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ABSTRACT A condition-based maintenance approach may be used for planning the maintenance activities
of textile machines with a satisfactory performance by developing maintenance decision-making support
based on fuzzy logic and vibration monitoring. Since textile machines are systems with moving parts
operating at relatively high-speed, vibration monitoring was used to indicate their failure development. At
the same time, the characterization of the degradation phenomenon of textile machines involves some degree
of uncertainty and vagueness. Within this context, a knowledge-based approach that employed fuzzy logic
and vibration monitoring was developed. Deterioration symptoms do announce future failures of industrial
machines, therefore building a maintenance decision-making support for scheduling maintenance actions
of textile machines based on the estimation of their condition becomes a resourceful way to prevent their

further deterioration.

INDEX TERMS
decision-making.

I. INTRODUCTION
The structure of industrial machines that integrates hetero-
geneous components and complex subsystems, is becom-
ing increasingly advanced and difficult to be controlled [1].
Moreover, such machines often can fail, which has an impor-
tant influence on their availability and consequently on the
productivity of manufacturing facilities [2]. As a result, man-
ufacturing companies should consider any potential charac-
teristic that can improve the effectiveness of their machines.
Among such features, maintainability is considered to have
an important influence on the system’s effectiveness [3], [4],
thus enabling any company to become a world-class man-
ufacturer [5], [6]. Maintainability has been defined as the
feature of a machine to maintain or restore its prescribed
functions in the shortest possible time [7]. Therefore, main-
tainability depends on how failures are identified as well as
on how maintenance activities are planned and carried out in
order to prevent or eliminate the deterioration of machines.
Several strategies have shaped the field of maintenance
activities that can be broadly classified in reactive and
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proactive strategies [8]. One of the simplest strategies is
corrective maintenance, a reactive approach in which main-
tenance actions are performed to restore the designated func-
tions of machines only after their failure [8], [9]. At the same
time, production losses and maintenance costs related to this
strategy are usually high [10]. To respond to these drawbacks,
proactive maintenance strategies have been developed. Since
such strategies involve planned maintenance actions before
the failure of machines [8], the maintenance activities are
most of the time implemented in a more cost-effective way
compared with corrective maintenance [11].

Preventive and predictive maintenance are the main types
of proactive maintenance strategies [8], [12] and their
employment in industry has been presented in existing litera-
ture [1], [13]. In preventive maintenance strategies, the main-
tenance actions are carried out after a pre-specified time,
so they are also known as maintenance on a scheduled basis.
Block replacement policy and age replacement policy are
classical approaches in preventive maintenance [14]. Sev-
eral criteria may be employed in designing the preventive
maintenance policies. Such criteria are either maximization
of the machine availability or minimization of its average
maintenance cost [14]. Regardless the type of preventive
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maintenance policies, specification of the scheduled times at
which maintenance activities should be performed requires
adoption of distribution law associated with failure mecha-
nisms of the analyzed machine [15]. The adoption of the dis-
tribution law is based on the times-to-failure of the machine
under consideration, which demands a rigorous system of
collecting and recording its failure data [16], [17]. However,
this is mostly not the case for textile machines so that the lack
of sources of their failure data makes difficult to formulate the
preventive maintenance policies.

Nevertheless, the failure of machines is most of the time
preceded by some non-specific malfunction or deterioration
symptoms [18]. Therefore, a condition-based maintenance
approach, which is a predictive strategy, may be used for
planning the maintenance activities of machines. In general,
a condition-based maintenance approach is based on the
condition monitoring of the machine and on the process of
decision-making for its maintenance [19, p. 522]. Initially,
the technical state of the machine is estimated through con-
dition monitoring using various sensors. Then, it is followed
by a decision regarding the maintenance strategy that should
be carried out considering its operating conditions [19]. The
continuous development of the industrial sensors that are
able to capture different degradation signals and the rapid
advances in both hardware for data acquisition and software
for signal processing have accelerated the implementation of
condition-based maintenance [20]-[22].

