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ABSTRACT With the objective of reducing energy cost, we study the stochastic optimization of traffic
off-loading via dual-connectivity by joint cell activation and user association. Particularly, explicitly con-
sidering the dynamic effects of time-varying and random traffic arrivals, we formulate a stochastic problem
that quantifies the tradeoff between energy cost and queuing delay. Employing two-time-scale Lyapunov
optimization, the formulated problem is transformed as a user association problem at each time slot and
a small-cell activation problem at each frame. However, the user association problem turns out to be a
mixed-integer nonlinear programming problem and is difficult to be transformed into a convex problem, and
traditional game-theoretic solutions, such as Nash equilibrium, cannot be used to solve it. Then, we introduce
a two-sided many-to-one matching game and propose a distributed user association algorithm that converges
to a local optimum. On the other hand, the cell activation problem belongs to the class of maximum facility
location problems that are generally NP-hard. Additionally, its objective function is not a submodular one.
Thus, we present an iterative and heuristic algorithm that finds the best set of active small-cell BSs by
repeatedly solving the user association problem with different sets of active small cells in each iteration.
Furthermore, an online two-time-scale joint cell activation and user association algorithm are developed.
Finally, numerical results show the effectiveness of the matching-based user association algorithm on traffic
off-loading improvement, the heuristic cell activation algorithm on trading off between energy cost reduction
and network throughput enhancement, and the online joint algorithm on balancing between energy cost
reduction and queuing delay performance.

INDEX TERMS Small cell dual-connectivity, cell activation, user association, two-time-scale Lyapunov
optimization.

I. INTRODUCTION
The explosive growth of global mobile data traffic and the
increasing environment and economic concerns have led to
a more urgent requirement for both area spectral efficiency
and energy efficiency [1]. In this context, the wireless infras-
tructure has evolved to an increasingly dense and heteroge-
neous architecture, where various access points (APs) with

The associate editor coordinating the review of this manuscript and
approving it for publication was Cunhua Pan.

different radio access technologies (RATs), coverage areas
and backhaul capabilities are deployed and operate in dis-
parate frequency bands and bandwidths. As a result, most
of the mobile users in such a dense wireless network
would be likely to lie in the overlapping coverage areas of
multiple RATs, which motivates the traffic offloading of
macrocell through optimally leveraging such simultaneous
availability ofmultiple RATs. Further, the architectures above
are being standardized as distributing traffic across cellu-
lar (LTE) and wireless LAN (WLAN) through LTE-WLAN
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Aggregation (LWA) [2], [3] and traffic splitting across an
anchor (macrocell) and a booster (small cell), i.e., dual-
connectivity (DC) [4]–[7]. Particularly, DC is gaining atten-
tion from both 3GPP LTE-A standardizing activities and
industry practice [8], [9], and the focus for DC in Rel-12 was
mostly on the downlink throughput enhancements, while new
Work Items were proposed in Rel-13 to 15 and beyond to
continue with the further development of DC [10].

Through effectively exploiting the additional network
capacities provided by multi-tiered small cells, DC achieves
flexible traffic schedule, efficient traffic offloading and low-
cost network infrastructure upgrade. Given the fact that more
and more user devices are equipped with multiple radio-
interfaces, traffic offloading via DC becomes increasingly
attractive [5], [11], [12]. However, when it comes to the
techniques to realize these gains enabled by DC, recent works
were based on static models without involving the dynamic
and stochastic features into problem formulation. Further,
none of those works gave consideration to energy saving
while energy-efficiency is one of the major design goals for
wireless cellular networks [1].

On the other hand, since high energy consumption in radio
access networks accounts for a significant proportion of the
operational expenditure of operators [13], the operators have
incentives to reduce energy consumption through novel hard-
ware design, efficient resource management and dynamic
BS activations [14]–[16]. Generally, transmission power con-
trol is a common method. But, considering various sources
of energy consumption in the BS equipment, such as cooling
system and processing unit, transmission power control alone
cannot be effective enough. Particularly, with current BSs,
even in idle or low traffic state, about 50 − 90% of peak
energy (energy consumed during peak traffic) is consumed
and appropriately turning off some BSs is preferably [17].
In addition, there is a fundamental tradeoff between energy
consumption and queuing delay [18], thus it is important
to balance their tradeoff so as to reduce energy cost while
satisfying QoS requirement.

In this work, we focus on the energy cost minimization-
oriented traffic offloading problem through proper small cell
activation and user association (i.e., small cell selection) in
the case of DC, where users are served by both macrocell
and one small cell (picocell, femtocell or Wi-Fi) with the
following considerations: First, we assume that all the back-
haul links between small cell BSs and the macro-BS are
ideal, thus DC is easy to be implemented. Second, since
a small cell BS consumes less energy than the macro-BS,
the operator of an integrated macrocell and small cell net-
work can reduce overall energy consumption by offloading
parts of cellular traffic to small cells. Third, for energy sav-
ing of network and QoS guarantee of mobile users, switch-
ing off some small cell BSs is more easily to be operated
and has smaller effects on the service provision quality.
At last, the cell activation and user association decisions
should be adaptive to time-varying and random traffic
arrivals.

To sum up, there are three major challenges in our con-
cerned optimization problem. Firstly, we consider a stochastic
system where both traffic arrivals and channel conditions of
users change over time, which require an online algorithm
that dynamically selects appropriate small cells as the boost-
ers of users for traffic offloading and switches off unnecessary
small cell BSs for energy saving based on non-causal infor-
mation at hand. Secondly, the user association is performed
much more frequently than the cell activation, which requires
the determination of cell activation and user association in
two time scales. Moreover, the actions of user association and
cell activation are tightly coupled that affect the total energy
cost. Thirdly, to reduce the total energy cost while providing
delay guarantee to all users, a good balance should be kept by
jointly optimizing cell activation and user association. Since a
long period of time is considered, the cell activation and user
association decisions are strongly correlated in both spatial
and temporal domains. Overall, distinguished from the static
optimization problems recently studied, the problem consid-
ered in this paper is formulated as a stochastic optimization
in two time scales.

In a nutshell, the contributions of this work are:
1) Considering time-varying and random traffic arrivals

for energy cost minimization-oriented traffic offload-
ing via DC, we formulate a stochastic optimization for
joint cell activation and user association.

2) Leveraging on two-time-scale Lyapunov optimization
approach, we develop an online queue-aware joint
algorithm for energy cost minimization by choosing
the active set of small cell BSs and determining the
association of users based on queue and channel state
information in the large- and small-time-scale respec-
tively. In this way, without relying on any statistic
knowledge of the system, the traffic demands of all
the users are satisfied while incurring minimum energy
cost.

3) The delay and energy cost performance of the proposed
algorithm is evaluated by numerical results. Due to
its adaptive to queue state information, the proposed
algorithm achieves significant performance gain and
can provide a flexible and efficient means to control
the tradeoff between energy cost and delay.

