
Received June 4, 2019, accepted June 13, 2019, date of publication June 18, 2019, date of current version July 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2923624

A Method for Mining Process Models With
Indirect Dependencies via Petri Nets
HUIMING SUN, YUYUE DU , LIANG QI , (Member, IEEE), AND ZHAOYANG HE
College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Corresponding author: Yuyue Du (yydu001@163.com)

This work was supported in part by the Taishan Scholar Construction Project of Shandong Province, in part by the Key Research and
Development Program of Shandong Province under Grant 2018GGX101011, Grant ZR2019BF004, and Grant ZR2019BF041, in part by
the Natural Science Foundation of Shandong Province under Grant ZR2018MF001, and in part by the Shandong University of Science and
Technology under Grant SDKDYC190224.

ABSTRACT Process mining aims to build the models of business processes and get valuable information
according to event logs generated from enterprise information systems. There exist some indirect depen-
dences, which refer to the relationship between discontinuous activities in business processes. However,
the existing approaches cannot accurately identify such dependences from the event logs. Thus, this paper
extends the α algorithm and proposes a new one named the αTR algorithm, which uses the association rules
to describe the indirect dependences. First, an algorithm is proposed to identify the choice and loop structures
in the business process. Then, the association rules are mined to describe the indirect dependences. Finally,
we design an extended Petri net to formalize the process model, which can accurately describe the indirect
dependences. The effectiveness of the proposed approach is illustrated by the experiments on ProM.

INDEX TERMS Process mining, process model, indirect dependency, association rule, Petri net.

I. INTRODUCTION
Nowadays, most enterprises are using information systems to
manage complex business processes. For example, resource
planning systems and customer relationship management
systems have significantly improved the efficiency of enter-
prise operations. At the same time, a large number of event
logs are generated. Discovering valuable information from
the event logs becomes a hot research topic. Process mining
is an emerging technique that aims to mine valuable process-
related information from event logs and help improve the
efficiency of the business process [1]. It usually has the
following four mining perspectives: (1) control-flow perspec-
tive, (2) organizational perspective, (3) case perspective, and
(4) time perspective. Control-flow perspective focuses on the
occurrence sequence of activities. Organizational perspective
studies the resources in the event logs. Case perspective
mainly considers the properties of activities. Time perspec-
tive is concerned with the occurrence time and frequency of
activities, which can help us discover some process bottle-
necks and improve service efficiency. Process mining mainly
has the following three applications: (1) process discovery,

The associate editor coordinating the review of this manuscript and
approving it for publication was Shouguang Wang.

(2) conformance checking, and (3) process enhancement.
Discovery algorithms are used to generate process models
from event logs. Process models can reflect the business
processes of the enterprise. It can be regarded as the link
between the real business process and the event logs. The
process model is usually constructed via a Petri net, c-net,
and business process modeling notation (BPMN).

There are four dimensions to measure the quality of a
mined process model: (1) fitness, (2) simplicity, (3) precision,
and (4) generalization [1]. Fitness represents the capability of
a process model to replay a sequence of activities in event
logs. Simplicity representing the simplification of process
models requires the least number of nodes and simplest struc-
tures. Precision refers to whether the activities of the process
model are consistent with those in event logs. Generalization
indicates that the model can allow more behaviors than those
in the event logs which may appear in the future event logs.
The aforementioned four dimensions are used to evaluate the
discovered process model.

Process discovery has many challenges such as dealing
with duplicate activities [2], non-free-choice structures [2],
short loop structures [3], noise [1], and incompleteness [1].
Many scholars propose several algorithms. α algorithm pro-
posed in [3] is one of the most classical process mining

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 81211

https://orcid.org/0000-0002-5586-109X
https://orcid.org/0000-0002-0762-5607
https://orcid.org/0000-0003-4787-4613

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

algorithms. It uses the dependency of activities to generate
a process model. It can identify a parallel structure in the
model, but cannot mine short loop structures and non-free-
choice structures. Many algorithms are thus proposed by
extending α algorithm. α+ algorithm proposed in [4] can cor-
rectly mine process models with short loop structures by ana-
lyzing the characteristics of the structures. α++ algorithm can
build a model with non-free-choice structures [5]. α# algo-
rithm proposed in [6] is used to mine invisible activities.
Li et al. propose α∗ algorithm to correctly mine a model con-
taining duplicate activities from event logs [7]. In addition,
intelligent domain technologies have also been well applied
in process mining. For example, Medeiros et al. use the idea
of a genetic algorithm for process mining [8]. This method
can handle noise and incomplete event logs. However, it is
not efficient for dealing with large-scale event logs. In [9]
and [10], van der Aalst et al. and Cortadella et al. use the
idea of state-based regions, which can express more complex
control-flow structures and better balance the ‘‘over-fitting’’
and ‘‘under-fitting’’ problem. The models obtained by the
methods can ensure good fitness. However, these methods
will lead to state space explosions when mining large-scale
event logs. [11]–[13] use the idea of language-based regions
by adding nodes to models. These methods can effectively
mine loop structures, but it does not allow invisible activities
in the event logs. A fuzzy mining algorithm is proposed
in [14], which has advantages in dealing with noise and
incomplete event logs. The model obtained by these algo-
rithms is relatively simple. In [15] and [16], approaches are
proposed to describe a HeuristicsMiner (HM) via c-net. They
focus on the frequency and sequence of activities in the event
logs, therefore, having a good capability to handle noise in
event logs. Inductive Miner (IM) proposed in [17] uses the
idea of linear programming to mine block structures. It solves
the problem of noise and can obtain a model with high fitness.
An algorithm proposed in [18] uses the distance of the traces,
which can deal with the noise well. Besides, it proposes
decision rules of parallel, loop, and choice structures.

The dependencies of activities are the basis of many
mining algorithms. These dependencies are usually divided
into direct dependencies and indirect dependencies. Direct
dependency refers to direct causal relationships of continuous
activities, which is also called explicit dependency in [5].
Indirect dependency reflecting the indirect causal relation-
ships of non-continuous activities is also called implicit
dependency [5]. Figure 1 shows three parts that contain many
activities in a process. Since A and B are continuous, there
are direct dependencies between A and B. Since A and C
are discontinuous, there are indirect dependencies between
A and C. From the case perspective, it is easy to mine the
aforementioned two dependencies according to the proper-
ties of activities. For example, Kalynychenko et al. [19]
consider the time dimension of activities and can correctly
mine indirect dependencies. Sarno et al. [20] mine the deci-
sion points in process models. In addition, some methods
based on decision trees have a good performance in finding

FIGURE 1. Three parts in a process.

dependencies. However, from the control-flow perspective,
the existing algorithms can only mine direct dependencies
and mining indirect dependencies is still a big challenge.

