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ABSTRACT The task of virus classification into subtypes is an important concern in many categorization
studies, e.g., in virology or epidemiology. Therefore, the problem of virus subtyping has been a subject of
considerable interest in the last decade. Although there exist several virus subtyping tools, they are often
dedicated to a specific family of viruses. Even specialized methods, however, often fail to correctly subtype
viruses, such as HIV or influenza. To address these shortcomings, we present a viral genome deep classifier
(VGDC)—a tool for an automatic virus subtyping, which employs a deep convolutional neural network
(CNN). The method is universal and can be applied for subtyping any virus, as confirmed by experiments
on dengue, hepatitis B and C, HIV-1, and influenza A datasets. For all considered virus types, the obtained
classification rates are very high with the corresponding values of the F1-score ranging from about 0.85 to
1.00 depending on the virus type and the considered number of subtypes. For HIV-1 and influenza A,
the VGDC significantly outperforms the leading competitors, including CASTOR and COMET. The VGDC
source code is freely available to facilitate easy usage and comparison with future approaches.

INDEX TERMS Genome, virus, subtyping, classification, convolutional neural network.

I. INTRODUCTION
Genomic sequence classification aims at assigning a given
sequence into a group of already known sequences which
share similar characteristics. This task is of crucial impor-
tance in many categorization studies, especially in virology
and epidemiology where virus subtypes may relate to the
rates of disease progression or susceptibility to drug treat-
ments. Therefore, the problem of virus subtyping has been
a subject of considerable interest in the last decade.

As a result, a number of approaches to automatic clas-
sification of viral strains into groups representing virus
subtypes have been proposed. These approaches can be
roughly divided into three categories, namely alignment-
based, feature-based, and model-based methods [1].

The most popular representatives of the alignment-based
methods for the automatic virus subtyping are SCUEAL [2],
USEARCH [3] and REGA [4], [5]. They all are phyloge-
netic methods which rely on an initial alignment between
the virus sequence being classified and the reference set.
To improve classification, especially in the case of recom-
binants, SCUEAL utilizes the phylogenetic likelihood of
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mosaic structures, while REGA applies a bootstrap supported
sliding window.

However, for these methods, there may still exist several
possible initial alignments and selection of a particular one
may adversely affect the classification result. Additionally,
the application of both SCUEAL and REGA is limitedmainly
to HIV virus strains. Alignment-based methods are rather
expensive computationally and their performance, depend-
ing on heuristically chosen parameters, may be unstable for
highly variable regions of the genome.

The feature-based methods transform genomic sequences
into feature vectors which are then classified into subtypes
using traditional machine learning algorithms. As a result,
they can be applied to any virus type. The CASTOR web
platform [1] utilizes the signatures of restriction fragments
length polymorphism (RFLP). Particularly, it builds feature
vectors based upon the distribution of the restriction site
patterns and then refines them using relevant feature selection
methods. Finally, the feature vectors are inputs to popular
classifiers (including, i.a., SVM and AdaBoost) which need
to be tested to select the best one. Additionally, tests need
to be performed on balanced datasets, i.e., having more or
less the same number of instances of each subtype. A similar
approach was also used in KAMERIS [6], where feature
vectors expressing the respective k-mer frequencies of virus
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sequences were passed to popular supervised classifiers. The
input genomic sequences need however to be preprocessed by
removal of any ambiguous nucleotide codes. The frequencies
of k-mer nucleotide strings were also utilized by [7], where
the authors trained a simple feed-forward neural network
to predict Influenza virus antigenic types and hosts. The
method, however, was tested only on a limited number of
virus subtypes (namely: H1, H3, and H5).

Finally, a representative of the model-based meth-
ods is COMET (COntext-based Modeling for Expeditious
Typing) [8]. The method makes use of the Prediction by
Partial Matching (PPM) compression scheme. In particular,
it builds a variable-order Markov model for each reference
sequence. Then, for all symbols of the query sequence,
the likelihoods of their occurrences in each of the reference
types are derived, and the final classification is obtained
from a simple decision tree. Although the model performs
well for pure virus types, it requires the recombinants to
be treated in a special way. Additionally, it is required to
adjust the best model order, window size and the threshold
for recombination detection.