Numerous industrial applications of condition-based main-
tenance have been reported in recent literature [16], [23]-[25].
Nevertheless, its employment in the field of textile machines
is relatively undeveloped and it is mainly dedicated to
condition monitoring. Sharp [26] presented a system for
condition monitoring of the needles of high-speed knitting
machines, based on transducers capable of monitoring the
cam-needle reactive forces. Cloppenburg et al. [27] also
highlighted the employment of sensor systems in developing
condition monitoring of manufacturing machines for textiles.
Wolfram and Isermann [28] described a method based on tele-
diagnosis, which used advanced communication channels to
monitor a textile machine for fault detection and diagnosis of
its individual parts. Scarpellini et al. [29] depicted a Web-
based application to monitor the condition state of textile
machines, which also provide the possibility of conducting
the analysis of the collected data regarding their productivity
and efficiency. It can, therefore, be noticed that there is scarce
research investigating the development of decision-making
support in condition-based maintenance of textile machines.

Within this context, this article aims to provide a main-
tenance decision-making support for failure detection of
textile machines based on the available condition moni-
toring data. The remainder of the paper is structured as
follows: the next section describes a framework for mainte-
nance decision-making support for textile machines taking
the existing research into account. The following section
presents results and discussion of the application of the devel-
oped maintenance decision-making support for a high-speed
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overlock sewing machine. Finally, the last section concludes
with a summary of findings and future research recommen-
dation, respectively.

Il. DEVELOPMENT OF A MAINTENANCE DECISION-
MAKING SUPPORT FRAMEWORK

FOR TEXTILE MACHINES

In the condition-based maintenance strategy, the maintenance
activities are performed only when they are needed [30].
According to Jardine et al. [22, p. 1484], implementation
of condition-based maintenance involves three major steps:
acquisition of data, followed by their analysis and a mainte-
nance decision process at the end. In the first step, relevant
data to the state of machines have to be acquired through
a data acquisition facility. Next, the collected data are pro-
cessed and analyzed to be better interpreted. An appropriate
maintenance decision is adopted in the third step. This paper
addresses the development of a framework for maintenance
decision-making support for textile machines, considering
the approach introduced by Jardine et al. [22]. The proposed
framework is depicted in Figure 1 and its features are detailed
below.

Maintenance
decision support

Data Data
acquisition

analysis

FIGURE 1. Maintenance decision-making support framework (adapted
from [22], p. 1484).

A. DATA ACQUISITION THROUGH

VIBRATION MONITORING

With the rapid advancement of data acquisition technologies
and systems, collecting data has become more affordable
and achievable [22]. Therefore, the relevant data regarding
the state of machines can be collected through monitoring
different parameters. However, the approaches for detection
of the state of machines have no universal application and
specific methods have to be employed, accordingly to the
characteristics of the monitored machines. Vibration mon-
itoring, acoustic monitoring, oil or wear particle analysis,
temperature monitoring or electrical monitoring are among
the most used methods [16], [21], [31].

Industrial machines, which integrate moving parts
inevitably generate some levels of vibrations in their oper-
ations. At the same time, any abnormal change in the level of
vibrations of the machine structural components may indicate
the development of a fault. Therefore, vibration monitoring
has become a main approach in revealing the running condi-
tion of the machines and detecting their faults in the incipient
states [32]. Moreover, because of rapid data collection and
relatively easy interpretation, it is one of the most effective
techniques for monitoring the condition of machines and
equipment [33]. The impact of vibration-based maintenance
on production and quality was described in [3]. Al-Najjar [3]
also highlighted the possible return on the investments that
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support the cost of buying and maintain such technology,
as well as the training of personnel for its employment.
Therefore, vibration monitoring is considered well suited
for mechanical systems such as industrial machines and
equipment [30], [34].

This is the case of textile machines, which are systems with
rotating and reciprocating components operating at relatively
high-speed regimes. Since vibration sensors can be mounted
on different critical components of textile machines, vibration
monitoring systems can be used in detecting their failure
development. Therefore, a vibration monitoring approach is
employed to monitor the state of textile machines. Various
vibration transducers are now available such as displacement
transducers, velocity transducers, accelerometers or laser
Doppler vibrometers [33]. Since piezoelectric accelerometers
are by far the most commonly used in machine condition
monitoring [31], they are also adopted for textile machines.