As shown in Figure 2, a process of password verification
exists in most of the information systems. In order to protect
one’s account security, the systems will freeze an account
after entering a wrong password multiple times. Therefore,
there is an indirect dependency between account frozen and
the number of times that a wrong password is reentered.
Freezing an account is regarded as an activity in a choice
structure. Reentering and verifying a password and verifica-
tion failed are activities in a loop structure. Thus, we call the
choice structure affected by the loop count as a loop-count-
driven-choice structure. The existing algorithms cannot mine
this kind of structure. Besides, indirect dependencies vary for
different systems. Their mining is important for building a
model to describe and optimize the system.

FIGURE 2. A model of password verification.

This work adopts a four-layer process mining framework
as shown in Figure 3. The bottom layer represents real process
systems generating event logs. The next layer indicates that
the event logs are stored in the database as eXtensible event
stream files. Then as shown in the second layer, we design
some algorithms to identify indirect dependencies and obtain
process models. We use association rules [1] to describe
indirect dependencies in the models. Finally, as shown in
the top layer, since the implicit dependencies and models are
already obtained, they could help us find problems in the real
process and optimize the process in the future. This work
will propose algorithms to mine event logs and obtain process
models and indirect dependencies. Our algorithm can better
reflect the real process than these algorithms that only mine

81212 VOLUME 7, 2019

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

FIGURE 3. A four-layer process mining framework.

models. The contributions of the paper are summarized as
follows:
(1) A method to identify choice and loop structures is

proposed.
(2) A method to mine association rules is presented.
(3) In order to solve the problem that the Petri net and

existing extended Petri nets cannot express indirect
dependencies, a new extend Petri net containing asso-
ciation rules is designed.

(4) A new algorithm for mining process models with indi-
rect dependencies is proposed.

The rest of the paper is organized as follows. Section II
reviews some basic concepts of Petri nets and α algorithm.
In Section III, an algorithm of mining models with indirect
dependencies is proposed. Section IV shows the experiments
and analyzes the results. In Section V, we conclude this paper
and discuss future work.

II. PRELIMINARIES
This section first reviews the concepts and notions of
sequence [21]–[24], multi-set [25], [26], trace [27], [28],
event log [29]–[31], Petri net [32]–[43], and indirect depen-
dency [5]. Petri net can be used not only for model-
ing [41]–[43], but also for cycle-time analysis [32], resource
management [33]-[35], detecting errors [36], and service net
analysis [39]. Then the ordering relations [5] and α algorithm
are introduced.

Definition 1 (Sequence): Let ψ be a set. s =< s[0], s[1],
. . . , s[n − 1]> is a sequence over ψ , where s[i] denotes the
i-th element of s, and |s| = n denotes the length of s. ψ∗ is
the set of all sequences overψ . ε denotes an empty sequence.
Definition 2 (Multi-Set): Letψ be a set. A multi-setD over

ψ is a function D: ψ → N+, where N+ represents a set
of positive integers. B (ψ) denotes the set of all multi-sets
over ψ .
Definition 3 (Trace): Let ψ be a set of activities. A trace

σ ∈ ψ∗ is a sequence of activities on ψ , where |σ | ≥ 2.
Definition 4: Let ψ be a set of activities. For ∀σ ∈ ψ∗,

∂set(σ) is a set of activities in σ .
For example, ∂set(< a, b, c, d , e, b, a, a >) = {a, b, c, d , e}.
Definition 5(Event Log): Let ψ be a set of activities.

An event log L ∈ B (ψ∗) is a multi-set of traces over ψ .
For example, let ψ = {a, b, c, d , e} be a set of activities.

s =< a, b, c, e, d > is a sequence; A ∈ B (ψ), A = {a2,
b2, c, d , e2} is a multi-set; σ =< a, b, c, e > is a trace; and
L = {< a, b, c, e >, < a, b, d , e >} is an event log.
Definition 6 (Petri Net): PN = (P, T ; F , M) is a Petri net,

where P denotes a finite set of places, T denotes a finite set
of transitions, and F is a set of directed arcs from places to
transitions or from transitions to places, where

(1) P ∪ T 6= ∅;
(2) P ∩ T = ∅;
(3) F ⊆ (P× T) ∪ (T × P);
(4) M : P → N is a marking function, where for ∀p ∈ P,

M (p) denotes the number of tokens in p, and N represents a
set of non-negative integers; and

(5) dom (F)∪ cod (F) = P ∪ T , where
dom (F) = {x ∈ P ∪ T |∃y ∈ P ∪ T (x, y) ∈ F}, cod (F) =

{x ∈ P ∪ T |∃y ∈ P ∪ T (y, x) ∈ F}.
Definition 7 (Pre-Sets and Post-Sets): Let PN = (P, T ; F ,

M) be a Petri net. For x ∈ P ∪ T , we have
•x = {y| y∈ P ∪ T ∧ (y, x) ∈ F} and
x• = {y| y∈ P ∪ T ∧ (y, x) ∈ F},

where •x and x• are called a pre-set and a post-set of x
respectively, and •x ∪ x• represents the extension of x.
Definition 8: Let PN be a Petri net. It has the following

transition firing rules:
(1) For a transition t ∈ T , if ∀p ∈• t:M (p) ≥ 1, t is enabled

at M , denoted byM [t〉; and
(2) If t ∈ T andM [t〉, t can be fired and a new markingM ′

is generated, denoted byM [t〉M ′, where

M ′(p) =

M (p)− 1, p ∈ •t − t•

M (p)+ 1, p ∈ t• − •t
M (p), else

A Petri net can be used as a process model to describe
real processes. The process model usually has four basic
structures as shown in Figure 4: (a) sequential, (b) choice,
(c) parallel, and (d) loop. A model usually contains more than
one structure such as those in (e) and (f).
Definition 9 (Firing Sequence): Let PN = (P, T ; F ,M) be

a Petri net. A sequence s ∈ T ∗ is a firing sequence, where

VOLUME 7, 2019 81213

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

FIGURE 4. Four basic structures and two Petri net models: (a) sequential
structure; (b) choice structure; (c) parallel structure; (d) loop structure;
(e) a model with a parallel structure containing a choice structure; and
(f) a model with a parallel structure containing choice and loop structures.