The rest of the paper is organized as follows. Section II
summaries the recent study on traffic offloading via DC and
tradeoff between energy cost and QoS performance. The sys-
tem model and problem formulation are given in Section III.
Section IV details the online joint cell activation and user
association algorithm. Section V presents the performance
evaluation. Finally, Section VI concludes the paper.

II. RELATED WORK
A. TRAFFIC OFFLOADING VIA DC
In regards to the techniques to realize traffic offloading gains
enabled by DC, the detailed system-level simulations to show
that how DC can improve end-user throughput and mobility
performance were given in [5]; [19] proposed the concept
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TABLE 1. Comparisons between this work and reference [27]–[29].

of flexible cell association in DC scenarios and derived the
DC association regions for decoupled access; [20] developed
a flow control algorithm where the macro-BS and small
cell BSs are interconnected with traditional backhaul links;
considering non-ideal backhaul links, Singh S. et al. proposed
an optimal traffic aggregation solution accounting for back-
haul delay [21]; while Wu Y. et al. jointly determined each
mobile user’s traffic schedule (between macro-BS and small
cell AP) and power control (between two radio-interfaces)
for uplink transmission in [22], and jointly optimized the
BS’s bandwidth allocation as well as the mobile user’s traffic
scheduling and power allocation in [23]. Moreover, there
are works focusing on the general ‘‘multi-homing’’ scenario.
Among them, [24] proposed a multi-RAT interface activation
algorithm; [25] solved a joint user assignment and data rate
allocation problem to maximize total utility; and the outage
probability and spectral efficiency associated with different
degrees of multi-connectivity in a typical 5G urban scenario
were characterized in [26]. In contrast, we take into consid-
eration the dynamic and stochastic features into the problem
formulation and put energy saving as one of the system design
objectives.

B. TRADEOFF BETWEEN ENERGY COST AND
QoS PERFORMANCE
Since it is important to balance the tradeoff so as to reduce
energy cost and satisfy QoS requirement at the same time,
recently, [27], [28] and [29] have jointly considered these
two aspects under different scenarios. Based on a static
model of an infrastructure-based wireless network with
multiple BSs, [27] formulated a total cost minimization prob-
lem allowing a flexible tradeoff between flow-level perfor-
mance and energy consumption; giving a general cellular
networkswith homogeneous BSs, an online control algorithm
to choose active set of BSs so as to satisfy users’ demands
while incurring minimum energy consumption was devel-
oped in [28], where user association issue was omitted due
to the homogeneity of BSs; considering a downlink slot-
ted cloud radio access network (C-RAN), [29] proposed a
joint radio remote head (RRH) activation and beamforming
algorithm accounting for random traffic arrivals and time-
varying channel fading. While differing from these works
in network scenario and focused issue, we solve an energy
cost minimization problem for heterogeneous networks with
DC by designing a joint cell activation and user associ-
ation algorithm, where the interactional small cell activa-
tion and user association in two time scales are adaptive
to time-varying and random traffic arrivals. For clarity, the

FIGURE 1. An example of the considered network model.

comparisons between this work and [27]–[29] are summa-
rized in Table.1.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
We consider the downlink transmission in a slotted system
and focus on the monopoly case, where a single operator
provides coverage for a geographic area by its own
macro-BS with massive MIMO and small cell BSs. Here,
‘‘small cell BS’’ is a generic term to represent cellular
pico-BSs, femto-BSs, and Wi-Fi APs collectively. To facil-
itate the implementation of DC, we assume that

1) The macro-BS serves as the gateway (system con-
troller) and provides ideal backhaul for all the small
cell BSs.

2) All the users have the capability of aggregating traffic
from both the macrocell and small cells.

3) The small cell BSs operate on a different frequency
from that of the macrocell, and cellular pico- and
femto-BSs reuse the same frequency.

4) The split of traffic occurs at the macro-BS, and all the
BSs are tightly synchronized.

5) The macro-BS assists the user association determina-
tion and executes the small cell activation algorithm.

Fig. 1 gives the considered network model. For clarity,
the set of small cell BSs is denoted byN ={1,· · ·,N }, where
the sets of Wi-Fi APs and cellular small cell BSs are respec-
tively N1 and N2, N1∪N2=N , N1∩N2=Ø. All the small
cell BSs offload the macro-BS by jointly providing coverage
for the set L= {1,· · ·,L} of locations, where multiple users
can be presented in a single location.1

1Given the fact that availabilities of Wi-Fi networks are location-
dependent [30], we consider locations instead of individual users. Moreover,
such a network model is consistent with heterogeneous cellular networks
based on LTE technology [28]
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FIGURE 2. An illustration of two-time-scale operations.

To reduce energy consumption, when the data traffic
is small, the system controller can turn off some small
cell BSs. Further, to avoid unnecessary overhead (e.g., energy
consumption, QoS degradation, delays) caused by frequent
on/off switch, BS activation and deactivate should be carried
out at a time scale that is larger than other normal opera-
tions such as user association. Therefore, here, we divide the
overall time into frames of size T time slots, and assume
that:

1) The activate and deactivate decisions of small cells are
made at the beginning of each frame (large-time-scale);

2) The association of locations with small cells is
determined at the beginning of every time slot
(small-time-scale).

Such a two-time-scale structure is illustrated in Fig. 2.
Further, we introduce a binary set Y(t)= [yn(t)]|N | with

yn(t)=

{
1, if small cell BS n is active at time slot t ,
0, otherwise.

(1)

to denote the state set of small cell BSs at time slot t .

B. RATE MODEL
Denoting by rl,n the throughput or long-term rate achieved
by a location l from a cell n, which depends on the RAT of
cell n, the location-specific parameters and the other loca-
tions that associated with cell n. While the instantaneous
physical rate Rl,n(t) of location l from cell n depends on
its selected modulation and coding scheme and the average
channel conditions between location l and cell n at time slot t ,
owing to the fact the user association is carried out in a large
time scale compared with the change of channels. Moreover,
the different access networks in heterogeneous networks have
different medium access (MAC) protocols to share the radio
resources among users. Referring to [31], the MAC protocols
are divided into two classes, and for a Wi-Fi AP n ∈ N1,
the long-term downlink rate of a location l served by it
depends on the specific locations that are connected to it and
can be expressed as

rl,n=
S∑

i∈Lxi,nS/Ri,n
, 0≤rl,n≤rWn,max , (2)

where the binary variable xi,n is defined as

xl,n=

{
1, if location i is served by small cell BS n,
0, otherwise.