On the other hand, an increased level of vibrations can
often generates effects such as the breaking of thread and
damage of needles, and the shutdown of the machine. More-
over, the manufacturers of textile machines do not provide the
admissible level of vibrations during the operation of their
machines. Suteu et al. [35] employed vibration monitoring
to establish the operating speed of the textile machines, but
their results were based on an empirical approach. At the
same time,the relationship between vibrations and speed of
textile machines is expected to be a complex curvilinear one.
Since spline functions are recognized to be appropriate for
modeling such relationships, a spline regression could be
employed to represent the relationship between the ampli-
tude of vibrations (A) and speed of textile machines (v;) as
follows [36, p. 552]:

n K
Av) =) Boivi+ Y B (e — £} (1)
i=0 k=1

where foi, i=1...nand Bk, k = 1...Kare the regression
parameters of the nth degree spline function and K its knots,
while

S T
vi— &k, Vi > &
Thus, the following are concluded:
Proposition 1: A vibration monitoring approach is pro-
posed in order to monitor the state of textile machines.
Proposition 2: Vibration monitoring is proposed in order
to recommend the operating speed of the textile machines
corresponding to a level as low as possible of vibrations.

B. DATA ANALYSIS

Jardine et al. [22, p. 1486] classified collected data through
data acquisition step into three types, respectively value
data, waveform data, and multidimensional data. Value data
are represented by a single value, such as the temperature.
Waveform data exist in time series such as vibration data,
while examples of multidimensional data are image data,
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such as infrared thermograms. These data can be analyzed
using different algorithms and techniques and their employ-
ment highly depends on the types of previously collected
data. Such algorithms and techniques were also discussed
in [22], with a more detailed consideration of waveform data.
In practice, the analysis of value data is considered to be
easier compared with the waveform or multidimensional data
analysis [16].

Therefore, the next step after data collection based on
the monitoring approach presented in section II.A is the
analysis of vibration signals. Various methods are avail-
able for this purpose, including the analysis of time-domain
features, frequency-domain features and time—frequency
features [22], [34]. These three main categories of signal
processing were also reviewed by Jardine et al. [22]. Con-
sidering the advantage of the frequency-domain analysis to
easily detect the location of the fault, this signal processing
technique is employed for textile machines. At the same time,
the time—frequency analysis may be used to reveal changes in
the frequency contents of the signal over time.

Thus, this leads to conclude the following:

Proposition 3: The frequency-domain and time—frequency
analysis are proposed to detect the fault of textile machines.

C. MAINTENANCE DECISION-MAKING SUPPORT FOR
TEXTILE MACHINES: A FUZZY LOGIC APPROACH

Different approaches are available to support maintenance
decision making [24], [37]-[39]. In general, these approaches
can be grouped into physical-based approach and data-driven
approach [39]. According to Peng et al. [24], a physical-based
approach is usually built on mathematical models related
to physical processes that influence the degradation of the
system of interest. The physical-based models are considered
more accurate and precise comparing with the data-driven
ones [38]. However, the development of such models is more
difficult, computationally intensive and time-consuming, and
their practical applications are generally system-specific [38].
For such reasons, a data-driven approach is more widely
employed as a support for decision making in condition-based
maintenance than a physics-based one.

A data-driven approach is based on a model that correlates
various monitored parameters (such as vibration, acoustic
emission, temperature, etc.) of the analyzed system to its
degradation [38]. For this aim, both statistical and artificial
intelligence techniques are available to develop the model,
which is then used as a maintenance decision-making sup-
port [22], [24], [38]. The statistical analysis employs, among
other techniques, multivariate statistical methods, regression
models or different state space models [22], [24]. Artificial
intelligence analysis is mainly based on techniques from soft
computing, such as fuzzy logic, neural networks, evolution-
ary algorithms or their combination [22], [38]. Considering
their capacity to deal with the complex aspects of decision
making that are normally associated with human intelligence,
soft computing techniques are becoming more and more used
in the maintenance decision- making [38].
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Since the degradation phenomenon of textile machines
is a nonlinear and complex process that is influenced by
various factors, it is difficult to accurately determine a math-
ematical representation of this process. Therefore, the degra-
dation phenomenon of textile machines is characterized by
some degree of uncertainty and vagueness. On the other
hand, a data-driven model based on monitoring the state of
textile machines can be affected by some inaccuracy and
imprecision due to the limitations arising from the condition
monitoring process [25]. Moreover, well-qualified experts
are required to convert existing data into useful information
for maintenance decision making, and they are not so often
available [40].