∃M1-Mn and ∃t1-tn ∈ T , for s =< t1, t2, . . . , tn > and i ∈
{0, 1, . . . , n− 1}, ∃Mi[ti+1〉 and Mi[ti+1〉Mi+1.
Definition 10 (Ordering Relation): Let L be an event log

and σ ∈ L be a trace. For ∀a, b ∈ σ , four ordering relations
between a and b are defined as follows:

(1) Direct-follow relation: it is denoted by a >L b if there
is a trace σ =< t1, t2, t3, t4, . . . , tn > and i ∈ {1, 2, 3, . . . ,
n− 1} such that σ ∈ L, ti = a, and ti+1 = b.
(2) Causal relation: it is denoted by a→L b if a >L b and

b ≯L a.
(3) Parallel relation: it is denoted by a||Lb if a >L b and

b >L a.
(4) Exclusive relation: it is denoted by a#Lb if a ≯L b and

b ≯L a.
For example, L = {σ1 =< a, b, c, d , e >, σ2 =< a,

c, b, d , e >} is an event log. The direct-follow relations are
a >L b, b >L c, c >L d , d >L e, a >L c, c >L b, and
b >L d ; the causal relations are a→L b, a→L c, b→L d ,
c →L d , and d →L e; the parallel relation is b||Lc; and the
exclusive relations are a#La, b#Lb, c#Lc, d#Ld , e#Le, a#Ld ,
a#Le, c#Le, and b#Le.
Definition 11 (α Algorithm): Let L be an event log. α

algorithm is defined as follows [3]:
(1) TL = {t ∈ T |∃σ∈L t ∈ σ }
(2) TI = {t ∈ T |∃σ∈L t = first(σ)}
(3) TO = {t ∈ T |∃σ∈L t = last(σ)}
(4)XL = {(A,B)|A ⊆ TL ∧ A 6= ∅ ∧ B ⊆ TL ∧ B 6= ∅

∀a∈A∀b∈Ba→L b ∧ ∀a1,a2∈Aa1#La2 ∧ ∀b1,b2∈Bb1#Lb2}

(5) YL = {(A,B) ∈ XL |∀(A′,B′)∈XLA ⊆ A′ ∧ B ⊆ B′ ⇒

(A,B) = (A′,B′)}

(6) PL = {p(A,B)|(A,B) ∈ YL} ∪ {iL , oL}
(7) FL = {(a, p(A,B))|(A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B), b)

|(A,B) ∈ YL ∧ b ∈ B} ∪ {(iL , t)|t ∈ TI } ∪ {(t, oL)|t ∈ TO}

(8) α(L) = (PL ,TL ,FL).

α algorithm is one of the earliest process mining algo-
rithms. Now, α algorithm is still used to obtain a model.
Definition 12 (Indirect Dependency): Let ψ be a set of

activities. For ∀σ ∈ L, a = σ [i], b = σ [j]∈ ψ , and i < j,
an indirect dependency between a and b is denoted as a2b,
where a• ∪• b = ∅ and if a ∈ σ , then ∃b ∈ σ .

III. INDIRECT DEPENDENCY
This section presents a method to obtain a model with indirect
dependencies. Firstly, loop and choice structures are identi-
fied. Then association rules are obtained. Finally, an extended
Petri net is designed to model the process.

A. LOOP STRUCTURE
In this subsection, activities in loop structures are identified.
Then a sequence is formed based on the direct-follow relation
of activities.
Definition 13: Let L be an event log, σ ∈ L be a trace, and

s be a sequence. For ∀a ∈ σ , sum (a, σ) indicates the number
of a in σ , and sum (s, σ) indicates the number of s in σ .

For example, if σ1 =< e, a, c, c, f > is a trace, then sum
(a, σ1) = 1 and sum (c, σ1) = 2. For s =< a, c >, sum (s,
σ) = 1.
Definition 14 (Loop Activity): Let L be an event log and

σ ∈ L be a trace. a ∈ σ is called a loop activity if sum (a,
σ) >1. The set of all loop activities is denoted as LAS , where
LAS = {a ∈ σ |∃σ ∈ L∧ sum (a, σ) >1}.
For example, σ1 =< e, a, c, c, f > and sum (c, σ1) = 2,

so c is a loop activity.
Definition 15 (Loop): Let LAS be a set of loop activities.

ρ ∈ L∗AS is a loop, where for ∀ρi ∈ LAS , if |ρ| = 1, it is
called a 1-length loop; if |ρ| = 2, where ρ[0]>L ρ[1]; and if
|ρ| >2, where ρ[i]>L ρ[i+ 1] and |ρ|-2> i ≥ 0. LS denotes
the set of all loops.
Definition 16: Let a ∈ ψ be an activity. For ∀ρi ∈ L∗AS ,

joint (a, ρi) indicates a new sequence< a, ρi > and joint (ρi,
a) indicates a new sequence < ρi, a >.
For example, if ρ1 =< e, a, c, c, f >, then joint (a, ρi) =<

a, e, a, c, c, f > and joint (ρi, a) =< e, a, c, c, f , a >.
Now, an algorithm for identifying loops is proposed as

follows.
In Algorithm 1, lines 2-8 indicate that all loop activities are

found and added into LAS . Then lines 9-23 indicate that all
loops are obtained according to Definition 15. Line 24 indi-
cates that loops are added into LS . Finally, line 27 indicates
that the algorithm returns a loop set.
Example 1: Let L1 = {σ1 =< a, b, b, b, c, e >, σ2 =< a,

b, c, e >}. According to Definition 14, sum (b, σ1) = 3 and
LAS = {b}. From Algorithm 1, we can obtain a 1-length loop
ρ =< b >.
Example 2: L2 = {σ1 =< a, b, c, d , e, f , g >, σ2 =< a, b,

c, d , b, c, d , e, f , g >}. Firstly, According to Definition 14,
sum (b, σ2) = 2, sum (c, σ2) = 2, and sum (d , σ2) = 2. Thus,
we have LAS = {c, d , b}. Then LAS = LAS -c, ρ =< c >,
so LAS = {b, d}. Since b >L c and c = ρ [0], we have
LAS = LAS -b, ρ =< b, c >, and LAS = {d}. Then since

81214 VOLUME 7, 2019

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

Algorithm 1 Loops
Input: L
Output: LS
1: LAS = ∅; ρ = ε;
2: for each σi ∈ L do
3: for each aj ∈ σi do
4: if sum (aj, σi) >1 then
5: LAS = LAS ∪ aj;
6: end if
7: end for
8: end for
9: for each ak ∈ LAS do
10: LAS -ak ;
11: ρ = joint (ak , ε)
12: for (i = 0; i < |LAS |; i++) do
13: for ∀bm, cn ∈ LAS do
14: if (bm >L cn and cn = ρ[0] and bm ∈ LAS) then
15: ρ = joint (bm, ρ);
16: LAS = LAS -bm;
17: end if
18: if (bm >L cn and bm = ρ[|ρ| − 1] and cn ∈ LAS)

then
19: ρ = joint (ρ, cn);
20: LAS = LAS -cn;
21: end if
22: end for
23: end for
24: LS = LS ∪ ρ;
25: ρ = ε;
26: end for
27: return LS

ρ[|ρ| − 1]= c and c >L d , we have ρ = joint (ρ, d) and
LAS = (LAS -d) = ∅. Thus, we have ρ =< b, c, d >.