In parallel, the deep learning (DL) approach has demon-
strated outstanding performance in the field of artificial
intelligence, with prominent applications in machine vision,
natural language processing, and audio signal recognition
(see, e.g., [9] and references therein). Particularly, in vari-
ous visual recognition tasks (including object classification,
localization, and detection from digital images) convolutional
architectures like LeNet-5 [10], AlexNet [11], VGG [12],
ResNet [13] or GoogLeNet [14] present the accuracy nearing
or even exceeding the human performance.

Starting with early applications in the ’90s [15], neural
networks and recently deep learning have also been gradu-
ally revolutionizing genomics [16]–[19] (see also [20], [21]
for broader overviews of deep learning applications in
computational biology). The existing DL research in the
area of genomics mostly concentrates on two major
problems. These are (i) genomic sequencing and gene
expression analysis [22]–[25], and (ii) protein structure
prediction [23], [26]–[28]. There also exist some attempts
to classify DNA sequences with DL [29], [30]. Sam-
ple applications in this area include chromatin structure
classification [31], polyadenylation site prediction [32] or
classification of G protein-coupled receptors [33]. However,
to the best of our knowledge, no attempts to perform virus
subtyping with the application of deep learning have been
reported. Therefore, this study presents the Viral Genome
Deep Classifier (VGDC), the first convolutional neural net-
work (CNN) based approach for automatic classification of
viral genomes into subtypes. Our approach makes use of
the fact that a genomic sequence can be perceived as a
one-dimensional signal. Particularly, it accounts for posi-
tional relationships between sequence signals. Like in the
case of images where the CNNs are able to detect specific
combinations of pixels (i.e., patterns) that allow distinguish-
ing between objects, in the case of genomes the CNNs are

able to detect specific combinations of nucleotides that allow
distinguishing between particular virus subtypes.

The proposed method is dedicated to the classification of
full-length genomes. Additionally, it is universal and thus not
limited to a specific family of viruses, which is not always the
case among existing solutions.

II. MATERIALS AND METHODS
A. INPUT DATA
In this study virus genomic sequences retrieved from publicly
available databases were used. In particular, five datasets,
each representing one virus type, were considered. These
datasets represent the viruses of Dengue, Hepatitis B, Hep-
atitis C, HIV-1, and Influenza A.

The Dengue virus sequences were downloaded from the
National Center for Biotechnology Information (NCBI) virus
database.1 The same database was the source of Influenza
genomes.2 The genomic sequences of Hepatitis Bwere down-
loaded from The Hepatitis B Virus Database (HBVdb)3 while
Hepatitis C genomic sequences came from the database
of Los Alamos National Laboratory (LANL).4 The latter
database was also the source of HIV-1 genomes.5 The query
options used for the sequences retrieval are summarized
in Table 1.

TABLE 1. Query options used for genomic sequences retrieval.

Prior to the experiment, virus subtypes represented by
less than 10 samples were removed from each of the con-
sidered datasets. This ensured a sufficient representation of
each virus subtype in the training/testing subsets used for
five-fold cross-validation used to assess the performance of
our method. Additionally, in the case of Influenza A, only
pure NH subtypes were considered. Mixed subtypes were
disregarded and thus removed from the datasets.

1https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-
select.cgi?taxid=12637

2https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-
select.cgi#mainform

3https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?seqtype=0
4https://hcv.lanl.gov/components/sequence/HCV/search/searchi.html
5https://www.hiv.lanl.gov/components/sequence/HIV/search/search.html
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Additionally, for Hepatitis B virus two subsets were pre-
pared. The first one contained only genomes representing the
main subtypes (from A to H). The second subset contained
also the most frequent recombinants.

In the case of the HIV-1 virus also two subsets were
considered. The first one contained the 12 most frequent
virus subtypes. In the second subset, all data (remaining after
filtering as described above) were used. A similar procedure
was also applied to Influenza A genomic sequences with the
difference that the first subset contained 56 most frequent
subtypes.

The properties of the resulting datasets are summarized
in Table 2.

TABLE 2. The datasets summary.

B. DATA PREPROCESSING
The proposed VGDC approach does not require a sophis-
ticated preprocessing of the input genomes. However, two
important steps were performed prior to network training and
prediction (classification).