Within this context, a knowledge-based approach based
on fuzzy logic may be employed to overcome such diffi-
culties. Fuzzy logic has been employed in fault diagnosis
of different systems such as rotating machines [41]-[43],
printing machines [44], railway wheels [45], pumps [46] or
gearboxes [47]. It has also been employed to predict fault
severity in helical gearboxes [48] or to develop an early
warning system for improving decision-making in condition-
based maintenance [49].

Several studies depicted the employment of soft computing
and particularly of fuzzy logic in various fields of textile
machines [50]-[53]. However, the use of fuzzy logic in the
condition-based maintenance of textile machines is by far
less investigated. Hence, an approach based on fuzzy logic
and vibration monitoring has been developed considering the
decision-making process presented in [54], as follows:

1) Set up the extracted features from the signal processing
analysis in section II.B Xy = {x, X3, ..., XN} as the input
linguistic variables in the fuzzy decision system.

2) Define the domain values for each input linguistic
variable xj,i =1, N:

sup

xi: Dy =[LILLYFL, i=TN 2)

where Dy, = LI, L{"] is the tolerance interval of
eachx; ,i=1,N.

3) Define the linguistic terms LTiXV related to each linguis-
tic variable x;,1 =1, N:

xi LT = {uTl ey,

X e
..,LTin:’}, i=TN ()
where n; is the number of linguistic terms of the x; input
linguistic variable (i = 1, N).

4) Establish the membership functions MFiXV, i=1,N
associated with each linguistic term LTiXV, i=1,N in the

expression (3):

il ’ in;

X; — LTiXv — MFiXV = {mf.XV mfé", . mev} ,

i=1,N @)
The membership functions in relation (4) may be chosen
among the available membership functions presented in the
literature [55].

5) Set up the measure used for maintenance scheduling as
the output linguistic variable of the fuzzy decision system.
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Let yc be the output linguistic variable of the fuzzy decision
system.

6) Define the domain value for the output linguistic vari-
able yc:

yc : Dye = [LIM L3P )
where Dy, = [Liy“Cf, Ly"] is the tolerance interval of the

output yc.
7) Define linguistic terms LTYC related to the linguistic
variable yc:

yo : LTYC = (LTI, LY, ..., LTS, ) (6)

where ny is the number of linguistic terms of the output
linguistic variable yc.

8) Establish the membership functions MFYC associated
with the linguistic terms of relation (6)

yc = LT > MFC = {mf], mB°, ..., mf};} (7

The membership functions in relation (7) may be chosen
among the available membership functions presented in the
literature [55].

9) Set up the fuzzy rules base and the fuzzy inference rules

FIR, :

TF(xs ZLTEYAND~ % =LT;*V... ANDxy = LTﬁj‘g)

THEN(yc = LT}) (8)

Inrelation (8),r = m and ng represent the number of fuzzy
inference rules, while j; = 1, n1, ji = 1, n;, JjN = I,ny and
p= T, nM .

10) Establish the defuzzification method

Among the available methods, the centroid method is
by far most frequently used because of its robustness and
less sensitivity to changes [56], and was proposed for
defuzzification.

Thus, the following is concluded:

Proposition 4: Considering the measured values of the
Xv at one moment t; as lei = {xlli, X2s - XNy }, the
value of yc, is obtained through the fuzzy decision system.
If yc, € Dyc the textile machine is considered in a good state
and usable. Otherwise, it is considered in a failure state and
maintenance actions are needed.

Ill. RESULTS AND DISCUSSION

An illustrative example of the application of the maintenance
decision-making support framework developed in the previ-
ous section is shown next for an overlock sewing machine.
The analyzed textile machine uses two needles and can reach
high speeds. According to its manufacturer, it is 35% to
100% faster than a normal one. The experiments have been
conducted on cotton using Nm 80 needles.