B. CHOICE STRUCTURE
In this subsection, we consider a choice structure that only
contains a sequential structure. A choice-branch refers to
a sequence of activities that satisfy the causal relation
in a choice structure. If there is an indirect dependency
between the activities of the choice-branch and activities of
other discontinuous structures, we use the first activity of
each choice-branch to find the indirect dependence between
choice activities and other activities. The first activity of
choice-branch is called a branch point. As shown in Figure 5,
< b, i > is a choice branch. Because b and i belong to
the same choice-branch, if there is an indirect dependency
between < b, i > and h, we use b to find the indirect
dependence between activities of choice-branch and other
structures.
Definition 17 (Choice Activity): Let L be an event log, and

σi, σj ∈ L be two traces. a is called a choice activity, where
a ∈ σi and a /∈ σj. The set of all choice activities is denoted

FIGURE 5. A model that contains choice and loop structures.

as

C={a ∈ σ2,a /∈ σ1|∃σ1,σ2∈Lsum(a, σ1)=0∧sum(a, σ2)=1}.

For example, L = {σ1 =< a, b, d , e >, σ2 =< a, c, d ,
e >}. Since b ∈ σ1, b /∈ σ2, c ∈ σ2, and c /∈ σ1, we have that
b and c are choice activities and C = {b, c}.
Definition 18 (Branch Point): Let C be a set and ∀ai,

aj ∈ C be activities. ai ∈ C is called a branch point, where
ai, aj /∈ LAS , ai#Laj, and there is no activity ak ∈ C such that
ai→L ak . CBS denotes the set of all branch points.
Theorem 1: Let σ ∈ L be a trace and a be an activity.

If a ∈ L and a /∈ σ , then a is a choice activity.
Proof: Because ∀a ∈ L, then ∃σi ∈ L and a ∈ σi.

Since a ∈ σi and a /∈ σ , a is a choice activity according
to Definition 17. Thus, the conclusion holds.

According to Theorem 1 and Definition 18, an algorithm
for identifying branch points is proposed as follows.

Algorithm 2 Branch Points
Input: L, LAS
Output: CBS
1: C = ∅, CBS = ∅;
2: for each σi ∈ L do
3: C = C ∪ (ψ − ∂set(σi));
4: end for
5: CBS = C ;
6: for each ci ∈ C do
7: for each cj ∈ C do
8: if (ci→L cj) then
9: CBS = CBS -cj;
10: end if
11: if (cj→L ci) then
12: CBS = CBS -ci;
13: end if
14: end for
15: end for
16: CBS = CBS -LAS ;
17: return CBS

In Algorithm 2, lines 2-4 indicate that according to Defini-
tions 17, if ∃a ∈ L and a /∈ σi then C = C ∪ a. Next, lines
5-15 indicate that for ∀a, b, if a→L b, then b is removed from
theCBS according toDefinition 18. Then line 16 indicates that
if an activity is both a choice activity and a loop activity, then
it is not a branch point. Through the above operations, we can
find all branch points. Finally, line 17 returns CBS .

VOLUME 7, 2019 81215

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

For example, L = {σ1 =< a, b, b, c, d , f >, σ2 =< a, c,
e, f >} and ψ = {a, b, c, d , e, f }. For σ1, ∂set(σ1) = {a, b,
c, d , f } and ψ-∂set(σ1) = {e}, and according to Theorem 1,
C = {e}. Then for σ2, ∂set(σ2) = {a, c, e, f }. According to
Theorem 1, C = C ∪ ψ-∂set(σ2) and ψ-∂set(σ2) = {b, d}.
Thus, we have C = {b, d , e}. Since b ∈ LAS , according to
Definition 18, CBS = CBS -LAS . Thus, we have CBS = {d , e}.

C. ASSOCIATION RULES
In this subsection, wemine indirect dependencies of activities
in loop and choice structures and use association rules to
describe indirect dependencies.
Definition 19: Let σ be a trace and ρ ∈ σ be a loop. A loop

count is denoted as sum (ρ, σ).
For example, if σ =< a, b, c, d , e, f , g, e, f , g, e, f , g, h >

and ρ =< e, f , g >, then sum (ρ, σ) = 3.
Definition 20 (Association Tuple): Let B1,B2, B3, and B

be multi-sets, where B1 = LS × CBS , B2 = CBS × LS , B3 =

CBS × CBS , and B = B1∪ B2∪ B3. An association tuple is
denoted as τ =< xsum(x,σ), ysum(y,σ) >∈ B, where x• ∪• y =
∅, x, y ∈ σ , x is the pre-set of the association tuple, y is the
post-set of the association tuple, B (τ) ∈ {1, 2, 3, . . . , n} is
the weight of τ , τ (x) = xsum(x,σ), and τ (y) = ysum(y,σ).
For example, τ1 =<< a, b, c >3, e1 > indicates that e

occurs after the loop < a, b, c > occurs 3 times. τ2 =< d1,
< a, b, c >2> indicates that after d occurs, the loop < a,
b, c > occurs twice. τ3 =< d1, e1 > indicates that after
the choice activity d occurs, the choice activity e occurs. For
τ1 =<< a, b, c >3, e1 >, we have τ1(x) =< a, b, c, a, b, c,
a, b, c >=< a, b, c >3 and τ1(y) = e1 = e.
Definition 21 (Sub-Trace): Let ψ be a set of activities and

σ =< a0, a1, a2. . .an > be a trace. γ =< ai, ai+1, ai+2, . . . ,
aj > is a sub-trace of σ where 0< i < j < n. Y denotes the
set of all sub-traces of σ .
For example, σ1 =< e, a, c, c, f > is a trace and γ =< a,

c > is a sub-trace of σ1.
Definition 22: Let L be an event log. σ ∈ L, a ∈ CBS ,

and ρ ∈ LS . For ρ ∈ σ , σ =< γ1, ρ, γ2, ρ, . . . , γn >, cut
(σ , ρ) = {γ1, γ2, . . . , γn}, where γi ∈ Y and 0< i ≤ n. For
a ∈ σ , σ =< γ , a, γ ′ >, cut (σ , a) = {γ , γ′}, where γ ,
γ′ ∈ Y .

For example, σ =< a, b, c, d , e > and cut (σ , c) = {γ =<
a, b >, γ ′ =< d , e >}. If ρ =< b, c >, then cut (σ , ρ) =
{γ1 =< a >, γ2 =< d , e >}.
Theorem 2: For ∀σ ∈ L, ∀ρi, ρj ∈ LS , ∀ai ∈ ρi, and ∀aj ∈

ρj, if ρi ∈ L, aj#Lai, and Y = cut (σ , ρi), then |Y | − 1 = sum
(ρi, σ).

Proof: Because ∀ai ∈ ρi and ∀aj ∈ ρj, we have aj#Lai
and σ =<. . . , a, b, ρi, ρj, . . . , ρi, ρj, d , e, . . .>/∈ L. For sum
(ρi, σ) = 1, we have ∀σ =<. . . , a, b, ρi, d , e, . . .>, Y =
cut (σ , ρi) = {γ1 =<. . . , a, b >, γ2 =< d , e, . . .>}, where
|Y | = 2, so |Y |−1 = 1 = sum (ρi, σ). For sum (ρi, σ) = n ≥
1, we have ∀σ =<. . . , a, b, ρi, ρi, . . . , ρi, d , e, . . .> and Y =
cut (σ , ρi) = {γ1 =<. . . , a, b >, γ2 = ε, γ3 = ε, . . . , γn = ε,
γn+1 =< d , e, . . .>}. There are γ1, γn+1 and n − 1 ε in the

set Y , where |Y | − 1 = n = sum (ρi, σ). Thus, the theorem
holds.