(3)

S is the fixed packet size, and we adopt the general function
of Ri,n defined in [32], i.e., Rn=

PtrPsG
(1−Ptr )Tb+PtrPsTs+Ptr (1−Ps)Tc

,

where G is the average payload length, Tb is the back-
off slot size, Ts and Tc are respectively successful trans-
mission slot size and collision slot size, Ptr=1−(1−φ)Ln ,
Ps=

Lnφ(1−φ)Ln−1

1−(1−φ)Ln with φ being the transmission probability

and Ln=
∑

l∈Lxl,n being the number of locations associated
with Wi-Fi AP n. Besides, according to (2), all the locations
served by the same Wi-Fi AP achieve equal long-term rate.
Actually, this is due to the fact that a Wi-Fi AP provides fair
access opportunity to its associated locations. The long-term
rate of the locations on the downlink depends on the queuing
technique implemented on the Wi-Fi AP. By adopting the
most common technique, i.e., the round-robin scheme, all
the locations that share the same Wi-Fi AP achieve the same
downlink long-term rate.

While the long-term downlink rate of a location l served by
the LTE macrocell and small cell (picocell, femtocell) with
resource-fair MAC protocol can be respectively expressed
as

rl,0 = Rl,0/L0, ∀l ∈ L0 (4)

0 ≤ rl,n = Rl,n/Ln ≤ rmax , ∀l ∈ Ln (5)

where L0=L and Ln=
∑

l∈Lxl,n are the number of locations
sharing macro-BS and cellular small cell BS n∈N2, respec-
tively, and L0 and Ln are their sets. For locations served by
the macro-BS with massiveMIMO, by referring to the results
in [33] and borrowing results for the well-known case of
Zero-Forcing Beamforming precoding and i.i.d. (independent
and identically distributed) Rayleigh fading, the instanta-
neous rate in (4) can be approximated with a simple, accurate

rate Rl,0 = F0W0 log2

(
1+M0−F0+1

F0
P0hl,0
σ 20

)
, where W0 and

M0 are the bandwidth and the number of antennas of the
macro-BS, respectively and F0 is the prefixed load parameter
of the macro-BS indicating how many locations it could
serve (it is noted that the sum activities of all the locations
being served by macro-BS cannot exceed the beamforming
subset size F0, i.e., L ≤ F0), P0 is the transmission power
of the macro-BS, σ 2

0 is the noise power level, hl,0 denotes
the large-scale fading channel power gain between macro-
BS and location l, and there is no small scale fading fac-
tor in Rl,0. Moreover, Rl,n=W log2

(
1+ PCn gl,n

σ 2n+
∑

j 6=n,j∈N2
PCj gl,j

)
,

where W is the shared bandwidth of cellular small cells,
σ 2
n denotes the noise power level, gl,n is the average chan-

nel power gain (i.e., the large-scale slow-fading) between
cellular small cell BS n and location l, owing to the larger
time scale of user association compared to that of channel
varying [34].
Remark 1: It is noted that the transmission power of the

macro-BS and an active small cell BS is assumed to be
fixed in the above rate model. Obviously, the optimal power
allocation of the BSs will do help reduce the energy cost but
complicate the problem to be solved. In the future, we will
work on the joint cell activation, user association and power
allocation for energy cost minimization in heterogeneous
works with DC.
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C. TRAFFIC MODEL
The traffic intended for location l ∈ L is first received at
the gateway (macro-BS) and stored in the queues Ql(t).2 The
traffic arrivals (bits) at time slot t are denoted by A(t) =
[A1(t),· · ·,AL(t)], and we assume Al(t) is i.i.d. over the whole
frame and follows a general distribution with mean Al was
known to the gateway [28]. In addition, we assume Amin ≤
Al(t)≤Amax ,∀l∈L.

Since DC is adopted, the data stored in queue Ql(t) will
be distributed between the macro-BS and one small cell BS
that provides service to location l. Specifically, the traffic at
location l is routed to the macro-BS and one small cell BS n
with amount µl,0(t) and µl,n(t), respectively, at time slot t ,
and µl,0(t)=1trl,0(t), µl,n(t)=1txl,n(t)yn(t)rl,n(t), where
1t=1 is the time duration of time slot t .
Moreover, the assumption that the macro-BS keeps buffers

for the data that is not transmitted yet simplifies the consid-
ered queuing model. Since the decisions are made based on
the whole backlog of each location, this assumption will not
affect the solution. In addition, we assume that the total rate
provided for each location is upper bounded by µmax , i.e., the
inequality 0≤µl,0(t)+

∑
n∈Nµl,n(t)=

∑
n∈Nµ

s
l,n(t)≤µmax

holds for each location l∈L. In this context, the evolution of
queues in consecutive time slots are expressed as,

Ql(t+1)=
[
Ql(t)−

∑
n∈N

µsl,n(t)
]+
+Al(t), ∀l∈L, (6)

where [x]+=max{x, 0}, and the system is said to stable if the
following conditions on queue backlogs hold,

lim supt→∞
1
t

t−1∑
τ=0

E{Ql(τ )}<∞, ∀l∈L. (7)

D. POWER MODEL
Referring to [35], the power consumption PW ,ovn of Wi-Fi AP
n ∈ N1 can be expressed as follows:

PW ,ovn

=

PW ,an (Ln)=
(1−Ptr )Eb+PtrPsEs+

∑Ln

j=2
Pc,jEc,j(Ln)

(1−Ptr )Tb+PtrPsTs+Ptr (1−Ps)Tc
PW ,sn , if yn = 0

(8)

where Pc,j= (
Ln
j )φj(1−φ)Ln−j and Eb, Es, and Ec,j(Ln) are the

energy consumption of the backoff slot, successful transmis-
sion, and j collided transmissions, respectively, and PW ,an and
PW ,sn are respectively the power consumption of the active
and sleep Wi-Fi AP n. In [36], the approximate power con-
sumption models of cellular small cell BSs are established,
where a radio frequency (RF) chain refers to a set of hardware
components composed of a small-signal transceiver section,

2Our model only needs the backlog state information of each location,
while in practice, queues might reside in serving BSs and their size informa-
tion is fed back to the gateway.

a power amplifier (PA) and the antenna interface. Among
them, PA consumes a large share of overall power due to its
low efficiency, and RF chains can be switched off or put into
sleep mode individually when there is no transmission on the
respective antenna. According to this model, the relationship
between RF output powerPCn and overall BS power consump-
tion PC,ovn is given by:

PC,ovn =

{
PC,an =P

0
n+1nPCn , if 0≤PCn ≤Pn,max

PC,sn , if PCn = 0
(9)

where P0n is the power consumption calculated at the mini-
mum possible output power, and 1n is a coefficient repre-
senting the dependency of the required input power on traffic
load. PC,an and PC,sn are respectively the power consumption
of an active and sleep cellular small cell BS n ∈ N2.