First, symbols (letters) representing nucleotides were
replaced by the corresponding ASCII codes. To this end,
A, C, G, T were replaced by integers 65, 67, 71 and 84,
respectively. A similar operation was also applied to other
symbols occurring in the genome sequences (e.g.,N or -). The
ASCII codes were used instead of popular one-hot encoding
for efficiency and flexibility reasons. Particularly, for the
proposed ASCII-based encoding one value per nucleotide
is required compared to six (or more) elements vector as
in the case of one-hot encoding. Additionally, this encoding
can easily handle both capital and uppercase letters used for
nucleotide representation.

Second, the length of each genome was extended to the
length of the longest genome among the genomes of a par-
ticular virus. The extension was performed by appending
numeric zeros to the sequence of ASCII codes representing
nucleotides. This step was required by CNN since it accepts
only fixed-size inputs.

C. CNN ARCHITECTURE
Popular convolutional architectures for visual recog-
nition (eg., LeNet [10], AlexNet [11], GoogLeNet [14],
ResNet [13] or VGG [12]) cannot be straightforwardly
applied in the genomics. It is because of the difference in

data dimensionality (one dimension in the case of genomes
vs. two dimensions in the case of images). Therefore, a new
architecture was proposed for the considered virus subtyping
problem.

The general architecture of the convolutional neural net-
work behind the proposed VGDC approach for genome clas-
sification is presented in Figure 1. This is a convolutional
encoder model whose inputs are the preprocessed genomes
(see Sect. II-B). The length n of CNN inputs is a parameter
of the model and thus can vary depending on the virus type.
However, for a particular dataset, it is equal to the length of
the longest genome.

Themodel outputs a vector P of sizeN where each element
Pi ∈ P (1 ≤ i ≤ N ) corresponds to the probability that
the genome belongs to the i-th class, where i < N , and N is
the total number of classes (i.e., viral subtypes) in the given
problem.

In the model, there is a total of 30 layers divided
into the convolutional part dedicated for feature extraction
(layers 1–19) and the classifier which aims at predicting the
genome subtype based on the features determined by the
convolutional part.

Our model (see Fig. 1) starts with five repeated 1D con-
volution layers, each followed by the ReLU activation. The
convolution layers convolve an input signal (representing a
genome) with a set of learnable filters which are slid across a
genome. These filters are used to detect the specific patterns
in the input genomes. The filters’ coefficients are learned
through network training. In the proposed solution, convo-
lutions are performed with the filters of size w, which is
also a parameter of the proposed model and can be adjusted
depending on the genome length. The number of filters in
convolution layers increases by a factor of two from eight in
the first convolution layer to 128 in the fifth one.

A batch normalization follows each convolution layer and
precedes the ReLU (Rectified Linear Unit) activation layer.
This is a standard procedure in convolutional neural networks
used to improve training performance [34].

The ReLU activation layers that follow next apply an
element-wise operation max(0, x) to the resulting feature
maps. This operation introduces non-linearity but also
reduces overfitting. The ReLU activation was used since in
the case of convolutional neural networks it has proven to
perform better than sigmoid or tanh activation functions.
Particularly, ReLu reduces the vanishing gradient problem,
avoids backpropagation errors, and is much faster, especially
when compared to sigmoid.

The ReLU is nowadays the most popular activation func-
tion, applied in almost all existing convolutional neural net-
works or deep learning.

The ReLU activation layers are next followed by the 1D
pooling layers which perform a max-pool operation with the
pool of size 2 and stride of size 2. Particularly, from the sliding
window of size 2 and moved by the step (stride) of 2 the
maximum value is taken. Thus pooling reduces the genome
length but also extracts characteristic genomic features and
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FIGURE 1. The architecture of the CNN behind the Viral Genome Deep Classifier, where: Conv1D (w@n) - 1D convolutional layer with the filter size
of w , and a number of filters equal to n; BatchNorm - batch normalization layer; ReLU - Rectified Linear Unit activation; MaxPool1D (2) - 1D max
pooling layer with a pool size of 2.

propagates them to the dense layers. The output of the last
max-pooling layer is flattened (i.e., transformed) into a 1D
feature vector and used as an input to the classifier part of the
model.