Notice that, the existing algorithms do not consider indirect
dependencies between loop and choice activities, they can-
not mine models with loop-count-driven-choice structures.
We adopt the idea of cutting traces by a loop in this work.
An algorithm for mining loop-count-driven-choice structures
is proposed as follows.

Algorithm 3 Loop-Count-Driven-Choice Structures
Input: L, LS
Output: B 1
1: B 1 = ∅, Y = ∅;
2: for each ρ ∈ LS do
3: for each σ ∈ L do
4: if (ρ /∈ σ) then
5: Continue;
6: end if
7: if (ρ ∈ σ) then
8: Y = cut (σ , ρ);
9: for γi ∈ Y do
10: for each a ∈ CBS ;
11: if (a ∈ γi) where γi ∈ Y then
12: τ =< ρ|Y |−1, asum(a,σ) >;
13: B 1 = B 1 ∪ τ ;
14: Break;
15: end if
16: end for
17: end for
18: end if
19: end for
20: end for
21: return B 1

In Algorithm 3, lines 2-8 indicate that a trace is divided
into several sub-traces. Then lines 9-20 find the branch points
behind the loop. Next, we group them into an association
tuple according to Definition 20. In addition, we put all the
association tuples into B1. Finally, line 21 returns B1.
For example, L1 = {σ1 =< a, b, c, d , e, f , h >, σ2 =<

a, b, c, d , b, c, d , e, g, h >}. Through Algorithms 1 and 2,
we can obtain that LS = {ρ =< b, c, d >} and CBS = {f ,
g}. First, according to Definition 22, cut (σ1, ρ) = {γ1 =<
a >, γ2 =< e, f , h >}. Since f ∈ γ2, f ∈ CBS , and sum
(ρ, σ1) = 1, we have B1 = {τ =<< b, c, d >1, f 1 >}.
Similarly, we have B1 = {<< b, c, d >1, f 1 > and<< b, c,
d >2, g1 >}.
In addition, when there are indirect dependencies of activ-

ities in choice and loop structures, we call the loop structure
whose loop count is affected by a choice activity as a choice-
driven-loop structure. Figure 5 shows a model, where b, i,
and c are activities in a choice structure and h is a 1-length
loop. If the loop count of h is affected by the activities in the
choice structure, we call the loop structure a choice-driven-
loop structure.

81216 VOLUME 7, 2019

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

FIGURE 6. A model that contains two choice structures.

We adopt the idea of cutting traces by branch points.
An algorithm for mining choice-driven-loop structures is pro-
posed as follows.

Algorithm 4 Choice-Driven-Loop Structures
Input: L, LS
Output: B 2
1: B 2 = ∅, Y = ∅;
2: for each a[i]∈ CBS where |CBS | > i ≥ 0 do
3: for eachσ ∈ L
4: if (a /∈ σ) then
5: Continue;
6: end if
7: if (a ∈ σ) then
8: Y = cut (σ , a);
9: for each ρ ∈ LS do
10: if (ρj ∈ γ ′) where γ ′ ∈ Y then
11: Y = cut(γ ′, ρ);
12: τ =< asum(a,γ

′), ρ|Y |−1 >;
13: B2 = B 2 ∪ τ ;
14: break;
15: end if
16: end for
17: end if
18: end for
19: end for
20: return B 2

In Algorithm 4, lines 2-8 are to cut the trace into two
sub-traces by branch points in CBS . Then lines 9-16 find the
loop behind the choice and cut the sub-trace γ ′. In addition,
the loop count is obtained according to Theorem 2. Next,
we group them into an association tuple according to Defini-
tion 20. Finally, we put all association tuples into B2. Line 20
returns B2.
For example, L2 = {σ1 =< a,m, b, c, d , e, h > and σ2 =<

a, n, b, c, d , b, c, d , e, h >2}, where LS = {ρ =< b, c, d >}
and CBS = {n, m}. First, according to Definition 22, cut (σ1,
m) = {γ =< a > and γ ′ =< b, c, d , e, h >}. Since < b,
c, d >∈ γ ′ and according to Theorem 2, sum (ρ, γ ′) = 1.
Next, we can obtain that B2 = {< m1, < b, c, d >1>}.
Similarly, we have B2 = {< m1, < b, c, d >1>, < n1, < b,
c, d >2>2}.
The indirect dependencies of choice activities are common

in real processes. Figure 6 shows a model that contains two
choice structures. If b occurs, then only e in another choice
structure occurs; and if c occurs, then only f in another choice

structure occurs. The aforementioned case is an example of a
non-free-choice structure. σ++ and ILP algorithms can mine
it by adding additional places. Another situation is that if b
occurs, then only e in another choice structure occurs; and
if c occurs, then e or f in another choice structure occurs.
This situation is different from the non-free-choice structure.
We call it a semi-non-free-choice structure. The existing
algorithms cannot mine the structure.

The indirect dependencies of choice activities can be
found in non-free-choice structures and semi-non-free-choice
structures. An algorithm for mining above two structures is
proposed as follows.

Algorithm 5 Non-Free-Choice and Semi-Non-Free-Choice
Structures
Input: L, LS
Output: B3
1: B3 = ∅, Y = ∅;
2: for eacha ∈ CBS do
3: for eachσ ∈ L
4: if (a /∈ σ) then
5: Continue;
6: end if
7: if (a[i]∈ σ) then
8: Y = cut (σ , a[i]);
9: for b ∈ CBS do
10: if (b ∈ γ ′) where γ ′ ∈ Y then
11: τ =< asum(a,σ), bsum(b,σ) >;
12: B3 = B3 ∪ τ ;
13: break;
14: end if
15: end for
16: end if
17: end for
18: end for
19: return B3

In Algorithm 5, lines 2-8 cut the traces into two sub-traces
by branch points in CBS . Then lines 9-10 find the first branch
point in γ ′. Next, lines 11 and 12 indicate that two branch
points are grouped into an association tuple according to
Definition 20. Finally, line 19 returns B3.
For example, L3 = {σ1 =< a, m, b, e, h >, σ2 =< a, n,

b, d , h >2, σ3 =< a, m, b, d , h >}, where CBS = {m, n,
d , e}. First, since m ∈ σ1, we can obtain that cut (σ1, m) =
{γ =< a >, γ ′ =< b, e, h >}. Since e ∈ γ ′, we can obtain
that B3 = {< m1, e1 >}. Then according to Definition 22,
cut (σ1, e) = {γ =< a, m, b >, γ ′ =< h >}. Since there
is no branch points in γ ′, there exists no association tuple.
We can analyze σ2 and σ3 in the same way. Finally, we have
B3 = {< m1, e1 >, < m1, d1 >, < n1, d1 >2}.
Association rules are a common way of describing ‘‘if...,

then...’’. It is usually denoted as a form of X ⇒ Y . In this part,
the pre-set and post-set of an association tuple τ can form
an association rule, denoted as <τ = xsum(x,σ) ⇒ ysum(y,σ).
We denote TR as the set of association rules, Tpre−TR as the

VOLUME 7, 2019 81217

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

set of xsum(x,σ), and TPost−TR as the set of ysum(y,σ) in the
following content.
Definition 23: Let L be an event log, B be a multi-set of

association tuples, τ be an association tuple, <τ ∈ TR be an
association rule, and B (τ) be the weight of τ . Support of <τ
is defined and calculated as follows.