While for massiveMIMO systems, since an infinite energy
efficiency can be achieved as the number of antennas goes
to infinity, the assumption that the power consumption of
a conventional BS is proportional to the radiated transmit
power is misleading. Thus, we adopt the model in [37], i.e.,

Pov0 =P0/10+

3∑
m=0

Cm,0Sm+
2∑

m=0

Cm,1SmM0, (10)

which clearly specifies the relationship between power con-
sumption Pov0 and antenna number M0. P0 and 10 are the
transmission power and PA efficiency of the macro-BS,
respectively, Cm,0 and Cm,1 are coefficients.
The overall power consumption of the system at time slot t

is

P(t)= Pov0 +
∑
n∈N1

[yn(t)PW ,an +(1−yn(t))P
W ,s
n ]

+

∑
n∈N2

[yn(t)PC,an +(1− yn(t))P
C,s
n
]
. (11)

E. ENERGY MODEL
We assume that all the BSs in this geographic area are pow-
ered by one or more energy retailers, and the operator can also
utilize renewable energy and finite-capacity energy storage
devices to minimize the energy cost. Therefore, some energy
scheduling approaches can be appropriately adopted. Here,
we omit the optimization of energy scheduling, and focus on
jointly optimizing cell activation and user association via DC
so as tominimize the total energy cost, which is regarded to be
proportional to the overall energy consumption, i.e., at time
slot t , the total energy cost is denoted by.3

C(t)=ω(t)P(t)1t, (12)

where ω(t) > 0 is the energy price at time slot t , and for
simplicity, we assume it is fixed and ω(t)1t=1.

3Obviously, the proposed algorithm can be applied to the case where the
energy supply of all the BSs is controlled by a power supply system, and it
can be easily extended to the general scenario where each BS has its own
power supply system.
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F. PROBLEM FORMULATION
We aim to design an online joint small cell BS activation and
user association algorithm by solving the following stochastic
energy cost minimization problem:4

P1: min lim supt→∞
1
t

t−1∑
τ=0

E{C(τ )}

s.t. (1), (3), (7) (13)

where the expectation E is taken with respect to the distri-
bution of the system’s energy cost, which depends on the
random cell activation set and user association relation. (7)
is the network stability constraint to guarantee a finite queue
length for each queue.5 (1) and (3) are the constraints on the
state of small cell BSs and user association, respectively.

IV. ONLINE ALGORITHM DESIGN
To know all future information on time-varying and random
traffic arrivals is not practical, and current control decisions
are coupled with the future ones. To deal with this, the com-
monly used dynamic programming suffers from a curse of
dimensionality. On the other hand, it is pointed out in [18],
[27]–[30], [38] that the stochastic control and delay analysis
in practice is usually investigated from the queue stability
perspective in a time-varying system using the Lyapunov
optimization technique. In this work, given the time-varying
and random traffic arrivals shown in subsection III-C and
the energy cost minimization problem in subsection III-F,
the formulated energy cost minimization problem by joint
cell activation and user association in (13) belongs to the
class of constrained optimization problems of time-varying
systems, and the Lyapunov optimization framework enables
the online algorithm design for such constrained optimization
of time-varying systems by transforming the stochastic opti-
mization problem into a deterministic one at each time slot.
Particularly, the above cell activation and user association
model fits well into the two-stage Lyapunov optimization
framework. In the following, using two-time-scale Lyapunov
optimization method, we detail the online control strategy
design at two levels of time granularity.

A. LYAPUNOV DRIFT FORMULATION
Firstly, the Lyapunov function L(t) is defined as a scalar
measure of queue backlog as follows,

L(t)=
L∑
l=1

1
2
[Ql(t)]2. (14)

4‘‘Online’’ emphasizes that the algorithm relies on limited or no future
information, as opposed to an ‘‘offline’’ one that requires complete future
information. We focus on the study of the online algorithm since it is not
practical to know all future information on the system randomness.

5The queue stability constraint is used to depict and control the average
delay. According to (7), queue stability is guaranteed if the average queue
length is finite. Note that average delay is proportional to average queue
length for a given traffic arrival rate from Little’s Theorem. As proved
in [38], the average queue length can be arbitrarily bounded by choosing
an appropriate control parameter.

By pushing the Lyapunov function towards a lower con-
gestion state persistently so as to keep the system stable,
we introduce the T -time-slot conditional Lyapunov drift
as:

1T (t)=E{L(t + T )−L(t)|Q(t)}. (15)

Then following the Lyapunov drift-plus-penalty frame-
work, we add a function of the expected operational cost over
T time slots (i.e., the penalty function) to (15), and obtain the
drift-plus-penalty term given as:

1T (t)+VE
{ t+T−1∑
τ=t

C(τ )
}
, (16)

where E is the conditional expectation with respect to the
distribution of energy cost given queue states Q(t), and V >0
is chosen to control the tradeoff between energy cost and
congestion (i.e., delay, reflected in queue backlogs). A larger
V means more emphasis will be put on energy cost minimiza-
tion during optimization. While when V is small, network
congestion carries more weight. In Lyapunov optimization,
the next derivation step is to find an upper bound on this
expression.
Theorem 1 (Drift-Plus-Penalty Bound): Let V > 0 and

t = kT for some k ∈R+. Given any set of feasible small cell
activation decision Y (t) and user association x(t), there is,

1T (t)+VE{
t+T−1∑
τ=t

C(τ )} ≤ B1T + VE{
t+T−1∑
τ=t

C(τ )}

−E
{ t+T−1∑

τ=t

∑
l∈L

Ql(τ )
[ ∑
n∈N

µsl,n(t)− Al(τ )
]∣∣Q(t)},

(17)

where, B1= 1
2L
(
A2max+µ

2
max
)
.

Proof: Assuming τ ∈ [t, t+T−1], through squaring the
queuing dynamics in (6), we obtain the following inequality,

[Ql(τ+1)]2≤ [Ql(τ )]2+
[ ∑
n∈N

µsl,n(τ )
]2
+[Al(τ )]2

−2Ql(τ )
[ ∑
n∈N

µsl,n(τ )
]
+2Al(τ )Ql(τ ). (18)

Summing (18) over all locations l ∈ L and combining∑
n∈Nµ

s
l,n(t)≤µmax and Al(τ )≤Amax , we have,

1
2

∑
l∈L

[
Ql(τ+1)2−Ql(τ )2

]
≤
1
2
L(A2max+µ

2
max)

−

∑
l∈L

Ql(τ )
[∑
n∈N

µsl,n(τ )−Al(τ )
]
. (19)

Taking expectations over y(t) and x(t) conditioning
on Q(t), we obtain the 1-time-slot conditional Lyapunov
drift:

11(Q(t)) ≤ B1 − E
{∑
l∈L

Ql(τ )
[ ∑
n∈N

µsl,n(τ )−Al(τ )
]∣∣Q(t)}.

(20)
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Summing (20) over τ ∈ [t, t+1,· · ·, t+T−1], we obtain:

1T (Q(t))≤B1T

− E
{ t+T−1∑
τ=t

∑
l∈L

Ql(τ )
[∑
n∈N

µsl,n(τ )−Al(τ )
]∣∣Q(t)}. (21)

Adding the cost term VE
{∑t+T−1

τ=t C(τ )
}
to both sides of (21),

we prove the theorem.

