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ABSTRACT In this paper, the fault-tolerant tracking control problem for a class of single-link flexible
joint manipulator (SFIM) system with uncertainty, fault, nonlinear function, and unmatched disturbance is
investigated. An observer-based sliding mode control approach is designed. Concretely, first of all, the SFIM
dynamic system with uncertainty, fault, and unmatched disturbance is established. Then, by transforming the
system into two subsystems, a novel composite observer is proposed to estimate the fault and disturbance,
respectively. Furthermore, a robust sliding mode controller, which contains a third-order sliding mode
surface, a continuous control strategy, and a visual estimated fault signal, is constructed. In the control
scheme, an adaptive law is also concluded to compensate for the estimation error. Finally, the proposed
method is applied to the SFJM system and the simulation results illustrate the effectiveness of the proposed
method.

INDEX TERMS SFJM, actuator fault, sensor fault, unmatched disturbance, composite observer, fault-

tolerant tracking control, sliding mode control.

I. INTRODUCTION

The flexible joint manipulator has become an indispensable
part in the increasing automation system especially in the
dynamic assembly line, to avoid danger working condition
and reduce labor cost [1]. For Flexible joint manipulator
system, on the one hand, if the robot has n links, then one need
2n generalized coordinates to describe the whole dynamic
behavior when taking the joint flexibility into considera-
tion [4]. On the other hand, the flexible joint has the character-
istics of nonlinearity and coupling. Therefore, the modeling
of a flexible joint is complex. In addition, the fault and
disturbance signals exist widely in the practical system due
to the flexible structure, which makes the manipulator system
more complicated.

Some achievements have been studied about the flexible
manipulator system. For example, in [2], a class of flexible
joint robots with uncertainty was developed; an adaptive con-
troller was designed to guarantee a high precision position.
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In [3], the finite-time optimal control approach using the
state-dependent Riccati equation was studied for a class of
flexible joint manipulator systems. An industrial flexible joint
was investigated in [4], where the full state was used to
maintain the tracking ability. In [5], the parameter identifi-
cation technique was adopted for flexible joint system with-
out the angular acceleration information; an adaptive control
method was presented. In [6], a full state feedback neural
network (NN) control was proposed for a class of robotics
with flexible joints, the robustness was enhanced and the
stability was guaranteed. In [7], a fractional order sliding
mode controller for a flexible link manipulator based on
fractional calculus was proposed, by adding an extra degree of
freedom, the control performance was guaranteed, the appli-
cation to a single-link flexible manipulator robot signify the
effectiveness of the proposed controller. These achievements
have studied the control strategies for flexible manipulator
system, however, the fault and external disturbance are not
considered. This remains one of the motivations of this study.

It is worth to point out that the full states of the SFIM
system are also hard to be obtained because of the high
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cost and the flexible joint structure, in some conditions, it is
impossible to install sensor because of the volume limita-
tion. Observer design becomes a possible way to reconstruct
the states and other unknown variables from the input and
output information. For example, in [8], an extended state
observer (ESO) was proposed to estimate the states and
uncertainties for the trajectory tracking control of a flexible-
joint robotic system. In [9], a disturbance observer (DO) was
designed for a class of two link flexible joint manipulator sys-
tems to decouple the joint interactions. These achievements
have studied the observer design for flexible joint manipula-
tor system; however, the actuator fault and sensor fault have
not been discussed. For fault or disturbance, the observer
is also of significance in the controller design framework.
Sliding mode observer (SMO), which forces the trajectories
to stay on the sliding surface, shows excellent performance,
such as disturbance rejection [11]-[14]. For instance, in [11],
a class of stochastic nonlinear system was considered; the
SMO technique was addressed to estimate the fault and
state, a passive fault tolerant control scheme was constructed.
An adaptive gain super-twisting sliding mode observer was
proposed for fault reconstruction in electro-hydraulic servo
systems with unknown bounded perturbations in [12]. For
descriptor systems, SMO has also received fruitful results.
In [13], the fault tolerant control problem was investigated
for a class of Lipschitz nonlinear systems, a descriptor sliding
mode observer was presented and the controller was con-
structed to achieve a satisfactory fault reconstruction perfor-
mance. In [14], a class of multi-area power systems with
sensor fault and disturbance was investigated, by introducing
an argument system, a descriptor SMO was constructed for
sensor fault reconstruction.

The trajectory tracking performance in the flexible-joint
robot is of significant importance when designing the con-
troller. Some works of literature related to the trajectory
tracking control of the flexible-joint robot have been devel-
oped. In [15], an extended Kalman filter (EKF) observer
was presented to estimate the manipulator states, by using
these estimated values; an adaptive rigid-link flexible joint
controller was proposed to guarantee the tracking perfor-
mance. In [16], the tracking control problem of flexible-joint
robots with unknown dynamics and variable elasticity was
addressed,; a full state feedback control technique was used to
guarantee the tracking error within a neighborhood of zero.
In [17], a quadruped robot system with a compliant joint
under the perturbing external forces was investigated; the
fuzzy approximation method was used to keep the tracking
accuracy. In [18], the tracking control problem of a class of
flexible joint robot was addressed, the feedback linearization
methodology was used to model the system and a sliding
mode control method was constructed to guarantee the track-
ing performance. However, the fault in the output channel
is not considered, which motivates the composite observer
design of this study.