Support(<τ) =
B(τ)
|L|

For example,<τ = a⇒ b, if Support (<τ) >0, which means
there is the case of ‘‘if a, then b’’.
Definition 24: Let <τ = xsum(x,σ) ⇒ ysum(y,σ) be an asso-

ciation rule, τ =< xsum(x,σ), ysum(y,σ) > be an association
tuple, Nτ (x) be the number of xsum(x,σ), and B (τ) be the
weight of τ . Confidence of <τ is defined and calculated as
follows.

Confidence(<τ) =
B(τ)
Nτ (x)

For example, <τ = a⇒ b, if confidence (<τ) = 0.8, which
means if a occurs, the probability of b occurring is 0.8.
Theorem 3: For ∀<τ = x ⇒ y ∈ TR, if Confidence (<τ) =

1 and Support (<τ) > 0, then x2y.
Proof: Since Support (<τ) > 0 and B (τ) >0, ∃τ =< x,

y > where x• ∪• y = ∅ and x, y ∈ σ . Since Confidence
(<τ) = 1, B (τ) = Nτ (x), which means that if x ∈ σ , then
∃y ∈ σ . Thus, the theorem holds.
Theorem 3 means that we can describe implicit dependen-

cies by association rules with Confidence (<τ) = 1 and
Support (<τ) > 0. According to Theorem 3 and Defini-
tions 23 and 24, an algorithm for mining association rules and
calculating the support and confidence of association rules is
proposed as follows.

In Algorithm 6, lines 2-6 indicate that the Support (<τ) is
calculated according to Definition 23. Then lines 7-15 indi-
cate that the Confidence (<τ) is calculated according to Def-
inition 24. In addition, lines 16-23 find association rules with
Confidence (<τ) = 1 and Support (<τ) > 0 according to
Theorem 3. Finally line 24 returns TR, Tpre−TR, and Tpost−TR.
For example, L2 = {σ1 =< a,m, b, c, d , e, h > and σ2 =<

a, n, b, c, d , b, c, d , e, h >2}. According to Algorithm 4,
we can get that B2 = {< m1, < b, c, d >1>, < n1, < b, c,
d >2> 2} and TR = {<τ1 = m1

⇒< b, c, d >1, <τ2 =
n1 ⇒< b, c, d >2}. Then according to Definitions 23 and
24, we have:
Support (<τ1) = 1/3 = 0.33,Confidence (<τb1) = 1/1 =

1,
Support (<τ2) = 2/3 = 0.67, and Confidence (<τ2) =

2/2 = 1.
According to Theorem 3, we have TR = {<τ1 = m1

⇒<

b, c, d >1, <τ2 = n1 ⇒< b, c, d >2}, Tpre−TR = {m1, n1},
and Tpost−TR = {< b, c, d >1, < b, c, d >2)}. However, for
B3 = {τ1 =< m1, e1 >, τ2 =< m1, d1 >, τ3 =< n1, d1 >2}
and TR = {<τ3 = m1

⇒ e1, <τ4 = m1
⇒ d1 >, <τ5 =

n1 ⇒ d1}, we can see that if m occurs once, e or d occurs.
Since Confidence (<τ3) = 0.5 and Confidence (<τ4) = 0.5,
<τ3 and <τ4 cannot describe indirect dependencies.

Algorithm 6 Association Rules
Input: B = B1∪ B2∪ B3
Output: TR, Tpre−TR, Tpost−TR
1: Nτ (x) = 0, TR = ∅, Tpre−TR = ∅, Tpost−TR = ∅;
2: for each τ =< xsum(x,σ), ysum(y,σ) >∈ B do
3: <τ = xsum(x,σ) ⇒ ysum(y,σ);
4: TR = TR ∪<τ ;
5: Support (<τ) = B (τ)div |L|;
6: end for
7: for each τ =< xsum(x,σ), ysum(y,σ) >∈ B do
8: for each τi ∈ B do
9: if (τ (x) = τi(x)) then
10: Nτ (x) = Nτ (x)+1;
11: end if
12: end for
13: Confidence(<τ) = B (τ)div Nτ (x);
14: Nτ (x) = 0;
15: end for
16: for each <τ ∈ TRdo
17: if (Confidence (<τ) = 1&& Support (<τ) >0) then
18: Tpre−TR = Tpre−TR ∪ xsum(x,σ);
19: Tpost−TR = Tpost−TR ∪ ysum(y,σ);
20: end if
21: else then
22: TR = TR-<τ ;
23: end for
24: return TR, Tpre−TR, Tpost−TR;

D. EXTENDED PETRI NET
In this subsection, we design a new Petri net to build a model
with the indirect dependencies.
Definition 25 (Dependency Petri Net): DPN = (PN,

Tpre−TR, TPost−TR, TR) is a dependency Petri net, where PN
is a Petri net, Tpre−TR denotes xsumx, σ of association rules,
TPost−TR denotes ysumy, σ of association rule, and TR denotes
a finite set of association rules, where it has the following
transition firing rules:
1) For ∀t1i ⇒ t1l ∈ TR and tl ∈ TPost−TR, if ti has enabled,

and p ∈• tl : M (p) ≥1, then tl is enabled at M , denoted by
M [tl〉;
2) For ∀t1j ⇒< to, . . . , tp >n

∈ TR, n ∈ N+, and < to, . . . ,
tp >∈ TPost−TR, if tj has enabled, and p ∈• to:M (p) ≥1, then
< to, . . . , tp > is enabled atM , and< to, . . . , tp > can enable
n times, denoted byM [< to, . . . , tp >n

〉;
3) For ∀ < ta, . . . , tb >n

⇒ t1k ∈ TR, tk ∈ TPost−TR, if < ta,
. . . , tb > has enabled n times, and p ∈• tk : M (p) ≥1, tk is
enabled at M , denoted by asM [tk 〉; and

4) If t /∈ TPost−TR, and t ∈ Tpre−TR has not enabled,
the firing rules are consistent with PN.
Association rules are used to describe indirect dependen-

cies.
For example, Figure 7 is aDPNmodel, where TR= {t12 ⇒

t15}, Tpre−TR = {t12}, TPost−TR = {t15}. For t4, p ∈
• t4:

M (p) ≥1, so t4 can be fired. For p ∈• t5: M (p) ≥1, t2 occurs

81218 VOLUME 7, 2019

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

FIGURE 7. A DPN Model with Indirect Dependency.

once, and then t5 can be fired. In addition, if t2 has occurred
once, t4 cannot be fired.

