracy (%) of different types of tested CWs images by using NMF (k = 10) and holdout validation (40% for testing).

TPR =
TP

TP+ FN
(7)

PPV =
TP

TP+ FP
(8)

where TP presents the true positive value, TN presents the
true negative value, FP presents the false positive value, and
FN presents the false negative value.

For NMF feature reduction, we tested many values for
k (k = 2, 4, . . . , 100) to achieve the highest performance.
Here, k represents the number of elements in the feature
vectors. We found that k = 10 gives us the best results for
all types of CWs, which reduces feature vector dimensions
from 182 to 10 elements. Fig. 6 shows the resulting ACC
with respect to choosing different values of the k parameter
in NMF technique for different types of CW.

To evaluate the performance of our system, we calculated
the overall ACC of the classification of the CW tissues and
compared the results with six different state-of-the-art clas-
sifiers, which are naïve Bayes (NB), deep learning (DL),

generalized linear model (GLM), Random Forest (RF),
decision tree (DT), and support vector machine (SVM). All
the results are obtained by using 10-fold cross-validation and
holdout validation (60% for training and 40% for testing)
to avoid overfitting. Table 2 lists the results of the average
accuracy of each CW type for 10-fold cross-validation. The
proposed system achieved an average overall accuracy of
96.2% for all types of tested CW images. On the other hand,
NB, GLM, DL, DT, RF, and SVM achieved 89.1%, 91.9%,
95.7%, 91.9%, 83.7%, and 94.8%, respectively. Table 3 lists
the results of the average accuracy of each CW type for
holdout validation (40% for testing). The proposed system
achieved an average overall accuracy of 96.1% for all types
of tested CW images. On the other hand, NB, GLM, DL,
DT, RF, and SVM achieved 88.9%, 92%, 95.2%, 91.6%,
84.8%, and 94.8%, respectively. The results show that our
proposed system, which is based on the GBT technique,
outperforms other state-of-the-art techniques. Also, all the
listed results in both tables are done by using k = 10 for
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FIGURE 7. The average computation time for processing one CW image by using different classifiers.

TABLE 4. The confusion matrix of the proposed system based on GBT
classifier for the PU images with holdout validation technique.

NMF technique. Table 4 shows an example of the confusion
matrix of the proposed system by using GBT classifier for the
PU images with holdout validation technique.

For the computation time, we measured the elapsed time
for each tested classifier. Fig. 7 shows the average consumed
time in ms for all tested classifiers on PU, DFU, VAU, and
burn images. The results shown represent the average time
to process a single image. The GBT did not present the
smallest time as it consumes on average less than 5 seconds
for processing only one CW image. We chose GBT to be the
classifier of the proposed CW healing assessment framework
because it achieved the highest accuracy as compared to the
state-of-the-art classifiers with reasonable computation time.

Second, we calculated the TPR and PPV for each CW
tissue type. Table 5 lists the results of both PPV and TPR for
each tissue types for different CW types by using the same
value of k = 10 for NMF and with 10-fold cross-validation
technique. The table shows the capability of the system to
distinguish between different types of tissues.

On the other hand, we evaluated the performance of
our proposed tissue classification stage by comparing its
results with three different state-of-the-art image segmen-
tation methods. These segmentation techniques are the 3D

TABLE 5. The PPV (%) and TPR (%) for different tissue types by using GBT
and NMF (k = 10).

DeepMedic CNN [25], Fuzzy C-Means (FCM) [26], and
Otsu [27] segmentation method. The DeepMedic CNN is
developed initially to segment a 3D medical image volume.
In our case, it is used to segment the colored RGBCW images
into four different tissue types in addition to the background
skin. The RGBCW image is supplied as the input to the CNN.
The CNN network consists of only one path with 11 layers.
It has 8 convolutional layers (2 layers of 30×213, 2 layers of
40×173, 2 layers of 40×133, and 2 layers of 50×93), 2 fully
connected layers (150×93), and 1 classification layer (2×93).
Its learning rate equals 0.001, momentum rate equals 0.7, and
regularization coefficients equal L1 = 0.000001 and L2 =
0.0001. The tissue classification stage is evaluated by using
two common metrics, which are Dice similarity coefficient
(DSC) and area under the curve (AUC). The DSC calculates
the relevant correspondence between two areas with respect
to their true/false positive and negative values (Eq. 9). The
AUC presents the expectations of a uniformly drawn random
positive is ranked before a uniformly drawn random negative
(Eq. 10). The higher the value of DSC and AUC, the more
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TABLE 6. The performance evaluation of the proposed tissue
classification stage compared with three state-of-the-art segmentation
techniques.

accurate the tissue classification stage. Table 6 lists the com-
parison results of the proposed tissue classification stage and
the other state-of-the-art segmentation techniques.

DSC =
2TP

2TP+ FP+ FN
(9)

AUC = 0.5
(

TP
TP+ FN

+
TN

TN + FP

)
(10)

As stated previously, three various dermatologists refined
and approved the GT for all CW images. To show the con-
sistency of each generated GT to the other two, the
Bland-Altman technique [28] is utilized to compute the
agreement degree between the resulting GTs. To have a good
agreement, the mean difference (bias) between two GTs of
two dermatologists is near zero. Also, most of the data points
should fall within 95% limits of agreement with the ±1.96
standard deviation (SD). This statistical technique is calcu-
lated for each CW tissue by two various dermatologists. The
Bland-Altman analysis confirmed the robustness of the GTs
of the three dermatologists.

Finally, we used 22 image sets for assessing the healing
process for different types of CWs by drawing the progress
of healing histogram. Fig. 5 shows the healing assessment
histogram for two different image sets. Fig. 5 (a) shows a
PU image set that consists of two consecutive images. It is
noticed that the slough tissue is completely disappeared from
the second image. Also, the areas of the granulation and
healing tissues are increased. The overall healing ratio is
48.67% as it is calculated by averaging all healing ratios.
Fig. 5 (b) shows an example of aDFU image set with a healing
ratio equaling 61.75. We calculated the healing score for all
22 images sets and compared the results with the actual clin-
ical diagnosis, which are provided by three dermatologists.
The proposed CW healing assessment system achieved an
accuracy of 95% as compared with actual clinical diagnosis,
which shows promising results.

V. CONCLUSION
In this paper, we proposed a framework for wound healing
assessment, which was based on identifying significant fea-
tures of different types of CWs. Themain idea of the proposed
system was to segment a wound into various tissue types
in order to calculate the healing ratio of the wound. NMF
technique is used to retrieve the most significant features to
reduce computation time. Then, GBT classifier is used to

classify different tissue types. Finally, the healing assessment
of the CWs is calculated, which depends on calculating the
improvement in the areas of different CW tissues. By fus-
ing significant features, the proposed framework proved an
accurate tool for evaluation of the CW healing process. The
proposed system achieved an average accuracy of 96% in the
tissue classification stage, which is promising as compared
with other state-of-the-art techniques. In future work, we will
try to predict the grades of CWs by analyzing the image
contents. Also, wewill expand our image database to evaluate
the assessment process comprehensively.
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