Motived by [10], [13], [16], this paper addresses the prob-
lem of robust fault-tolerant tracking control for SFJM system
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with actuator fault, sensor fault, external disturbance, and
parameter uncertainties. The main contributions are high-
lighted as follows. 1) The SFJM system with parameter uncer-
tainty, fault, and unmatched disturbance model is established.
2) Different from the results in [17] and [18], where the
disturbance and fault in the output channel were not consid-
ered. In this study, both the actuator fault and sensor fault
are considered. A coordinate transformation is introduced to
decompose the system into two subsystems, in which the
fault and disturbance are separated. By introducing two new
auxiliary variables, a novel composite observer is presented.
3) A novel observer-based sliding mode control scheme is
designed to guarantee the tracking performance. In the sliding
mode approach, an adaptive law is contained to compensate
for the estimation error and enhance the robustness of the
system.

The rest of this paper is organized as follows. In section II,
the SFIM system model with actuator fault, sensor fault,
disturbance, and parameter uncertainty is established.
In section III, the construction of the observer and the
observer-based controller are designed. In section IV, the pro-
posed method is applied to the SFIM system. Section V
concludes the study.

FIGURE 1. Schematic of SFJM system.

Il. PROBLEM FORMULATION

A. SFIM SYSTEM NORMAL MODEL

Generally, the SFJIM system, which is actuated by a DC
motor [1], can be shown in Fig.1. The normal dynamic system
can be presented as (1)

O = Wi
.k G k
Wi = — (0] — Op) — — Wi + —u
T, Im I "
0 =w
; k or—6,) — " @)
w = —— (6, — - —
1 Jl 1 m ]l 1

where J,,, is the inertia of the DC motor, J; is the inertia of
the link. 6,, and 6; denote the rotation angles of the motor and
link, respectively. wy,, and w; represent the angular velocities
of the motor and link, respectively. k is the torsional spring
constant, k; is the amplifier gain, G is the viscous friction,
m is the pointer mass, g is the gravity constant, g is the
distance from the rotor to the center of the gravity of the link,
u is the control input delivered by the motor.
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B. B SFIM SYSTEM MODEL WITH FAULT, DISTURBANCE
AND PARAMETER UNCERTAINTY
Note that the SFJM system is inevitable to suffer from
external noise and load torque fluctuation, which means
that the external disturbance d (¢) exists in the system. For
example, when the load torque increases, the mechanical
speed will decrease, which in turn affect the angular velocity.
In addition, the link is driven by a motor through a torsional
spring, which is a nonlinear and coupled process. Thus,
the dynamic SFJM system (1) can be regarded as a simplified
form of the actual system, which means that the uncertainty
may be contained. For example, the spring stiffness may
be affected by temperature or humidity, i.e., Ak should be
considered in the system [1]. What’s more, actuator fault
is easy to occur because of the mechanical problems. Con-
sequently, the uncertainty, external unmatched disturbance,
and fault should be considered in the scheme of system
analysis.

Integrated the above analysis, the dynamic SFJM system
(1) can be rewritten as

B = Wi
k + Ak O 6 G
w, = - _ el U
m g A, I T AL
ke
_— t d, (t
+Jm+AJm(u+Mf())+ i (1) )
é]:W[
) k4 Ak mgq .
= T G =6, — —2Tsin@) + d (t
wi Jz~I—AJ1(l m) J1+Ale(1)+l()

where d; (t) (i = m, I) is the external unmatched disturbance,
ug (1) represents the bias actuator fault and |us(r)| < «ai,
where o is a positive scalar. Ak, AJ,, and AJ; are small
fluctuations of the torsional spring constant, motor inertia and
link inertia, respectively.

As the motor angle, link angle, motor angular velocity,
and link angular velocity can better represent the working
condition of the SFIM system, in this paper, the output of
the system can be chosen as the four variables. In addition,
the sensor fault and disturbance in the out?ut channel are also
considered. Let x (t) = [ 6 6; wy wi ], then the flexible
joint manipulator system with fault and disturbance can be
rewritten in the form of

X)) =Ax (@) +Bu(t) + Endy, (t) + Ed; (1)
+Buy (1) + MAf (x, 1) 3)
y = Cx (t) + Dsus (t) + Dndy (1)

where x (f) € R* is the state vector, y (f) € R* is the output
of the system, u (1) € R! is the control input, us (r) € R' is
the sensor fault signal, dy (f) € R! is the mismatched external
disturbance in the output channel. Dy, Dy are known constant
coefficient matrices with appropriate dimensions. The other
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parameters are given as follows