E. αTR ALGORITHM
Based on α lgorithm, an algorithm is proposed to mine asso-
ciation rules and indirect dependencies as follows.
Definition 26 (αTR Algorithm): Let L is an event log. αTR

algorithm is defined as follow:
(1) TL = {t ∈ T |∃σ∈L t ∈ σ }
(2) TI = {t ∈ T |∃σ∈L t = first(σ)}
(3) TO = {t ∈ T |∃σ∈L t = last(σ)}
(4)LAS = {a|∃σ∈Lsum(a, σ) > 1}
(5) C = {a|∃σi,σj∈Lsum(a, σi) = 0 ∧ sum(a, σj) = 1}
(6) LS = {ρ|∀ρ[i] ∈ LAS}
(7) CBS = {a, b|∃a,b∈Ca#Lb}
(8) XL = {(A,B)|A ⊆ TL ∧ A 6= ∅ ∧ B ⊆ TL ∧ B 6=
∅∀a∈A∀b∈Ba→L b ∧ ∀a1,a2∈Aa1#La2 ∧ ∀b1,b2∈Bb1#Lb2}
(9) YL = {(A,B) ∈ XL |∀(A′,B′)∈XLA ⊆ A′ ∧ B ⊆ B′ ⇒

(A,B) = (A′,B′)}
(10) PL = {p(A,B)|(A,B) ∈ YL} ∪ {iL , oL}
(11) FL = {(a, p(A,B))|(A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B), b)

|(A,B) ∈ YL ∧ b ∈ B} ∪ {(iL , t)|t ∈ TI } ∪ {(t, oL)|t ∈ TO}

(12) Tpre−TR = {xsum(x,σ)|x ∈ (CBS ∪ LS)}
(13) Tpost−TR = {ysum(y,σ)|y ∈ (CBS ∪ LS)}
(14) TR = {xsum(x,σ) => ysum(y,σ)|xsum(x,σ), ysum(y,σ) ∈

(Tpre−TR∪Tpost−TR)∧Support(<τ) > 0∧confidence(<τ) =
1}

(15) αTR(L) = (PL ,TL ,FL ,Tpre−TR,Tpost−TR,TR)
Notice that operations in steps (4)-(7), (12), (13), and (14)

are different from α algorithm, where (4) and (6) are accord-
ing to Algorithm 1; (5) and (7) are obtained by Algorithm 2;
(12), (13), and (14) are obtained by Algorithms 3-6. In αTR

algorithm, step (1) gets all transitions. Then steps (2) and (3)
obtain the first and last transitions, respectively. Steps (4)-(7)
aim to find the transitions in loop or choice structure.
Steps (8) and (9) mine the causal relations. Then, steps (10)
and (11) generate the places and directed arcs, respectively.
Steps (12)-(14) get the association rules. Finally, the αTR

algorithm returns a DPN model. Let |LS | = m, |L| = k ,
|Y | = i, |CBS | = j, and |TL | = n. Since Algorithm 3 uses
four layers of loops, the worst complexity of αTR algorithm
is O(n4). In fact, since m, i, j, k < n, the computational
complexity of Algorithm 3 is m × k × i × j, which is lower
than O(n4). Next, we use an example to further illustrate the
A algorithm and its complexity.

For example, L = {σ1 =< a, b, c, d , e, f , h >, σ2 =< a,
b, c, d , b, c, d , e, g, k , h >}. Firstly, in step (1), TL = {a,
b, c, d , e, f , g, h, k}. Steps (2) and (3) get that TI = {a}
and TO = {h}. Then by Algorithms 1 and 2, steps (4)-(7) can
obtain that LAS = {b, c, d}, C = {g, h, k}, LS = {ρ =< b,
c, d >}, and CBS = {g, h}. In step (8), we have XL =
{({a}, {b}), ({b}, {c}), ({c}, {d}), ({d}, {e}), ({e}, {f }),
({e}, {g}), ({g}, {k}), ({k},{h}), ({f }, {h})}. In step (9),
we have YL = {({a}, {b}), ({b}, {c}), ({c}, {d}), ({d},
{e}), ({e}, {f , g}), ({g}, {k}), ({k , f },{h})}. In step (10),
we can get that PL = {p({a}, {b})}, p({b}, {c}), p({c}, {d}),
p({d}, {e}), p({e}, {f }, {g}), p({g}, {k}), p({k, f }, {h}), iL , oL}.
Then, in step (11), FL = {(a, p({a}, {b})), (p({a}, {b}), b), (b,
p({b}, {c})), (p({b}, {c}), c), (c, p({c}, {d})), (p({c}, {d}), d),
(d , p({d}, {e})), (p({d}, {e}), e), (e, p({e}, {f }), g), (p({e}, {f },
{g}, f), (p({e}, {f }, {g}, g), g, p({g}, {k}), (p({g}, {k}, k), (k ,
p({k}, {f }, {h}), (f , p({k}, {f }, {h}), (p({k}, {f }, {h}), h),
(iL , a), (h, oL))}. Next, through Algorithms 3 and 6,
steps (12)-(14) get that Tpre−TR = {< b, c, d >1, < b, c,
d >2}, Tpost−TR = {g1, f 1}, andTR= {< b, c, d >1

⇒ f 1 >,
< b, c, d >2

⇒ g1}. Finally, step (13) gets thatαTR(L) = (PL ,
TL , FL , Tpre−TR, Tpost−TR, TR). Since |LS | = 1, |L| = 2,
|Y | = 2, n = |TL | = 9, and |CBS | = 2, the computation of
Algorithm 3 is 1×2×2×2.

IV. EXPERIMENTAL EVALUATION
In this section, experiments are conducted based on two
artificial cases and two real business processes on ProM [44].
We compare αTR algorithmwith α++, HM, ILP, and IM algo-
rithms, and discuss the precision and fitness of the models
obtained by the five algorithms. We use the method proposed
in [45] to calculate the precision and the tool named Replay
a Log on Petri Net for Conformance Analysis for testing
the fitness values of the models. We name the plugin con-
taining the αTR algorithm as alphaTR indirect dependencies
miner. The plugin is publicly accessible at https://github.com/
sdust-sunhuiming/miner.
The rest of the experiment is organized as follows.