Since the condition of the needles has a major influence
on fabric quality [26], the experiments were carried out using
both new and defective needles. Textile samples have been
stitched with both new and defective needles. For each sam-
ple, the abrasion resistance in the stitched area has been
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TopMessage

device

Piezoelectric
accelerometer
on the X-axis

FIGURE 2. The data acquisition system for vibrations measurement along
with the X-axis of a Cartesian coordinate system (X, Y, Z).

determined through a Martindale abrasion tester [57], which
is used to assess the moment of occurrence of a defect in the
stitched area (expressed by the number of Martindale cycles
until the defect occurs).

A. DATA COLLECTION
Vibration monitoring was employed to indicate the technical
state of the overlock sewing machine. The condition monitor-
ing process was based on a data acquisition system composed
of an accelerometer sensor, TopMessage device, and a per-
sonal computer. Vibrations were individually measured along
with the X-axis, Y-axis, and Z-axis of a Cartesian coordinate
system (X, Y, Z) using a piezoelectric accelerometer on each
axis. The Vibrolab software was used for the analysis of
vibration signals. Figure 2 depicts the data acquisition system
for the measurement of vibrations along with the X-axis.
The sensitivity of the piezoelectric accelerometer was
100 mV/g £ 5%. For both the TopMessage device and
accelerometer piezoelectric, a calibration has been performed
before their employment. The noise or external perturba-
tions outside the bandpass of the monitored signal have been
removed with a high-pass filter and a low-pass filter that
were set at 10 Hz and 1000 Hz, respectively. The Vibro-
lab software was used to obtain the amplitude of vibrations
that had been expressed using the root-mean-square (rms)
velocity (mm/s rms).

B. DATA ANALYSIS
Operating at high speed the overlock sewing machine gener-
ates vibrations that above some levels may cause the occur-
rence of various defects on the sewed fabrics: uneven tension
of the stitches, sewing thread breakage, wrinkled stitches, etc.
Therefore, considering vibration monitoring, it is possible
to establish an operating regime at which the vibrations are
at their lowest values. Table 1 presents the amplitude of
vibrations measured along with the X-axis, Y-axis, and Z-axis
for a new needle at different operating regimes.

A spline regression as expressed in relation (1) was used to
model the dependency between the amplitude of vibrations

83508

TABLE 1. The measured amplitude of vibrations at different operating
regimes of the overlock sewing machine.

Operating regime v, Measure amplitude of vibrations (mm/s rms)

(stitches/minute) X-axis Y-axis Z-axis
(Ax ) (ay), (A

1500 215.18 49.01 26.54
2000 154.14 25.85 22.26
2500 159.14 9.96 15.89
2600 145.11 7.81 16.28
2700 166.83 10.59 21.99
2800 166.62 12.45 24.20
3000 176.61 56.79 26.96
3500 192.14 94.69 37.88
4000 221.34 108.67 40.06
4500 248.45 124.04 78.66
5000 246.83 129.37 79.94

and speed of the analyzed textile machines. The R software
was employed to perform all computations of the spline
regression modeling [58], which is described next for the
dependency Ax(v¢). First, this dependency is represented
graphically and based on the data representation, a cubic
spline function (n = 3) is considered to represent Ax(vy).
Next, the analysis is conducted for K = 0 (no knots), K =1
(1 knot automated placed at the median of v;), K = 2 (two
knots automated placed at the two tertiles points of v;) and
K = 3 (three knots automated placed at the first, second
and third quartile of v;). Figure 3 illustrates the cubic spline
regression models for the K = 0, 3 knots, along with the
initial data.

240 oI+

220
|

A, (mm/s rms)
20

180%"

160

T T T T T T T T
1500 2000 2500 3000 3500 4000 4500 5000

v; (stitches/minute)

FIGURE 3. The cubic spline regressions.

The values of the multiple R-squared for each cubic spline
regression are presented in Table 2.