In the classifier part of the model, there are four dense
layers with the decreasing number of neurons. These range
from 256 neurons in the first dense layer, through 128 and
64 neurons in two following dense layers, to N neurons in
the last dense layer, where N is the number of virus subtypes
to be recognized. Except for the last one, the dense layers are
followed by the dropout layer and the batch normalization
layer. The last layer is the softmax activation which outputs
the probability of a genome sequence to belong to each class.
Finally, the genome is classified as the subtype for which the
probability is the highest.

The architecture of VGDC, common for all shown experi-
ments, was deployed via trial and error.

Different numbers of layers (network depths) were tested
balancing between the universality, network performance and
training time. Particularly, it was observed that the optimal
depth of the architecture depends on the genome length.
For the shortest genomes (i.e., Influenza A and Hepatitis B)
shallower architectures were sufficient.

More concretely, two pairs of convolutional/pooling layers
used for feature extraction allowed to obtain high classifica-
tion rates. Additional convolutional layers did not influence
the resulting accuracy but increased the training time. How-
ever, a shallow network was insufficient for classification
of longer genomes (i.e., Dengue, HIV-1, and Hepatitis C).
In such a case two pairs of convolutional/pooling layers
allowed classifying about 50% of the samples. Increasing the

network depth up to 5 pairs of convolutional/pooling lay-
ers significantly increased the network performance. Deeper
architectures did not exhibit improvement in the resulting
accuracy.

D. TRAINING PARAMETERS
To assess the performance of the proposed deep learn-
ing approach, for each of the considered datasets of viral
genomes, five-fold cross-validation was performed (with
80% of samples used for training and the remaining 20%
used for validation). In each experiment, the network was
trained for 1000 epochs unless the early stopping condition
was fulfilled. Particularly, the training was stopped after
10 successive epochs with no training improvement. Usually,
the training converged at after about 200 epochs.

Adam optimizer [35] with the learning rate of 0.002 was
used to minimize the categorical cross-entropy loss function.
To measure the performance of the model, the mean squared
error was used. The batch size was equal to 50 except for the
InfluenzaA virus. In the latter case, the batch size of 1000was
used due to a large number of training samples. The above
hyperparameters of the model were set in a trial-and-error
manner balancing between the training time and the training
performance.

The values of CNN parameters, particularly the size of the
filters w, were selected with respect to the genome length.
In the case of the shortest genomes, namely Hepatitis B and
Influenza A, w was set to 7. This was the maximum filter
size that could be applied for the CNN architecture behind
the VGDC. In the case of longer genomes, namely Dengue,
Hepatitis C and HIV-1, the filter size w was increased to 9 to
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better capture genome spatial features. The size n of the CNN
input was equal to the length of the longest genome within
each considered virus family. Finally, the size N of the vector
output by the CNNwas equal to the number of virus subtypes
to be predicted (see column No. classes in Tab. 2).

E. EXPERIMENTAL SETUP
The proposed CNN was implemented in Python 3.6, with
the Keras library running on top of Theano. The source
code of our method is available in the GitHub reposi-
tory https://github.com/afabijanska/VGDC. The experiments
were performed on a desktop computer (i7-960 3.2 GHz
CPU, 24 GB RAM) with GeForce GTX TITAN X GPU
equipped with 12 GB of DDR5 RAM.

The training time varied depending on the virus type,
particularly the genome length and the number of training
samples (see Tab. 3). However, since the training is performed
once, the relatively high training times are not problematic.
The classification took less than one second per genome.

TABLE 3. Average time per epoch of training.

III. RESULTS AND DISCUSSION
The performance of the proposed approach was assessed
using popular classification performance metrics including
sensitivity (SEN), specificity (SPEC), precision (PREC),
accuracy (ACC) and F1-score (F1) given by Equations 2– 5
respectively.

SEN =
TP

TP+ FN
(1)

SPEC =
TN

TN + FP
(2)

PREC =
TP

TP+ FP
(3)

ACC =
TP+ TN

TP+ TN + FP+ FN
(4)

F1 =
2 TP

2 TP+ FP+ FN
(5)

where TP, TN, FP, and FN stand for true positives, true
negatives, false positives, and false negatives, respectively.