B. RELAXED LYAPUNOV OPTIMIZATION PROBLEM
The Lyapunov optimization aims to choose control actions to
minimize the right-hand side of (17). To achieve this, we need
the queue backlogs Ql(τ ) in time slots τ= t,· · ·, t+T−1,
which are not available at the beginning of frame t . There-
fore, we approximate the queue backlog at each time slot,
Ql(τ ), by the queue backlog at the beginning of the frame,
Ql(t). This approximation loosens the upper bound in (17)
as shown below. However, we will show our algorithm can
still approach the optimal performance with a proven bound
in Section IV-G.
Corollary 1 (Loosening Drift-Plus-Penalty Bound): Let

V > 0 and t= kT for some nonnegative integer k . Replacing
Q(τ ), τ ∈ [t, t+T−1] withQ(t), the drift-plus-penalty satisfies:

1T (t)+VE
{ t+T−1∑
τ=t

C(τ )
}
≤B2T+VE

{ t+T−1∑
τ=t

C(τ )
}

− E
{t+T−1∑
τ=t

∑
l∈L

Ql(t)
[∑
n∈N

µsl,n(τ )−Al(τ )
]∣∣Q(t)}, (22)

where B2=B1+ T−1
2 Lµmax (µmax−Amax).

Proof: From queuing dynamics (7), for each time slot
τ ∈ [t, t+T−1], the following inequality holds,

Ql(t)−(τ−t)µmax≤Ql(τ )≤Ql(t)+(τ−t)Amax . (23)

Therefore, combining (17), we obtain,

1T (t)+ VE
{ t+T−1∑

τ=t

C(τ )
}
≤ B1T − E

{ t+T−1∑
τ=t

∑
l∈L

[
Ql(t)

− (τ − t)µmax
]
×
[ ∑
n∈N

µsl,n(τ )− Al(τ )
]∣∣Q(t)}

+VE
{ t+T−1∑

τ=t

C(τ )
}
, (24)

which leads to the following inequality,

1T (t)+ VE
{ t+T−1∑

τ=t

C(τ )
}

≤ B1T − E
{ t+T−1∑

τ=t

∑
l∈L

Ql(t)
[ ∑
n∈N

µsl,n(τ )− Al(τ )
]∣∣Q(t)}

+
T (T − 1)

2
Lµmax (µmax − Amax)+ VE

{ t+T−1∑
τ=t

C(τ )
}
.

(25)

By denoting B2 = B1 + T−1
2 Lµmax(µmax−Amax), we

have (22).
The cell activation decisions yn(t) and user association

decisions xnk (t) can be determined by minimizing the right-
hand side of (22) or equivalently maximizing the following

E
{t+T−1∑
τ=t

∑
l∈L

Ql(t)
∑
n∈N

µsl,n(τ )
∣∣Q(t)}−VE{t+T−1∑

τ=t

C(τ )
}
, (26)

since neither
∑t+T−1
τ=t

∑
l∈LQl(t)Al(τ ) nor B2T in (22) will be

affected by the policy at time slot t .6

C. ONLINE JOINT SMALL CELL ACTIVATION AND USER
ASSOCIATION
Based on the traffic model in section III-C, the average traffic
arrival rate of each location is known at the gateway. Given
the average traffic arrival rate of locations, (26) is reduced to

E
{t+T−1∑
τ=t

[∑
l∈L

Ql(t)
∑
n∈N

µsl,n(τ )−VC(τ )
]}

= E
{t+T−1∑
τ=t

[∑
l∈L

Ql(t)
∑
n∈N

µsl,n(τ )−V (
∑
n∈N1

yn(t)CW(τ )

+

∑
n∈N2

yn(t)CC (τ )+Cco)
]}
, (27)

where CW (τ ) = [PW ,an −PW ,sn ], CC (τ ) = [PC,an −P
C,s
n ] and

Cco
=
[∑

n∈N1
PW ,sn +

∑
n∈N2

PC,sn +P
ov
0

]
.

In this case, the original optimization problem can be stated
as the joint optimization of small cell activation (finding opti-
mal y(t)) at the beginning of each frame and user association
(determining optimal µsl,n(τ )) at each time slot. For clarity,
the original optimization problem in (13) is further written as

P2: max E
{t+T−1∑
τ=t

[∑
l∈L

Ql(t)
∑
n∈N

µsl,n(τ )−VC̃(τ )
]}

s.t. (1), (3) (28)

where C̃(τ )=
∑

n∈N1
yn(t)CW(τ )+

∑
n∈N2

yn(t)CC (τ )+Cco.
Based on (28), obtaining optimal user association only

needs the queue backlog information at the beginning of
a frame. This fact together with the assumption that the
activation decisions keep unchanged during a frame implies
that there is an optimal activation solution to (28) where
associations between small cells and locations are constant.
However, it is obvious that the optimization problem in (28)
is inequivalent to the original optimization problem in (13).
In subsection IV-D.2, we analyze the performance gap in
detail. While in the following, we will show solutions to the
user association and cell activation problems respectively.

6Since a frame k can also be treated as a special time slot t , we use
‘‘time slot’’ for describing the cell activation and user association decisions
unitedly, and when solving them separately in the following subsections,
we will differ them with ‘‘frame’’ and ‘‘time slot’’ respectively.
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D. OPTIMAL MATCHING-BASED USER ASSOCIATION
From the above subsections, it is shown that the user associa-
tion scheme can be developed given the set of active small cell
BSs, and this split guarantees the equivalence to the loosened
drift-plus-penalty boundmaximization problem in (28) rather
than the original problem in (13). Specifically, given the set of
active small cell BSs Y , which consists of active Wi-Fi APs
n ∈ Y1 and cellular small cell BSs n ∈ Y2, the optimization
problem in (28) is simplified as:

P3: max
∑
l∈L

Ql(t)[rl,0(τ )+
∑
n∈Y

xl,n(τ )rl,n(τ )]

=

∑
l∈L

Ql(t)rl,0(τ )+
∑
l∈L

∑
n∈Y

Ql(t)xl,n(τ )rl,n(τ )

s.t.
∑
n∈Y

xl,n(τ )=1, ∀l∈L

xl,n(τ )∈{0, 1}, ∀l∈L, ∀n∈Y (29)

which is actually a weighted network throughput maximiza-
tion problem, and belongs to the class of mixed-integer non-
linear programming (MINLP) that is generally NP-hard and
has a complexity increasing exponentially with the number
of involved small cells and locations.

1) USER ASSOCIATION AS A MATCHING GAME
Generally, the distributed solution of an MINLP problem is
obtained by either convex optimization after some relaxation
and transformation, or game-theoretic methods. However,
it is easily found that the formulated problem is difficult to
be transformed into a convex problem and the traditional
game-theoretic solutions, such as Nash equilibrium, are not
suitable. Therefore, we adopt the matching theory [40], [41],
which provides distributed solutions with low-complexity
to the combinatorial problem that matchups players in two
sets depending on their individual information and prefer-
ence. Thus, the concerned user association problem quite
fits into the matching framework and the matching game
occurs between small cell BSs in set Y and locations in
set L.
We introduce a two-sided many-to-one matching game

where users in each location will be matched to at maximum
one small cell BS, while a small cell BS can be assigned
to one or more locations. Formally, we have the following
definition [42]:
Definition 1 (Matching Game): Given two disjoint finite

sets of players Y and L, a matching game ρ is defined as a
function from Y→ L, where we have 1) ∀n ∈ Y , ρ(n) ∈ L,
2) ∀l ∈ L, ρ(l) ∈ Y , 3) ρ(n) = l, if and only
if n ∈ ρ(l).