VOLUME 7, 2019



M. Baban et al.: Maintenance Decision-Making Support for Textile Machines: A Knowledge-Based Approach Using Fuzzy Logic

IEEE Access

T EET/Spectrum

mm/s

150.000
10:38:42:093

100.0004 -

50.000

0.0004

T T T
E00.0 800.0 1000.0

H

T T
2000 400.0

400.000

300.000

200.0004

100.0004

0.0004

' FFT/Cascade

s

103853842

10:38:30:343
T
15000

T T
5000 1000.0
Hz

a)

b)

FIGURE 4. The values of the amplitude of vibrations at the recommended operating regime for a new needle along with the
X-axis: a) frequency-domain (FFT); b) time—frequency (FFT/Cascade).
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FIGURE 5. The values of the amplitude of vibrations at the recommended operating regime for a new needle along with the
Y-axis: a) frequency-domain (FFT); b) time-frequency (FFT/Cascade).

TABLE 2. The multiple R-squared for the cubic spline regression (Ax(v¢)).

Knots of the cubic K=0 K=1 K=2 K=3
spline regression
Multiple R-squared 0.965 0.9761 0.9813 0.9848

Considering the data in Table 2, the cubic spline regression
with K = 3 knots has been employed to model the dependency
Ax(vy), which can be written as:

Ay(vy) = 993.8223 — 9.171375¢ — 01*v,
+3.150107¢ — 04 % vZ — 3.311994e — 08*v}
—9.688592¢ — 08*(v; — 2550) .
+1.56793e — 07* (v, — 2800) .

—7.239858e — 08*(v¢ — 3750)3+ C)]

The minimum value of the expression (9) in the interval
(1500, 5000) was obtained at vi = 2264.319 stitches/minute
and was equal to 147.7291 mm/s rms. Nevertheless, the speed
of the analyzed textile machine can be set with a step
of 100 stitches/minute, so that the minimum set value of
Ay resulted equal to 147.8422 mm/s rms at v; 2300
stitches/minute.

A similar approach was conducted for the dependencies
Ay(v) and A,(vy), respectively and the results are shown
in Table 3.
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TABLE 3. The results of the cubic spline regression modeling of Ay (v¢)
and Az(vy).

Knots of Multiple Minimum Minimum set
the cubic R-squared computed value of  value of amplitude
spline amplitude of of
regression vibrations/speed vibrations/speed
(mm/s rmms - (mm/s rms—
stitches/ minute) stitches/ minute)
Ay(Vl) A(vy) Ay / (AZ /] [A}’ /] (AZ /J
Vi, ), Y, )o \Vt Jg UVt g
K=0 0.9435 0.9418 - - -
K=1 0.9436 0.9435 - - -
_ 6.4856/ 6.5886/
K=2 0.9848 0.9461 2471.57 2500
13.6586 13.6686
K=3 0.9821 0.9789 - / - /
2411.09 2400

A comparison between the minimum measured and mini-
mum set values of amplitude of vibrations /speed is depicted
in Table 4. Since the amplitudes of vibrations along with
the X-axis have much higher values than along with the
Y-axis and Z-axis, the recommended operating regime for the
overlock sewing machine was 2600 stitches/minute.

The values of the of vibration amplitudes in both
frequency-domain (FFT) and time—frequency (FFT/Cascade)
at the recommended operating regime and a new needle
are shown in Figure 4 (along with the X-axis), Figure 5
(along with the Y-axis) and Figure 6 (along with the Z-axis).
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FIGURE 6. The values of the amplitude of vibrations at the recommended operating regime for a new needle along with the
Z-axis: a) frequency-domain (FFT); b) time-frequency (FFT/Cascade).
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FIGURE 7. The values of the amplitude of vibrations at the recommended operating regime for a defective needle along with the
X-axis: a) frequency-domain (FFT); b) time—frequency (FFT/Cascade).
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FIGURE 8. The values of the amplitude of vibrations at the recommended operating regime for a defective needle along with the
Y-axis: a) frequency-domain (FFT); b) time—frequency (FFT/Cascade).

TABLE 4. The minimum measured and set values of amplitude of
vibrations.

Amplitude of vibrations/speed (mm/s rms -

Similarly, the values of the of vibration amplitudes in both
frequency-domain (FFT) and time—frequency (FFT/Cascade)
at the recommended operating regime and a defective nee-
dle are presented in Figure 7 (along with the X-axis),

stitches/minute) . . . . .
Ay /ve Ay /vy Ay /v Figure 8- (along with the Y-axis) and Figure 9 (glong v-v1th
— the Z-axis). To sum up, for a recommended operating regime
Minimum measured - 145.11/2600 78172600 13 8972500 of 2600 stitches/minute and a defective needle, the amplitude
Minimum set 147.8422/2300  6.5886/2500  13.6686/2400 ; p

Summarizing, for a recommended operating regime of
2600 stitches/minute and a new needle, the amplitude of
vibrations of the analyzed machine are 145.11 mm/s rms for
the X-axis, 7.81 mm/s rms for Y-axis and 16.28 mm/s rms
Z-axis.