0 0 10
0 0 0 1
A=|_k kG 4
i{’m 1;7{ I
22 o0 o
L Jp Ji
-0
0
0 0
B= k_f 3Em= 1 ’
J
L0 0
[0 1 0 0 0
0 01 0 0
El=1o1"“=10 0o 1 ol
1 0 0 0 1
10 0 0
0 1 0 0
M=10 0 1 ol
0 0 0 1
r 0
0
Af(x, 1) = Afin
—Afi — 89 Gin (na(1))
LY T Ay 2
where
Ak )
Afp = — (2(t) = x1(0) + AT, [Gx3 (1) + ke (u+ up ()]

Im
Ak ,
Af; = (J_z + AJ[(k + Ak)) (2(1) = x1(1))

, AJy, , AJ;

AJm = Y, AJI e ———

Jm (Jm+AJm) Jl (JI+AJI)

Similar to [13], by simple simplification, (3) can be rewrit-

ten as (4),

X(@)=Ax (@) +Bu(t) + Eid;(t) + Bafa (1)
+MAf (x, 1) 4
vy = Cx (t) + Dsug (t) + Dyd (1)

_ _ d, (1) _ din(t)
where By = [En B, fu(t) = [uf(t) }f“m B [“f(f) }

Remarkl: dg(t) can be caused by unmeasured outputs and
noises in the output channel. u4(¢) can represent the intermit-
tent sensor connection, the bias in sensor measurement, and
sensor gain drop, etc. In addition, assume that |lus(¢)|| < a2
and «» is a positive constant.

Remark2: The actuator fault, sensor fault, and disturbance
are different. From (2) and (3), one can check that the actuator
fault and disturbance enters the system in different channels,
these factors are unknown, which increases the complexity of
the controller design.

Remark3: [13] From (4), one can check that B,f;, =

Em[l j‘—m] [i;"((tt))} —E, [dm ) + Loy (t)].
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Remark 4: In (3), one can check that the nonlinear function
satisfies AfTRAf < iTQF, where Af = Af (xg, 1) —
Af (xp, 1), X = x4 — xp, R and Q are two positive symmetry
matrices [19].

Ill. MAIN RESULTS

In this part, an observer-based fault tolerant control scheme
is designed to keep the tracking performance, which contains
three steps. Step one is to design a composite observer to
estimate the unknown variables in the system. In step two,
by using the estimated values, a proper observer-based sliding
mode surface is constructed. A sliding mode controller is
given in step three to meet the reaching condition. In step
three, the stability is also verified.

A. SYSTEM DECOMPOSITION
Theorem 1: For the SFIM system (4), there exist two trans-
form coordinate matrices ¢, V¥, such that

_ | E2 1_|Cx2 O
¢E;_[0]1//C¢ _[O C3],
-1 _|A1 Az

Proof: Note that rank (CE;) = rank (E;) < 4, one can
partition E; as E; = [E] ET ]T, where E; € R¥* E, €
R with rank (E») = 1. In this paper, ¢ is computed as
¢ = ¢2¢1, in which ¢ is constructed directly as

L —EE;"
= 5
1 [ 0 I ()
then, it can be obtained that
L —EE"|[E 0
E = = 6
o1 [ 0 I E E (6)

In order to simplify the design procedure, partition
Cd)fl = [ C1 C2]. Therefore, it can be checked that

0
CE=Co¢;'piE=[C1 (] [EJ =GE ()

As a result, one can directly infer that E, is non-singular,
and the following conditions hold,

rank (CrEp) = 1 (8)

rank (Cp) =1 ©)]

Therefore, a similar approach can be adopted, one can
partition C; = [CZT1 C2T2 ]T, where Cyp € RIX!
and rank (Cy2) = 1. Consequently, C»» is non-singular,

i.e. det (Cy) # 0. Then C¢f] can be rewritten as Cqbf] =

Cii o , where Cq; € R3X3, Cip € RIX3, Cy € R3XI,
Cio C2
Cry € R, Construct Y as

_ 0 I
=l _eren] (10)
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Then, one can check that

yCo;!
_ 0 I Cni Cy
L —CuCy' |[Cia Cx

where C3 = C1j — C21Cy, C1p. Let ¢!

(1D
[ -cilen)
I —Cil Cin |’
thus the following equation holds
YCo~' = vCor gy

[ C2 Cn || 0 I3
Lo ||ln —ccn

Cn Cn
C3 0

| Cx2 0
= |: 0 C3:| (12)
and one can check that
_[exlen
92 = [ A 0} (13)

Consequently, from (5), one can obtain that

-1
e =[E50 5][2]-[5] o

Assume D; and Dy has the following structure Dy =
C1C D Dy 1x1 3x1
D22 ,D, = 0 ,where Ds € R"*", Dy € R°*".
s
Then it can be deduced that

0 I C21C_1D3] [Da}
Dy = _ 22 - 15
VO [13 _C21C221][ D; o

_ 0 I Dg| | O
e e T

This completes the proof.