In matching theory, the quota of a player is defined as the
maximum number of players that a player can be matched to.
Here, the quota of a location is set to be one, while there is no
predetermined quota for a small cell BS. In addition, we have
(l, n) ∈ ρ, if location l is assigned to small cell BS n through
matching ρ, and (l, n) /∈ ρ otherwise.

2) PREFERENCE ANALYSIS
A preference relation � is defined as a complete, reflex-
ive, and transitive binary relation between players in L
and Y . In this game, each small cell BS in set Y
aims to serve locations for helping to offload. Hence,
max

∑
l∈L
∑

n∈YUl,n(rl,n, ρ), where ρ :L→Y is a matching
for assigning users in location l ∈ L to the best small cell
n∈Y , and Ul,n(rl,n,ρ)= xl,nrl,nQl is the utility function for
a location l ∈L serviced by cell n ∈Y . For ρ and xl,n, there
is: if (n, l) ∈ ρ, xl,n = 1, otherwise, xl,n = 0. Additionally,
Un(ρ) =

∑
l∈Lxl,nrl,nQl and Ul(ρ) =

∑
n∈Yxl,nrl,nQl are

respectively the utility functions of cell n and location l.
Then, for small cell n, the preference relation �n over

the set of locations L is defined as: for any two locations
l1, l2 ∈ L2, l1 6= l2, and two matchings ρ, ρ′ ∈ L× Y ,
l1 = ρ(n), l2 = ρ′(n): l1 �n l2 if and only if Un(rl1,n, ρ) >
Un(rl2,n, ρ

′); and similarly, for any location l, a preference
relation �l is defined over the set of cells Y such that, for
any two cells n1, n2 ∈ Y2, n1 6= n2, and two matchings
ρ, ρ′ ∈ L×Y , n1 = ρ(l), n2 = ρ′(l): n1 �l n2 if and only
if Ul(rl,n1 , ρ) > Ul(rl,n2 , ρ

′). Moreover, by observing (2)
and (5), for a location-cell association (l, n)∈ρ, the downlink
long-term rate depends on the other location-cell association
(i, j)∈ρ, (l, n) 6= (i, j). That is, the preferences of all locations
and cells are interdependent, i.e., they are influenced by
the existing matching. Additionally, externalities are used to
describe the dynamic impacts of these external effects on the
performance of each user-small cell association, and to study
them, matching games with externalities in [42] are suitable.

3) DISTRIBUTED SOLUTION
Given the externalities observed in the preferences, once
a location-small cell association is established or removed,
some locations and small cells may change their preference
lists. Thus, a final location-cell association never reaches
unless externalities are well handled. On the other hand, since
the preference lists change with the reforming of location-
cell association, the solutions based on preference lists are
unsuitable. Consequently, taking into account the externali-
ties, we have the following definition [43]:
Definition 2 (Stable Matching): Given a pair of small cell

BSs n,m ∈ Y and locations l, v ∈ L, a matching ρ with
(l, n), (v,m)∈ ρ is stable if no stable swap-matching ρln,m =
{ρ \ (l, n)} ∪ (l,m) exists, such that: ∀x ∈ {n,m, l, v},
Ux(ρln,m)≥Ux(ρ) and ∃x∈{n,m, l, v}, Ux(ρ

l
n,m)>Ux(ρ).

For the studied problem, a matching ρ with association
(l, n) ∈ ρ is said to be stable if there does not exist any
cell m or location v, for which cell n prefers location v
over l or any location l prefers cell m over n. Given the
externalities in current matching ρ, to reach the network-
wide matching stability, it must be guaranteed that the
swaps occur only if they are beneficial for the involved
players.

We develop Algorithm 1 to find a stable location-small
cell matching for the concerned user association problem.
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Initially, each location is associated with the nearest small
cell, and a matching ρ is formed. Then, based on current
matching, locations exchange performance metrics with the
neighboring small cells. In the second phase, locations and
small cells update their utilities and preferences depending on
matching ρ. For a location l, if the small cell serves it cur-
rently (denoted by n) is not its most preferred one (denoted
by m), it sends small cell m a matching proposal. While
for a small cell m, once a matching proposal is received,
it notices the involved small cells and locations to update
their utilities and cell m accepts the proposal only if it is
strictly beneficial. Otherwise, cell m rejects the proposal,
and location l examines small cell n and the next cell in its
preference list. In this way, based on current matching, both
locations and small cells update their utilities and preference
lists periodically. Eventually, each location is associated with
its first preferred small cell.

Algorithm 1 Matching-Based User Association
Require: The utilities and preferences of each set
Ensure: Stable matching between locations and small

cells
Initializing:Each location associates with its nearest small
cell
Stage I: Preference Lists Computation
• Locations and small cells exchange their performance
metrics information

• Locations (small cells) rank the candidate small cells
(locations) based on their preference functions

Stage II: Swap-matching Evaluation
repeat
Updating Unk(ρ) based on current matching ρ
Sorting Locations and small cells by �l and �n
if (m, ρln,m)�l (n, ρ) then

Location l sends a proposal to small cell m
Involved small cells and locations compute their util-
ity function for the swap matching ρln,m
if Swap matching ρln,m is strictly beneficial then
Lm←Lm∪{l}, ρ←ρln,m

else
Small cell m refuses the proposal, and location l
examines small cell n and the next small cell in its
preference list

end if
end if

until @ρln,m : (m, ρln,m)�l (n, ρ) and (v, ρln,m)�m (l, ρ)
Stage III: Association Determination
• Each location associates with its first preferred small
cell.

Remark 2: From Algorithm 1, it is easily seen that
the developed user association scheme depends on the
time-varying network characteristics such as cell states (acti-
vation or deactivation), queue states (traffic arrivals and
departures) and large-scale channel fading.

4) CONVERGENCE ANALYSIS
Proposition 1 (Convergence of Matching-Based Associa-

tion Algorithm): Algorithm 1 reaches a stable matching and
converges to a local maximum to the user association problem
in (29).

Proof: Following the analysis above, we have:

(1) According to the definition of swap-matching, a swap
occurs only if it strictly increases the utilities of the
involved players; owing to the small transmission
range, locations can only receive effective signals from
a few neighboring small cells. Thus, a limited number
of swaps may occur.

(2) Phase II continues until all the possible swaps have
been evaluated. Then each location associates with
its most preferred small cell, and vice versa. In this
case, there exist no swaps among neighboring loca-
tions and small cells that can bring further utility
improvement.