To alleviate an unbalanced number of instances of virus
subtypes the above metrics were obtained for each class and
then weighted by the number of instances to obtain the overall
classification score. A similar procedure was also used by the
authors of a competitive approach to virus subtyping [1].

To compare the proposed algorithm against known solu-
tions, we selected four competitors. Two of them, CASTOR
and COMET, are well established state-of-the-art approaches
described in Section I. Alignment and phylogenetic-based
methods, like USEARCH [3] and REGA [4], were excluded
from the comparison since they have been proven to per-
form noticeably worse than COMET and CASTOR (see [8]
and [1] for comparison). Two other methods considered in the
assessment, namely C-measure and the compression-based
approach, are well-known in the area of textual similarity
matching.

C-measure [36] makes use of k-mers. For a query sequence
Q1...m it checks its m−k + 1 k-mers (i.e., Q1...k , Q2...k+1,. . . ,
Qm−k+1...m) for occurrence in each of the training sequences.
The class of the training sequence which maximizes the num-
ber of query k-mers occurring in it is the output label (with
ties resolved arbitrarily). In our solution, the said training
sequences are concatenations of all training genomes from
a given class. For example, in the Dengue dataset, there are
only four such training sequences. Using whole classes rather
than individual genomesmakes the classificationmuch faster.

The last algorithm uses a compression-based approach to
text classification. Given c training sequences Ti, 1 ≤ i ≤ c,
and a query Q, the class label j, 1 ≤ i ≤ c, is chosen,
such that the compressed size of the concatenation Tj ◦ Q
minus the compressed size of Tj is minimized. In other words,
as the training sequence Tj forms the most helpful context
for the compression of Q, it can also be seen as the sequence
most similar to Q. This idea has been successfully used for
authorship attribution and text classification [37], [38], but
possibly its oldest incarnation was applied to DNA sequence
classification [39], namely for distinguishing bacterial pro-
moters from non-promoters and for recognizing non-bacterial
splice-junction sites in protein-coding regions of DNA. In our
experiments, the used compression method was PPMTrain
(http://compression.ru/ds/ppmtrain.rar), a variant of PPMd
by Dmitry Shkarin, in which the PPM compressor is first
trained on a given file and then used to compress another file.
We ran it with -o8 -m32 switches, as in the example given in
the documentation.

Both CASTOR and COMET were tested through the
web interfaces available at http://castor.bioinfo.uqam.ca/ and
https://comet.lih.lu/, respectively. The C-measure classifier
and the compression-based approach were implemented for
the evaluation purposes.

Wherever possible, the consideredmethods were evaluated
via five-fold cross-validation. It means the whole dataset was
randomly partitioned into five equal parts (‘‘folds’’) and each
part, in turn, became the testing data while the remaining four
parts constituted the training data.

The exception is COMET, which is both limited to HIV
and Hepatitis C viruses, and cannot be trained with any new
data since this functionality is unincluded in the COMET
web interface. Despite efforts, we were unable to obtain a
standalone Java jar file to train the method with any data (as
mentioned in the COMET source paper). Therefore, for the
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experiments regarding COMET, we used the already trained
(available on-line) classifier to predict subtypes of our testing
folds.

In the case of CASTOR, the classifier performing best
was selected for comparison. However, due to limitations
imposed by the web interface (particularly the limited size
of the training data allowed for upload), it was impossible
to repeat the experiment for the Influenza A virus for the
whole training folds. Therefore, the validation was performed
with the training folds reduced randomly by a factor of three.
For comparison purposes, the same experiment was carried
out for the proposed VGDC approach. For both experiments,
the evaluation was performed with respect to complete (i.e.,
not reduced) testing folds.

The Influenza A dataset was excluded from testing in the
case of the compression-based approach (PPMT) due to a
heavy disk load, particularly a large number of temporary
files that need to be created and then removed. More pre-
cisely, the number of files produced in a PPMT session is
equal to the number of test sequences multiplied by the
number of classes, a product whose value may easily go into
millions, cf. Table 2.