Remark 5: In this study, the formulated SFJIM system
in (3) is a general form. Additionally, the sensor fault and
disturbance in the output channel are investigated, which is
different from the results in [17], [18], where the output chan-
nel fault is not considered. In order to estimate the disturbance
and fault separately, the disturbance and fault matrices in the
output channel are assumed to satisfy the conditions in (15)
and (16). This is the inadequacy of this study, we are spared
our efforts to find some new methods without the assumptions
in our future study.

From the thoreml, it is easy to check that

4B, — C,)'Cio —Cy' CEIE; + 1 | [ Ba
¢ I3 —E\E;! Ba
_ {CQ‘;CIZBM +(cn'cEET + 1)) Baz} a7
B — E1E; 'Bu

0011"
00 %

From the definition of C 12, E1 and B>, one can check that
C12 and E; are two zero matrices, then (17) can be reduced
to ¢B, = [0 BT, ]".

where B, = ,Bo=[00].
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Similarly, one can check that

0 M> T T
¢B=[BI]¢M=[M1],31=[0 o k7],

1 0 0 O
Mi=|0 1 0 O ,Mg_[O 0 O 1]
0 0 1 0
Define z = ¢x = ¢ " , 8 = Yy = ¢ N )
X2 2

from theoreml, (4) can be rewritten as the following two
subsystems

Z1=A1z1+ A2+ Ead) + Mo Af (972, 1) (18)
s1 = C»z1 + Dsds
2 =A3z1+Asz+Biu+ Baify + MiAf (972, 1) (19)
Sy = C3Z2 + Dslus

where s; € R\, M; € R4 B, € R3*% 55 € R3, 71 €
R'.z0 € R®®, M, € RV B, € R}, A(i = 1,...,4) are
defined in theoreml.

Remark 6: It can be seen that (18) has the effects of
disturbances without any faults and (19) includes faults but
free from disturbance.

Remark 7: In [14], a descriptor system was constructed in
order to estimate disturbance and fault, however, only sensor
and output disturbance are considered. In [20], the ESO
technique was designed for the disturbance and fault estima-
tion, however, the fault and disturbance cannot be decoupled.
In [21], the unknown input observer (UIO) was designed
and the disturbance was extracted from the argument state;
by proper assumption, the disturbance was partial decoupled.
Compared with these results, in this paper, the actuator fault,
sensor fault, disturbance in the input and output channels
are considered, by defining a virtual actuator fault, a partial
disturbance is decoupled.

B. B OBSERVER DESIGN

In this subsection, a composite observer is proposed for (18)
and (19). Before designing the observer, two auxiliary vari-
ables are introduced. Define §3 = C22z1 + Dsdy, 5, = 53 and

Zp = [le s3T ]T, then the following equation holds

Zp = Apzp + Anpzg + Epdy + Mo Af (¢7 12, 1) 20)
sp = Cpzp
A1 O d
2 1 _ 1 _ i
where z, € R°,s, € R ,A, = Cyr 0 dy, = dx:|’

A0 B2 0| == | M _
d =[50 8 =[G = 5] o -
[O I1 |, z4 is a vector to be designed later.

Analogously, define z3 = C322 + Ds1us, Sg = z3 and z4 =
T .
[z§ Z3T ]" . then a new argument system is formulated as

!zq = Aqzq + Aigzp + By + Bify + Miay (67',10) )

sq = Cyzq

83050

Ag O A _|A30
Gol™?1= ool

B,y O B a | = M
e el A Rk

C;, = [0 3] Before the observer design, the following
assumption is needed

Assumption 1 [22]: Assume that the derivative of the dis-
turbance signals d; dj(t), d,,(t) and d(¢) in the system are
bounded, i.e., | di(t)| < @1, [|dn(®)| < @2, ||ds®)| < @3,
where @, @w> and @ are three positive constants.

Remark 8: From (4) and assumption 1, one can check that
there exist two positive constants f* and d*, such that “ fq || <
f*and |ldp|l < d*.