Hence, when Phase II terminates with no further improve-
ment can be achieved, Algorithm 1 reaches a stable matching
and converges to a local maximum of the problem in (29).
However, this local maximum may not be that of the original
optimization problem in (13).

E. SMALL CELL ACTIVATION DETERMINATION
According to the above analysis in (IV-C), the activation
problem of small cell BSs is given as follows:

P4: max
t+T−1∑
τ=t

{

∑
l∈L

∑
n∈N

Ql(t)yn(t)xl,n(τ )rl,n(τ )

−
V
S
[
∑
n∈N1

yn(t)CW (τ )+
∑
n∈N2

yn(t)CC (τ )]}

s.t. yn(t)∈{0, 1}, ∀n∈N (30)

The assumption that activation decisions do not change dur-
ing the frame indicates that there is an optimal solution to
the above problem in which associations between small cells
and locations are constant. Moreover, both CW (τ ) and CC (τ )
keep unchanged during the whole frame. Then, the above
objective function is further written as

U (Y) =
∑
l∈L

∑
n∈N

Qlynxr l,n −
V
S

[ ∑
n∈N1

ynCW
+

∑
n∈N2

ynCC],
(31)

which is a weighted energy cost minimization problem.
U (Y) is the net utility of the system. Ql denotes the queue

backlog of location l at the beginning of the current frame.
The traffic transferred to small cell n intending for location l,
i.e., xr l,n, cannot be larger than the traffic it can support,
i.e., xr l,n≤ xl,nrl,n. Moreover, the overall traffic allocated to
location l cannot exceed its demand, i.e., rl,0+

∑
n∈N xl,nrl,n≤

Ql . In addition, the problem (30) belongs to the class
of maximum facility location problems that are generally
NP-hard. Besides, it is noted that U (Y) is not a submodular
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set function, thus the active BS set optimizationmethod based
on submodularity theory in [39] cannot be applied.

In this regard, with the intuition of making the best possible
decision in each iteration, we present an iterative and heuristic
algorithm as shown in Algorithm 2. Specifically, the algo-
rithm starts with an empty activation set Y = Ø. At each
iteration, by solving the user association problem repeatedly
with different sets of active small cell BSs, the small cell
BS that offers the highest utility is chosen and added to the
set of active small cell BSs. This process continues until
there exists no small cell BS providing positive utility for
the current set of active small cell BSs. Since only one small
cell BS is activated in each iteration, the loop is executed
at most N times. Combining this with the low-complexity
matching-based user association can give the running time
of Algorithm 2.

Algorithm 2 Heuristic Cell Activation Algorithm
Require: The set of all the small cell BSs N
Ensure: The cell activation set Y
Begin:
Y←Ø;
continue← true;

while continue do
for ∀n∈N \Y do

Obtain U (Y ∪ n) where xr l,n(t) =

minτ∈{t,t+T−1}{xl,n(τ )rl,n(τ )} according to the
user association in Algorithm 1

end for
n∗←argmaxn∈N,yn6=1 U (Y∪n)−U (Y);
u←U (Y∪n∗)−U (Y);
if u>0 then
yn∗=1;
continue← true

else
continue← false

end if
end while

Remark 3: According to the above analysis and
Algorithm 2, the cell activation determination considers the
time-varying traffic states and large-scale channel fading.

F. TWO-TIME-SCALE ONLINE JOINT ALGORITHM
For the formulated energy-aware traffic offloading prob-
lem, the cell activation decision y(t) should be made at the
beginning of each large-time-scale (i.e., frame) while user
association decision xl,n(τ ) is made at each small-time-scale
(i.e., time slot). The problem is separated into two inde-
pendent sub-problems as given in (29) and (30) respec-
tively, and their respective solutions are presented in
Algorithms 1 and 2. At the end of each time slot, the queue
evolution is updated.

To summarize, the solution to the original optimization
problem and the implementation of the two-time-scale online
joint algorithm are illustrated in Fig. 3.

Algorithm 3 Two-Time-Scale Online Joint Algorithm
1) Large-time-scale cell activation: At the beginning of each

frame t=kT (k ∈R+), the state of each small cell BS
is determined according to Algorithm 2;

2) Small-time-scale user association: At each time slot τ ∈
[t, t +T − 1), the locations decide their association
with the active small cells according to Algorithm 1.

3) Queue Update: Update the queues using (6).

FIGURE 3. Solution to the original optimization problem and
implementation of the two-time-scale online joint algorithm.

G. PERFORMANCE ANALYSIS
We analyze the performance gap of the result achieved by
joint algorithm, if the accurate knowledge ofQ(τ) in the future
large-time-scale interval is employed rather than the approx-
imation. We denote by C∗ the theoretical offline optimal
value of the objective function of energy cost minimization
problem.
Theorem 2 (Performance Bound): Assuming that all the

queues are empty initially, for a given V > 0, it has been
shown in [38] that any method that maximizes (28) satisfies

lim supt→∞
1
t

t−1∑
τ=0

C(τ )≤C∗+
B2
V
. (32)

Proof: Let t = kT (k ∈ R+) and τ ∈ [t, t+T−1]. There
exists an optimal solution C∗. Since the proposed online joint
algorithmminimizes the right-hand side of (22), plugging the
control policy into it, we have:

1T (t)+ VE
{ t+T−1∑

τ=t

C(τ )
}
≤ B2T + VE

{ t+T−1∑
τ=t

C(τ )
}

≤ B2T + VTC∗. (33)

By taking expectation of both sides, we obtain:

E{L(t+T )−L(t)}+VTE{Cav(t)}≤B2T+VTC∗. (34)
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FIGURE 4. A simulation topology.

Summing (34) over t=kT , k=0, 1, 2,· · ·,K−1, applying
the fact thatL(t)>0, and dividing both sides by VKT , we get:

1
KT

E
{ KT−1∑
τ=0

Cav(τ )
}
≤ C∗ +

B2
V
. (35)

Taking the limit as K→∞, we complete the proof.
The above theorem indicates that by increasing V the gap

between the optimal energy cost and the achieved one can be
made arbitrarily small. Also, it is noted that, as we usually
have performance-backlog tradeoff, a larger V means larger
queue size [38].
Remark 4: The above Theorem 2 is obtained with the

assumption that traffic arrivals are i.i.d. over time slots. Refer-
ring to [44], it can be extended to the case when traffic arrivals
are Markovian. More specifically, in this case, the perfor-
mance gap can be expressed as O( 1V ).

V. PERFORMANCE EVALUATION
In this section, firstly, we give the simulation settings. Then,
the performance of the proposed matching-based user asso-
ciation algorithm, the heuristic cell activation algorithm, and
the joint cell activation and user association algorithm is
respectively evaluated.

A. SIMULATION SETTINGS
We simulate the problem with 1 macrocell network, N = 25
small cell networks and L = 120 locations. The coverage
radii of macro-BS and each small cell are set to be 500m and
80m, respectively, and each location has a size of 15×15m2.
Referring to [28] and [30], we set the time slot length to be
1 second, and the frame length to be 10 seconds, i.e., the frame
size T = 10. The simulation topology is shown in Fig. 4.