83510

of vibrations of the analyzed machine are 155.76 mm/s rms
for the X-axis, 20.05 mm/s rms for Y-axis and 22.47 mm/s
rms Z-axis.

C. THE DECISION-MAKING PROCESS

Next is presented the employment of the approach based on
fuzzy logic and vibration monitoring for the maintenance
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FIGURE 9. The values of the amplitude of vibrations at the recommended operating regime for a defective needle along with the
Z-axis: a) frequency-domain (FFT); b) time-frequency (FFT/Cascade).

decision process of the overlock sewing machine. The ampli-
tude of vibrations measured along with the X-axis, Y-axis
and Z-axis were used as the input linguistic variables Xy =
{Ax, Ay, Agz}. The abrasion resistance of the textile fab-
ric sample using the Martindale abrasion tester was used
as output linguistic variable y. = ARM. Table 5 shows
the domain values and the linguistic terms associated with
each input variable and the output linguistic variable,
respectively.

TABLE 5. The input linguistic variables, the output linguistic variable,
their domain values and linguistic terms.

Type of
Variable variable/ Domain L
. Linguistic terms
name variable values
coding
X
LGV =A 11
Vibrations [145.11 11 xsma
amplitude Input/ 155.7 6]’ LT ZXV = Axmedium
along with X1 =Ax . X .
the X-axis mm/s rms LTj5™V = Axbig
LT21XV = Aysmall
Vibrations [7.81
amplitude Input/ 20.05] LBy = Aymedium
along with X7 =Ay ) X .
the Y-axis mm/s rms LT3V = Aybig
L LGV = Azsmall
Vibrations [16.28
amplitude Input/ 22.47] L%V = Azmedium
along with x3=Agz .y X )
the Y-axis movs rms LB35™V =Agbig
LT]ARM = ARMery smal
Abrasion ARM
resistance o , [25104, LL =ARMmall
using the utput, 65000] ARM_ A RMinedi
Martindale Yo =ARM  Martindale LT3 =A edium
abrasion cycles L’QARM = ARMvig

tester

LT ARM= ARMery big

The triangular and trapezoidal membership functions
have been employed in most reliability and maintenance
applications based on their simplicity and adequacy on
realistic reflecting and modeling the uncertainty [59]-[61].
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Nevertheless, recent studies indicate the Gaussian
membership function as an appropriate membership function
for the input variables in condition monitoring [62], [63].
Therefore, three fuzzy decision systems were built, using the
triangular, trapezoidal and Gaussian membership functions
for the input linguistic variables Xy = {Ax, Ay, Az}.
However, a triangular membership function was employed
to express the membership function of the output linguistic
variable y. = ARM in each case.
The fuzzy rules base consisted of 27 rules, as follows:

FIR;: IF(Ax = Axsmall AND Ay = Aysmall
ANDA7z = Azmedium)THEN(ARM = ARMbig)

FIRy7:(Ax = Axbig AND Ay = Aybig AND
Az = Azmedium)THEN(ARM = ARMverysmall) (10)

The centroid method was used as the defuzzification method.
The Fuzzy Logic Toolbox™of the Matlab ® software was
used in order to develop each fuzzy decision system based
on the estimation of the technical state of the textile machine.
Figure 10 depicts the inference rules of the fuzzy decision
system that employed the Gaussian membership functions for
the three input linguistic variables.

Considering the amplitude of vibrations measured along
with the three axes of a Cartesian coordinate system at one
moment, the value of the ARM can be obtained through each
fuzzy decision system. Then, it can be verified if ARM is
within the limits of [25104, 65000] Martindale cycles. In the
end, a decision regarding the state of the textile machine that
operates with that particular needle (good/failure condition)
can be taken and appropriate maintenance activities can be
planned if is the case.