Then, the composite observer for subsystems (20) and (21)
can be designed as (22) and (23)

where z; € R6,sq IS R3,Aq =

%p = Ap%p +A2[726] + Epap + MzAf ((b_lz, t)

+H) (sp = 3p)

=Gl (22)
dy =g+ Lsp

» = —LCyEpg — LCyE,Ls, — LCyA,%,

—LCp (Azpzg + M1Af (¢7'2, 1)) +8(1)

éq_= AqZq + Argep + Brfy + Ha (sg = 34) + Byu

+M A (¢7'2, 1) (23)

where 2, 24, 5p, 84, cAl,, and fq are the estimations of
Zp» 2g» Sps Sq» dp and f, v is an intermediate state, Hy, Hp and
L are three observer gains need to be designed, § (¢) is a
compensator. fq and § (¢) are given by

(F* +1) (24)

8(t) = T (d* + we) (25)

where P, and P,, are two positive symmetry matrices, T and

ws are two positive scalars. e, = z, — 2, and e,, = d, — d,
Remark 9: From the definitions of A, B and C of the SFIM

system in (3), one can check that

M—A B
C 0

where A is any positive scalar. Then one can obtain that the

detectable condition is satisfied.

rank |: i| = rank (B) + 4 (26)

C. STABILITY ANALYSIS

Define e, = z, — Zp, then the error systems can be obtained
in the form of

& = (Ap — HiCp) ey + Aspey + Epeq + MaAF (27
¢ = (Ag=H2C,) eq+Arep+Br (fi=Fy) +M1 AT (28)
&w = —LCyEper + dy — LCpApey — 8 (1)
—LCpAgpe, — LC,M | Af
where Af = Af (07 'z, 1) — Af (9712, 1).

(29)
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Define e = [e; eg ], one can obtain that

¢ =Ape+ B, (fq - ﬁ,) + Ese, + M, AT (30)
where
= Ap — H1Cp Aap B, = 0 ’
Al Ay — HrC, By

E M,
o= 9] (i)

Theorem 2: With assumption 1 and the observer (22) and
(23) for the SFIM system (4), the dynamic error system(29)
and (30) are stable if there exist two positive symmetry
matrices P, P,,, , and matrices Q, Q1, R and R; such that the
following (31) holds.

g, -Ir’e, PM, 0
E 0 P,LC,M
* wl whtLpVl] <0 (31)
* * —R 0
* * * —Ry

where
B = PA.+AIP+ 0+ 0,
I'=[LCA, LCpAz ],
Ew1 = —PyLCyE, — E} CJL"P,.
Proof: Consider the following Lyapunov function as
V=e Pe+ engew

P, 0O
0 P,
The derivative of (32) can be obtained as

V=2."p (Aee +B, (fq —ﬁ,) + M AT + Eeeyy )

+2eX Py, (~LCpEpey + dyp — LCyApey)

(32)

where P = , Py, and P, are two positive matrices.

—2:Tp, (chAzpe,, n Lc,,MlAf) —2¢TP,5 (1) (33)
From (24), it follows that
T PB, ( - fq)
= eqT PaBsfg — eqT P anfq

IA

BT
HeZ;Panfq” —e'PB;
= —c|elpaty| <0 (34)
From (25), one can obtain that
et Py (dy + 8 (1))
= el Pyd, — el P8 (1)
Pyey,
ekl

IA

|etp] 1] = Py (@ ws)

—ws (35)

T
e, Py ” <0
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Note that

2" PM A < " PM,R™'MT Pe + AfTRAF

< " PM,R™'MT Pe + T Qe (36)
2! P, LC,M | Af
< el P, LC,M Ry 'M| CTLT Pye,, + AFTR AT
< el Py LC,M Ry ' M| CTLT Pye, +eTQre  (37)
Consequently, (33) can be rewritten as
V < el Be+ eVTvaeW + 2eVTvaFe
= [ o] [ X _FTP§W+ PE@} [eﬂ (38)

where I' = [ LC,A,  LCyA, |,

E = PA, +AlP+PM.R'MIP+0+ 01,
Ew = —PyLCyE, —E, CIL"P,
37 p=177 AT T
+P,LC,M \R'M, C]L"P,.

According to the Schur complement, it follows that the
estimation error will converge to zero if (31) holds. The proof
is completed.

Remark 10: From the condition (31), it is a sufficient
condition of the convergence of the estimation error, and
the matrix may not unique, the optimal matrix will help to
increase the estimation performance, and this will extend to
our future work.

D. FAULT RECONSTRUCTION
In this part, the virtual actuator fault, sensor fault of the
SFJM system will be reconstructed through the sliding mode
technology.

Define the sliding mode surface as follows

S={SO|SW®) =¢,}

From theorem 1, it can be deduced that there exist two
scalars w and w1 , such that |le|| < pand ‘Af” < ui.