1) MACROCELL NETWORK AND CELLULAR SMALL CELL
NETWORKS
The average channel power gain between location l and
cellular small cell n embodies the effects of path-loss and log-
normal shadowing. Basic parameters are shown in Table 2.
Moreover, for the macro-BS with massive MIMO, we set
its power consumption coefficients as C0,0=4, C1,0=4.8,

TABLE 2. Simulation parameters.

TABLE 3. Simulation parameters II.

C2,0=0, C3,0=2.08×10−8, C0,1=1, C1,1=9.5×10−8 and
C2,1=6.25×10−8.

2) Wi-Fi NETWORKS
Assuming that all the Wi-Fi APs are randomly distributed
spatially and applying the transmission rate function and
power consumption function in subsections III-B and III-D,
respectively, we give the following simulation parameters for
Wi-Fi networks.

3) LOCATIONS
For the traffic arrival Al(t) of each location l, we generate
it based on an ergodic Markov chain, and the mean traffic
arrival rate per location is set to be 2 Mbps.

B. NUMERICAL RESULTS
Firstly, with a fixed set of active small cell BSs, we present
the convergence and effectiveness of matching-based user
association algorithm. Then, the potentials of the heuris-
tic cell activation algorithm are given. Lastly, the perfor-
mance of joint cell activation and user association algorithm
is evaluated.

1) CONVERGENCE AND EFFECTIVENESS OF
MATCHING-BASED USER ASSOCIATION ALGORITHM
We focus on the 1st time slot in the 1st frame, i.e., t = 1
and τ = 1, and all the small cells are active. Firstly, Fig. 5
shows the total utility U (τ ) (U (τ ) =

∑
l∈L Ql(t)[rl,0(τ )+∑

n∈N xl,n(τ )rl,n(τ )) versus swaps in a matching-based user
association procedure. It is easily observed that the matching
game converges in a few number of swaps, and all the swaps
increase the total utility. Then, with varying number of loca-
tions, Table 4 and Fig. 6 respectively show the average num-
ber of swaps to reach convergence and the average percentage
of total utility improvement versus the number of small cells
and locations. We can easily see that, with the increasing
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FIGURE 5. U(τ ) versus swap in 10 matching games.

TABLE 4. Average number of swaps (Ns) and average percentage of total
utility improvement (Perimpro) verse number of small cells (N).

FIGURE 6. Average number of swaps and average percentage of total
utility improvement.

number of small cells (locations), the average number of
swaps in a matching-based cell selection firstly increases
and then decreases since the distribution of small cells and
locations gradually evens out, while the average percentage
of total utility improvement keeps decreasing slightly.

2) POTENTIALS OF HEURISTIC CELL ACTIVATION
ALGORITHM
For performance evaluation of the proposed heuristic cell
activation algorithm, we still focus on the 1st frame,
i.e., t = 1, and define U (Q)=

∑
l∈L Ql(t)

∑
n∈N yn(t)xr l,n

and U (C)= V
S

[∑
n∈N1

yn(t)CW
+
∑

n∈N2
yn(t)CC

]
. Firstly,

in Fig. 7, we show the evolution ofU(Y),U(Q) andU(C) in an
activation procedure following Algorithm 2 with V = 1014.
Specifically, since each effective step activates a small cell,
17 out of 25 small cells are activated in the considered sce-
nario. Then, the distribution of active and sleep small cells are
marked in Fig. 8. Particularly, 13 out of 17 active small cells
are pico-BSs, which results from their relative high capacity
compared to that ofWi-Fi APs. In addition, the distribution of

FIGURE 7. Evolution of U(Y), U(Q) and U(C).

FIGURE 8. Distribution of the active and sleep small cells.

FIGURE 9. Evolution of U(Y) with different V and Qave.

active small cells facilitates traffic offloading. Further, given
fixed small cells and locations, Fig. 9 presents the evolution
of U(Y) with different V and average queue length Qave. It is
easily observed that, a larger V brings smaller U(Y), i.e., less
weighted energy cost; and a smaller Qave needs fewer active
small cells and U(Y) decreases.

3) PERFORMANCE EVALUATION OF ONLINE JOINT
ALGORITHM
WithV =1012, Fig. 10 shows the queue dynamics versus time
slot in 5 frames. Due to the fact that there are 120 locations,

VOLUME 7, 2019 84949



Q. Han et al.: Queue-Aware Cell Activation and User Association for Traffic Offloading via Dual-Connectivity

FIGURE 10. Queue dynamics versus time slot in 5 frames (V = 1012).

FIGURE 11. Average number of active small cells and average queue
length.

i.e., 120 queues, we omit the legend. It is easily observed that,
at the beginning of each frame, the cell activation decisions
are made based on queue states and delay- or energy cost-
aware optimization objective. For example, at frame 5, since
the queue backlog seems a little serious, the number of active
small cells increases compared with that in other frames.
Then in each frame, the small cells help offload through
proper location-cell association. Moreover, the matching-
based traffic offloading in each time slot of a frame is based
on the queue states at the beginning of the frame, and the
volume of traffic offloading in the frame varies a little over
different time slots due to the large-scale slow-fading of
channel power gains.

Then, with different V s, Fig. 11 presents the average num-
ber of active small cells and the average queue length of
each location at each time slot in 5 frames. Owing to the
time-varying parameters, such as positions, traffic arrivals of
locations, and channel fading, we run the joint algorithm for
50 times to get the average values. From Fig. 11, we can
easily see that, as V increases, the average number of active
small cells decreases since more emphasis is put on energy
cost reduction, which brings more serious queue backlog,
i.e., a longer queue of each location at each time slot. While
when V = 15, there are on average less than 5 small cells
are activated, and the average queue length increases rapidly.

In a word, when the network optimization targets at reducing
energy cost, we should set a reasonably large value to V .
Otherwise, V should be set to be relatively small if the delay
performance is more valued.

VI. CONCLUSIONS
By considering time-varying and random traffic arrivals,
we study the stochastic optimization of joint cell activation
and user association for energy cost minimization-oriented
traffic offloading via DC. By employing the two-time-scale
Lyapunov optimization technique, we transform the for-
mulated problem into a per-frame cell activation problem
minimizing the weighted energy cost and a per-time-slot
user association problem maximizing the weighted network
throughput. Then, without relying on any statistic knowl-
edge of traffic arrivals and channel states, firstly, a matching
game with externalities is introduced to distributively solve
the user association problem; secondly, a heuristic algorithm
is adopted to obtain the optimal set of active small cells;
lastly, an online joint cell activation and user association
algorithm, which achieves a flexible and efficient tradeoff
between energy cost and queuing delay by adjusting a single
parameter, is developed. Moreover, we present numerical
simulations to demonstrate the convergence and effectiveness
of the proposed algorithms.
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