On the other hand, a relatively long time is requested for
the Martindale test (it may usually take more than half a day).
Therefore, the validation of each fuzzy decision system was
performed considering the new and defective needles and
another three cases in which needles with different degrees
of wear were used. The results of the validation process are
illustrated in Table 6.
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FIGURE 10. The inference rules of the fuzzy decision system that used the Gaussian
membership functions for the input linguistic variables.

TABLE 6. The validation of the fuzzy decision systems.

Amplitude of vibration AM Martindale cycles AMR

(mm/s rms) %k ( yeles) k

No. Membership functions for the input linguistic variables (Martindale
Ax Ay Az (Tri-triangular, Trap-trapezoidal, Gauss-Gaussian) cycles)
Tri Mdm” Trap Mdm” Gauss Mdm”

1 145.11 7.81 16.28 63733 1 63498 1 64182 1 65000
2 149.40 10.80 18.05 55016 1 56197 1 59066 1 60212
3 151.44 14.67 19.33 52520 1 54878 1 55506 1 53488
4 153.81 17.05 20.59 35049 1 32178 1 31465 1 32668
5 155.76 20.05 22.47 27051 1 26379 1 25547 1 25104

* Maintenance decision-making: 1-good state and usable/ 2- failure state and maintenance needed

The performance of each fuzzy decision system was esti-
mated using the MAPE and RMSPE scale-independent mea-
sures. Their expressions are as follows [64]:

n

1 & |AMR,, — AMR
MAPE =~ Y ok pk (11)
n & AMR
and
1 <~ /AMRyx — AMRy \ 2
RMSPE= |- ( ok pk) (12)
n & AMR,,

where AMRpk and AMR are the predicted and measured
value of the ARM, respectively and k = 1, 5. Table 7 depicts
the values of MAPE and RMSPE for the three fuzzy decision
systems. The lowest value of the RMSE and RMSPE were
found equal to 2.47% and 2.68 %, respectively for the fuzzy
decision system that used Gaussian membership functions
for the input linguistic variables. Moreover, the values of the

83512

TABLE 7. Comparison of the fuzzy decision systems.

Membership functions for the input linguistic variables
Triangular Trapezoidal Gaussian
MAPE RMSPE MAPE RMSPE MAPE RMSPE
[%] [%] [%] [%] [%] [%]
5.48 6.24 3.63 4.11 2.47 2.68

RMSE and RMSPE for all three cases are less than 10%,
pointing out that the knowledge-based approach based on
fuzzy logic and vibration monitoring demonstrates satisfac-
tory performance.

IV. CONCLUSION

With proper design and implementation, condition-based
maintenance may be an effective tool for maintenance
decision-making of industrial machines. Since the condition
monitoring has no universal application, specific approaches
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must be employed according to the characteristics of the
machines of interest. Textile machines are systems with
rotating and reciprocating components operating at relatively
high-speed, and therefore a vibration monitoring was pro-
posed to detect their failure development. Since the manu-
facturers of textile machines do not specify the admissible
level of vibrations during the function of their machines,
an operating regime at which vibrations are at lowest levels
can also be recommended based on vibration monitoring.

A mathematical representation of the degradation phe-
nomenon of textile machines is difficult to be determined
because of its complexity and nonlinearity. Therefore,
the characterization of the degradation phenomenon of textile
machines involves some degree of uncertainty and vagueness
and a knowledge-based approach based on fuzzy logic may be
employed to overcome such difficulties. However, research
on using fuzzy logic in the condition-based maintenance of
textile machines is still less explored. Within this context,
a maintenance decision-making support has been developed
for textile machines considering a knowledge-based approach
that used fuzzy logic and vibration monitoring. The effective-
ness of the proposed approach was investigated for an over-
lock sewing machine. The results demonstrate satisfactory
performance, indicating that such an approach can be used for
decision making about the maintenance of textile machines.

At the same time, the existing literature shows that dif-
ferent combinations of soft computing and other artificial
intelligence techniques may be employed in maintenance
decision-making support [22], [24], [38], [65]. Therefore,
they are also considered as important research topics for
textile machines and future studies are expected to confirm
whether such combinations are more effective in supporting
maintenance decision-making of these machines.
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