Theorem 3: With the observer (22)-(23), for two given
positive matrices R, and Q, , the sliding mode motion in (39)
will take place on the hyper plane S if the parameter t satisfies
the following condition

(39)

P Q4| 1t

e |5 (||A1q”+%‘

|~ =T
+5 HMlRu M. P,

nt1)

Proof: Consider the Lyapunov function V; = egPaeq ,
where P, comes from the component of P in the theorem 1.
Then it can be obtained that

V)= 23(7;Pa ((Aq — H2Cy) eq + By (q _ﬁi))
+2¢7P, (MlAf +A 1qep) (40)
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Due to 2¢} Py (A; — H2Cy) ¢4 is a part of &, it can be
obtained that ZegPa (Aq —H> Cq) eq < 0, then (40) is equal
to (41)

Vi < 265Pa (Alqep + By (ti _ﬁi)) + 285P“M1Af
< HZenga |Avgep| +2¢4 PaBy (fq —ﬁ,)

— 15T _
(02297 Pac |+ [ 0uee] )

+ ”egPa

< |2l P, P Qu| 1

1
{harg e+ 3 |

l— _|—T
+3 HMlRa M. P,

M} — H ZeZPa

1Bl = @n

then (41) can be rewritten as

. 1
i = = [actra {151~ flal + 5 et
1 51— —
+3 HMlR;‘MITPa }u
< —[2¢T Pl < =2/min (P)v/V1 (42)

This shows the reachability is satisfied and the sliding motion
will take place in finite time. This completes the proof.

Consequently, when the sliding motion takes place on S,
the error dynamic system can be rewritten as

(Ag=HaCy) eq+Argep+By (fy=Fy) + M1AF =0 43)
Theorem 4: With the Theorem 1 and Theorem 2, the fol-

lowing equation holds

(44)

Proof: From the SFJM system (4) and (43), it can be
obtained that

fo—Ji=B] ((Aq — HyC,) eq + Argep + MlAf) (45)

-1
where B] = (BT B;) B

Then it follows that
fu=Tu = |B] (140 = HaCy| 1+ syl e + 7117

|1 (14 = HaCll 1+ s 1+ F210)
<

IA

(46)
where
9 = | B]| (g = HaCyl 1+ |4 o 1 + Papnr)

From theorem 1, one can deduce that ¥ is small enough,
then (44) holds. This completes the proof.

Remark 11: 1t is worth noting that (46) do not reconstruct f;
precisely due to the nonlinear function, in order to overcome
the discontinuous problem, (44) can also be designed as

BTp
s (F+1)

el P.By

Ja= H 47)

+ ac
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where o, is any small positive scalar. Note that the two
parameters o« and T are important, one can adjust these
two parameters so that the reconstructed signal f; achieves
satisfactory accuracy.

Remark 12: 1t is worthing to point out that (24) is a part of
the observer, i.e., the disturbance is estimated by the observer
(22) and (23), and the fault signal can be obtained by (24).
Simultaneously and separately estimating the faults and dis-
turbances is one of the characteristics of this study. Based on
the estimated information, the fault and disturbance compen-
sators can be designed to compensate for the influences of
the two factors, respectively, this provides the flexibility to
design the controller.

E. FAULT TOLERANT CONTROLLER DESIGN
In this part, the main purpose is to design a robust fault
tolerant controller to track the desired trajectories.

Define the following tracking errors e1 = 2, — zpr, €2 =
Eq — z4r, Where zp, and z, are the reference signals. And
define the following variable

s(t) = Aiep + Aen
[AM1 22], and 2o = [Aar, ..

(48)

where A; =
matrices.
The sliding mode surface is designed as

o (1) = Pis(t) + B25(t) + B3 / s(t)dt — BadaByfy  (49)

., Ag] are two

where 81, B> and B3 are three positive parameters.
From (22), (23) and (48), (49) can be rewritten as

o (1) = Bi1s (@) + P25 (1) +,33/S(l)dt
= Birrer +,31?»262+,32Mé1+,33/()»161+k2€2)dt

+B2r2 (quq +A1g2p + Brfy + M1 Af (dfl%, t))

—Barozgr + BaroByu + PoroHyChey — ,Bz?»zBffq
(50)

Remark 13: Different from results in the method in [18],
where the derivation information is needed in the sliding
mode surface, which may cause instability of the system.
Without the acceleration signal, in this study, only the track-
ing error information is needed, thus the computation com-
plexity is reduced. Additionally, the estimated fault is utilized
to design the sliding mode surface to enhance the robustness
of the proposed method.

From theorem 1, |le] < u, it can be assumed that
I % (B2A2H2Cyeq) | < ke , where kg > 0 is a constant.

In this paper, the controller is designed as

~1 )
u=—(B2r2By)" {Birier + Birrer + Parie

+ﬂ3 / ()Vlel + Azez)dl‘ —_ ﬂz)\,zzqr — Uy

+B2r2 (Aqiq + A2y + Bify + M1 Af <¢*12, Z))}
(51
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ity = (52)

= (ks +n) signt@ (1)) — ke ()
y lo (0]

A

ke

(53)

The following theorem gives the convergence of tracking
performance.

Theorem 5: For the system (20) and (21), with the con-
troller in (51-53), the convergence of the tracking error to a
neighborhood of zero can be guaranteed.