The results of the above experiments are summarized
in Table 4. For each of the considered virus type, the weighted
average sensitivity (SEN), i.e., true positive rate, specificity
(SPEC), i.e. true negative rate, precision (PREC), accu-
racy (ACC) and F1-score (F1) are presented. The results
obtained for Influenza A using the training data reduced
by a factor of three are denoted by an asterisk. For each
experiment, the results exhibiting the highest metric values
are given in bold. Additionally, the confusion matrices of the
proposed VGDC approach (summed up for all five folds) are
presented in Appendix.

The results presented in Table 4 clearly show that the pro-
posed method performs reasonably well for all five consid-
ered virus families. The performance, however, varies slightly
depending on the virus type and the number of corresponding
subtypes.

The best results were obtained for Dengue, where four
pure virus subtypes were considered. In this case, VGDC
correctly classified all the genomes. All considered classi-
fication performance metrics reaching 1 were also obtained
for an experiment with eight pure subtypes of Hepatitis B
where the number of misclassified genomes on average did
not exceed two per fold. A similar number of classification
errors appeared in the case of Hepatitis C dataset what also
resulted in specificity nearing 1 and remaining metrics equal
to 0.996.

The performance of VGDC slightly decreased with the
increasing number of subtypes. For the Hepatitis B (2)
dataset including genomes of both pure subtypes and
retro-transcribing viruses on average 62 genomes out
of 1364 were misclassified what resulted in the F1-score at
the level of 0.952 and specificity nearing 0.990.

Moderately higher scores (i.e., F1-score equal to 0.955 and
specificity at the level of 0.994) were obtained for the

TABLE 4. Classification performance metrics yielded by various virus
subtyping methods. Results obtained on the training set reduced by a
factor of three are marked by *.

extended HIV-1 (2) dataset which included both pure sub-
types and recombinants resulting in total in 37 subtypes.
In this case on average, about 59 genomes out of 1433 were
misclassified. On the HIV-1 (1) dataset containing 56 most
frequent HIV-1 subtypes, VGDC performed visibly bet-
ter, which manifested by the significantly higher value of
F1-score (i.e., 0.978). For this dataset, on average, 28 mis-
classifications per testing 1308 genomes were registered in
each fold. The worst classification results were obtained for
the Influenza A datasets with the specificity and accuracy
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FIGURE 2. Confusion matrix obtained for the dengue dataset.

FIGURE 3. Confusion matrix obtained for the hepatitis B (1) dataset.

around 0.98 and other metrics nearing but not exceeding
0.85. This dataset, however, was the most challenging since it
contained the largest number of virus subtypes equal to 56 and
113 for the basic (i.e., Influenza A (1)) and the extended (i.e.,
Influenza A (2)) dataset respectively.

When compared to the other approaches, in most cases
VGDC is the winner. This manifests by the resulting values of
all the considered classification performance metrics which
for the proposed approach are the highest for most of the
cases. However, the differences in the VGDC performance
vary depending on the dataset and thus are related to the
considered family of viruses.

On the Dengue data, all the considered methods performed
equally well resulting in 100% correct classification. On the
Hepatitis C dataset, VGDC performed equally well as CAS-
TOR and C-Measure, visibly outperforming COMET and
PPMT by means of all considered metrics and achieving
F1 score at the level of 0.996.

FIGURE 4. Confusion matrix obtained for the hepatitis B (2) dataset.

FIGURE 5. Confusion matrix obtained for the hepatitis C dataset.

Specificity equal 1 and other metrics nearing or equal 1
were equally obtained by all considered methods on the
Hepatitis B (1) dataset containing the genomes of eight pure
subtypes. However, for the extended Hepatitis B (2) dataset
including both pure subtypes and recombinants, the proposed
approach outperformed the other competitors. Although sen-
sitivity, specificity and accuracy of VGDC are occasionally
equal to their counterparts exhibited by some competitors,
the F1-score determined for the results of the VGDC was
the highest. Thus, the advantage of VGDC manifests when
the recombinants need to be classified. This is especially
visible when the HIV-1 virus is considered. For the twelve
most frequent subtypes all considered classification perfor-
mance metrics of VGDC were higher than the corresponding
scores obtained by the competitors including CASTOR and
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FIGURE 6. Confusion matrix obtained for the HIV-1 (1) dataset.