Proof: The Lyapunov candidate function is designed as

V() = 2o (0T & (1) + — (ks — & )2 (54)
2 () = 20 o 2y § £
From the definition of (52) and controller (53), one has
o (t) = u, + P2r2H2Cyey (55)

The derivative of (54) can be obtained as
a0 =006 0~ (ke —ke)lo 0]
=0 (t)T (— (/25 + n) sign(o (t)) — kqo (t))

+o )7 (/32?»2H2C eq) — (ks - lgs) lo (0]

< oo ‘kg — o ) (ke +n) sign(o (1)
ki ) 7 (1) = (ke = k¢ ) o ()
< koo 0"~ nio 0 (56)

According to the Lyapunov criterion, the stability of the
tracking error is guaranteed even in the presence of distur-
bances and faults. This completes the proof.

Remark 14: From [23], one can check that the estimation
of k¢ is bounded, then the overestimation problem can be
avoided. In addition, in order to overcome the parameter drift
case, the adaptive law (53) can be reconfigured as

- {y o (o @) > p)

57
0 (lo (O] < p) oD

where p is a parameter should be chosen such that the desired
tracking performance can be obtained.

Remark 15: From (52), it can be observed the function
sign(o (t)) is contained in the controller, one can use a sig-
moid function or saturation function to replace it, however,
the accuracy and response speed may be decreased.

Remark 16: 1t is also noting that the proposed method is
not only suitable for the SFIM system, it can also be applied
to the general manipulator system such as the investigated
results in [9] and [10], the scalability of this method is also
one of the highlights of this study.

IV. RESULTS ANALYSIS

In this section, the performance of the proposed controller
is verified for the SFIM system. The parameters of the link
robot are given as follows [5] From the definition of the SFIM

VOLUME 7, 2019

TABLE 1. Manipulator parameters.

Symbol System parameters Values
J Motor inertia 3.7x10° kg.m?
J, Link inertia 9.3x10” kg.m’
m Pointer mass 2.1x10" kg
b Link length 3.1x10"' m
Torsional spring 1.8x10'Nm.rad
k constant
Viscous friction 4.6x10°Nm.V"
G coefficient
Amplifier gain 8x10*Nm.V"!
system (3), one has
0 0 1 0
A 0 0 0 1
T | —48.6 48.6 —-125 0}’
| 1.95 —1.95 0 0
1 0 0 O
o 1 0 0
M =
0 0 1 of’
_0 0 0 1
0 0
0 0
B= 21 6 L E= o
0 1
0 0 0
0 —2 0 0
N=1lo "™ los |7 |1 216
L1 0 0 0

From (5), (10) and (13), ¢ and ¥ can be computed as

0O 0 0 1 0O 0 0 1
1 0 0 O 1 0 0 O
¢ = o 1 0 o}’ V= 0O 1 0 O
0O 0 1 0 0O 0 1 O
Then one has
[0 0 0 1 0
1 0 0 O 0
M=\ 1 0 o ?=| o |’
|0 0 1 0 21.6
)
1
I/IDS = 2|
| 0.5
0 \ 1.9500 —1.9500 0
_ 0 0 0 1.000
PAP = 1.000 0 0 0 ’
| O —48.6000 48.6000 —1.2500
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FIGURE 2. Responses of x (t) with two methods.

yCop~' =

1
0
,WDN = Nk
0
0O 0 O
1 0 O
0O 1 0
2 0 1

FIGURE 3. Responses of x;(t) with two methods.

The parameters are given as follows ws = 1,ws = 1, u = 1,
B1 =0.5, 6, =045, g3 =0.5.
Case 1: Fault and disturbance-free case.
In this case, the normal model is considered, in order
to illustrate the effectiveness of the proposed method,
the method in [24] is also take into consideration. The desired

references are given as

FIGURE 4. Responses of x3(t) with two methods.

Omr = 0.5sin (0.571) (0 < t < 20),

o = 0.6sin (0.57¢1) 0O<t <29y 7
0.4 sin (0.57¢) B <r=<20)
Wi = —0.257 sin (0.57¢1) (0 <t < 20),
Wy = 0.37 cos (0.57¢) 0O<t<39 . FIGURE 5. Responses of x,(t) with two methods.
0.2 cos (0.57¢) 8 <t<20)
By solving (31), the parameter matrices are obtained as P, Figs. 4-5 illustrate the motor angular velocity and link angular
Hy, Py, Py, Hy, and L are shown at the bottom of this page. velocity with the two methods. From the Figs. 2-3, it can

The simulations are shown as follows
Figs. 2-3 show the response of motor angle and link in [24]. The reason can be explained as follows, the pro-
angle with the proposed method and the method in [24]. posed method conclude the integration of the tracking error,

be observed that the states response faster than the method
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[ 1.7679
0.0411

—0.9936

[6.74077
| 3.4757 |7

8.8956
5.5479
| —13.3484
1.2.

0.0411 —0.4405 —-0.9936 —0.0487 —0.8086
0.0418  —0.0418  0.0561 —0.5110 —0.0305

—0.4405 —0.0418 1.8637  —0.7566 —1.0038 —0.9244

0.0561 —0.7566  3.8561 0.2808 1.0039 |’

—0.0487 —0.5110 —1.0038  0.2808 8.4776 1.1102
—0.8086 —0.0305 —0.9244  1.0039 1.1102 3.8593

T | —1.8281  4.8055

3.2595 —-56.3453 33579 09777 —2.2376
5.0979  26.1486 1.2821 3.0946  0.7931 ,
8.2420 459.1866  3.0946 3.6586  17.7683

_[ 1.5463 —1.8281]’PW=9.5154’

T
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which contributes the convergence performances. Seen from
Figs. 4-5, the tracking performance is also better than the
method in [24]. The simulation results show the capacity and
feasibility of the proposed method.

Case 2: SFIM system with faults, disturbances and param-
eter uncertainties

In this case, the actuator fault, sensor fault, unmatched
disturbance, and parameter uncertainties are considered.
Additionally, the faults and unmatched external disturbances
are supposed to be as follows

0 O0O=<t<?2)
0.6sin (1) 2=<t<3)
fa (t) =
0 B<t<14)
0.6sin (1) (14 <t <20)
0 O<t<4
fs@) = y2cos(3t)  (4<t<10)
1 (10 <t <20)
25sin (3r) + 17 0<r<28)
dy (1) = {1 B<r<10) ,
2 (10 <t < 20)
5sin (2t) 0O<t<?¥8
0.6 sin(7) 8 <t<13)
di (1) = ,
0.0021¢ (13 <t < 15)
0 (15 <1t < 20)
3sin(wrt) (0<t<9)
dyt) =1t O<t<14) , Ak (1) =0.25¢7".
1 (14 <t <?20)

Given xop = [O 0.01 0.01 0.01 ]T, T = 7, and the desired
reference signals are given as

0.5 sin (t) 0O<t<6)
Omr = 0.5 6<=<t<13) ,
0.5scos (1) (13 <t <20)
9, — 0.6 sin (1) 0O<t<?9
"~ os 8 <1<20)
0.5 cos (1) 0O<t<6)
Wpr = {0 6<t<13) ,
—0.5sin (?) (13 <t <20)
0.6 cos (1) 0O=<t<?9
Wi = .
0 B8 =<t=<20

The simulation results are shown as follows

Figs. 6-9 show the tracking performances of the motor
angle, link angle, motor angular velocity and link angular
velocity with the proposed method and the methods in [5]
and [18]. As depicted in the Figs.6-9, both the three methods
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FIGURE 6. Trajectories of x; (t) and its estimation.

FIGURE 7. Trajectories of x,(t) and its estimation.

FIGURE 8. Trajectories of x5 () and its estimation.

FIGURE 9. Trajectories of x4(t) and its estimation.

can track the desired trajectories, however, on the one hand,
the integration term of tracking error is included in this study,
the response is faster than the methods in [5] and [18]; on the
other hand, the estimated information is used to design the
controller, the robustness of the method is also better.

Figs. 10-11 illustrate the actuator fault and sensor fault and
their estimations. Seen from these two figures, the observer
has a good performance for the fault estimation by choosing
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FIGURE 10. Trajectories of the actuator fg(t) and its estimation.

FIGURE 11. Trajectories of the sensor fault f5(t) and its estimation.

FIGURE 12. Trajectories of disturbance dj(t) and its estimation.

FIGURE 13. Trajectories of disturbance ds(t) and its estimation.

a proper positive scalar o,. Figs. 12-14 show the estimation
results of the disturbances. From Figs. 12-14, the estimated
disturbances are smooth with the proposed approach, which
indicates that the estimated values can be further utilized
to design the controller. In addition, Fig. 15 exhibits the
response of control input of the SFIM system. It can be
observed that the bounded control input can be guaranteed.
The simulations verify the fault tolerance and robustness
abilities of the proposed method.
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FIGURE 14. Trajectories of disturbance dm(t) and its estimation.

FIGURE 15. Trajectories of control input u(t).

V. CONCLUSION

In this paper, the problem of fault-tolerant tracking con-
trol for a class of SFJM systems with uncertainty, actuator
fault, sensor fault, and unmatched disturbance is addressed.
A robust sliding mode control scheme is proposed. Firstly,
the SFIM with fault, disturbance, and parameter uncertainty
model is established. Then, by introducing two new variables,
the system is divided into two subparts, such that fault and
disturbance are separated. Subsequently, a novel compos-
ite observer is proposed to estimate the unknown variables.
Furthermore, a sliding mode approach is designed based on
the estimated values to keep the tracking performance of the
manipulator system. Finally, the results of the two examples
verify the effectiveness of the proposed method.

Note that only the single joint manipulator is considered in
this study, the general mechanical manipulator system track-
ing control is very important in our future study. In addition,
the result of this work is illustrated by two simulation cases;
the application of our method to the real system will also be
extended to our future work.
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