COMET which are the leading methods for subtyping of
the HIV-1 virus. The proposed approach correctly classified
3.9% more samples than CASTOR and 8.3% more samples
than COMET. The classification rate was also by 2.9% higher
than for C-measure and 0.6% than for PPMT. The superiority
of VGDC is evenmore visible whenmore HIV-1 subtypes are
considered. In such a case the difference in the classification
rates ranges from 11.1% in the case of COMET to 1.9% for
PPMT.

The results of the virus subtyping obtained on the
Influenza A dataset also prove the superiority of the proposed
approach. For all the considered variants of the dataset, all
metrics scored by VGDC are the highest. Particularly, in the
case of the basic Influenza A dataset (c.f. Influenza A(1)),
F1 measure scored by VGDC is about 2% higher than the
corresponding score for C-Measure and about 4% higher than
in the case of CASTOR. A similar trend can also be observed
for the extended Influenza A dataset (c.f. Influenza A(2)).

Finally, in the case of Influenza A (1) dataset, the proposed
approach performed equally well when trained with both
reduced and full training set. However, the results obtained
on the Influenza A (2) dataset are a bit surprising. In this
case, VGDC seems to better generalize to the less amount
of training data. Particularly, when trained with the use of
all available training data on the extended Influenza dataset,
the VGDC performed slightly worse (F1 at the level of 0.847)
than in the case when one-third of the training data was used
(F1 at the level of 0.835). In the latter case, even when the
number of subtypes increased (and thus hindered classifica-
tion) VGDC performed better than for main Influenza sub-
types. This is an interesting issue of training data preparation
that will be investigated in our future work.

IV. CONCLUSION
The Viral Genome Deep Classifier proposed in this paper
is the first approach to virus subtyping that uses the

FIGURE 7. Confusion matrix obtained for the HIV-1 (2) dataset;
a) original; b) normalized.

convolutional neural network. The method is universal and
can be successfully applied for the subtyping of many virus
families. It also outperforms the selected state-of-the-art
approaches in the virus classification task. This can be espe-
cially seen in the case of the HIV viruses and Influenza A
virus where the VGDC approach proved to be a few percent
more accurate than the considered competitors. The latter
includes CASTOR and COMET which are well established
and commonly used tools for HIV virus subtyping.

An additional advantage of the VGDC approach is the
feasibility of usage with a large amount of training data.
As shown in our experiments with Influenza A, some of
the state-of-the-art algorithms experience serious efficiency
problems when trained with an enormous amount of data.
Particularly, both CASTOR and PPMT required several days
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FIGURE 8. Normalized confusion matrices obtained for influenza dataset. a) Influenza A (1).
b) Influenza A (2).
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of training when a training set of more than 250 thousand
genomes was utilized. Additionally, PPMT used the hard disk
drive heavily. The VGDC is free from these drawbacks since
it takes advantage of GPU processing.

Although VGDC provides convincing results, the method
still needs further investigation. Particularly, the results on
Influenza A dataset have shown that the accuracy of the
classification could be increased by tuning the network and
training parameters. One may also notice that the simple
C-measure classifier is faster than VGDC, often exceeding
100 classified samples per second. Exploring the influence
of the training setup on the resulting virus classification
accuracy will thus be a subject of our future work.

APPENDIX
CONFUSION MATRICES
This appendix presents confusion matrices for an auto-
matic classification of genomic sequences using the proposed
VGDC approach. Particularly, the consecutive figures refer to
the results obtained for Dengue dataset (Fig. 2), two variants
of Hepatitis B dataset (Fig. 3 and Fig. 4), Hepatitis C dataset
(Fig. 5), two variants of HIV-1 dataset (Fig. 6 and Fig. 7)
and two variants of Influenza A dataset (Fig. 8). Due to a
large number of classes for Influenza A, only heat maps
representing normalized confusion matrices are presented.
In the remaining cases, the confusion matrices are presented
in both variants, i.e., with a number of samples (upper row)
and after normalization by the cardinality of a particular virus
subtype. In all the cases, the resulting confusion matrices
were obtained by summing up matrices obtained for all five
folds. The True Label denotes real virus subtype while the
Predicted Label refers to virus subtype assigned by the pro-
posed VGDC approach.
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