In subsection A, we discuss an artificial model with a semi-
non-free-choice structure and the algorithm efficiency. Then
in subsection B, an artificial model that contains a choice-
driven-loop structure is discussed. Next, subsection C intro-
duces the outpatient process model of a hospital in Qingdao,
which contains a non-free-choice structure. In addition, sub-
section D discusses a model of an e-commerce system that
contains a loop-count-driven-choice structure.

A. SEMI-NON-FREE-CHOICE STRUCTURE
In this subsection, the semi-non-free-choice structure is dis-
cussed. We first use the following simple artificial event log
and mine a process model. L1 = {< a, b, d , e, h >2, < a,
c, d , e, h >, < a, c, d , f , h >2, < a, c, d , g, h >, < a, i,
d , e, h >, < a, i, d , f , h >}. Next, we use five algorithms to
mine the event log L1. Finally, the precision and fitness of the
model are calculated.

VOLUME 7, 2019 81219

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

Figure 8 is a model obtained by α++ algorithm. We found
that models obtained by ILP and IM algorithms are the same
as the one in Figure 8. Figure 9 is a model obtained by HM
algorithm. It is a c-net.We can convert it into a Petri net which
is also the same as the model in Figure 8. The event log is a
record of the process. We can see that from the L1, if b occurs
in the first choice structure, then only e occurs in the second
choice structure, and no other activities in the second choice
structure occur after b. However, the models obtained by
α++, HM, ILP, and IM algorithms allow traces that do not
exist in L1. It means that there are behaviors in the model that
do not exist in the business process. For example, < a, b, d ,
f , h > and < a, b, d , g, h > are two traces that do not exist
in L1, but they are allowed by the model in Figures 8 and 9.

FIGURE 8. A model mined by α++ algorithm.

FIGURE 9. A model mined by HM algorithm.

Figure 10 is a DPN model obtained by αTR algorithm.
Compared with the models obtained by other algorithms,
we can see that it has an association rule b1 ⇒ e1. Thus,
the model does not allow f and g to occur after b, which
reduces the possibility of traces that do not exist in the pro-
cess. There is no association rule on c, so activities e, g, and
f may occur after c.

FIGURE 10. A model mined by αTR algorithm.

Figure 11 shows the precision of the five models. The
precision is calculated by the 1-alignment method proposed
in [45]. The precision of models obtained by α++, HM, ILP,
and IM algorithms is 0.9167, the precision of αTR mining
model is 0.9706. Figure 12 shows the fitness of the five
models. The fitness of the five models is 1. It means that
our algorithm improves the precision of the model while
maintaining the same degree of fitness as other algorithms.

The complexity of the α++ algorithm is exponential in
the number of activities [5]. When the event log contains
a small number of activities, the α++ algorithm is more
efficient. However, when the number of activities is large,

FIGURE 11. Precision.

FIGURE 12. Fitness.

the efficiency of the α++ algorithm will decrease. The com-
plexity of the ILP algorithm is worst-case exponential [13].
When the event log contains large traces, the efficiency of
ILP algorithm is much lower than our algorithm. However,
ILP algorithm has an outstanding capability to mine various
models with complex structures. Experiments show that HM
and IM algorithms take less time than ours. Our approach
sacrifices efficiency but gets a model with high precision.

In summary, the αTR algorithm can effectively mine semi-
non-free-choice structures.

B. CHOICE-DRIVEN-LOOP STRUCTURE
In this subsection, we discuss a model that contains a choice-
driven-loop structure. L2-L6 are five different event logs gen-
erated by the same process as shown in Table 1.

TABLE 1. The information of five event logs.

Figure 13 shows a DPNmodel obtained by αTR algorithm.
We find three association rules in the model. For example,
after k occurs, then the loop < m, n, o > will occur three

81220 VOLUME 7, 2019

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

FIGURE 13. A model mined by αTR algorithm.

times, and other times are not allowed. In this way, the pos-
sibility of the model generating traces that do not exist in the
log is reduced. Our approach can improve the precision of
models by using association rules to limit the firing rules of
the Petri net.

Figure 14 shows the model obtained by α++ algorithm.
The models obtained by HM and ILP are the same as the one
in Figure 14. The above three algorithms cannot mine choice-
driven-loop structures. It means that the loop can occur any
number of times after the choice in models obtained by α++,
HM, and ILP algorithms. For example, this model allows
behaviors like < a, c, e, g, k , i, m, n, o, m, n, p, q >, which
does not exist in the log. This model has low precision.

FIGURE 14. A model mined by α++, HM, and ILP algorithms.

Figure 15 is the model obtained by IM algorithm. The
algorithm also cannot mine choice-driven-loop structures.
This algorithm additionally mines three invisible transitions,
which makes the model more complex. Besides, the loop can
occur any number of times after the choice structure, which
is obviously wrong. Therefore, the model with low precision
is complex.

Figure 16 shows the precision of the models. We can see
that since we have mined the association rules in the model,
the proposed algorithm mining models have the highest pre-
cision. The precision of the IM algorithm mining models is
lower than that of the αTR algorithm, which is higher than
other algorithms. The models of α++, HM, and ILP algo-
rithms mining are the same, so the precision of the models
are all the same. However, the precision is lower than the αTR

and IM algorithms.

FIGURE 15. A model mined by IM algorithm.

FIGURE 16. Precision.

Figure 17 shows that the fitness of the models obtained by
the five algorithms are all 1, which means that all the traces
in the event log can be replayed in the models. However,
the precision of other algorithms mining model is lower,
which means there are more traces that the model can pro-
duce, but they do not exist in the real process.

FIGURE 17. Fitness.

In summary, the αTR algorithm can effectively mine the
models with choice-driven-loop structures.

C. NON-FREE-CHOICE STRUCTURE
In this subsection, we analyze the non-free-choice structure
with a real outpatient process of a hospital in Qingdao.
The capability of five algorithms to mine models with a

VOLUME 7, 2019 81221

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

non-free-choice structure is compared. L7-L11 are five dif-
ferent event logs generated by the aforementioned pro-
cess. Table 2 shows information about five event logs.
Table 3 shows the symbols in the model and the activities
represented by the symbols. Next, we compare the models
obtained by five algorithms.

TABLE 2. The information of five event logs.

TABLE 3. Notations.

Figure 18 shows the model obtained by α++ algorithm.
This algorithm adds extra places (two circles marked as blue
in Figure 18) between the two choice structures. Since these
two places limit the occurrence of activities, it can describe
the non-free-choice structure. However, due to the added
new places and directed arcs, it reduces the simplicity of the
model.

Figure 19 shows a model obtained by HM and ILP algo-
rithms. These two algorithms cannot mine non-free-choice
structures in the model. These models allow traces that do not
exist in the outpatient process. In addition, if there are fewer
activities between the two choice structures, the ILP algo-
rithm can mine non-free-choice structures in a similar way to
the α++ algorithm. However, when there are many activities
between the two choice structures, the ILP algorithm cannot
mine non-free-choice structures in the model.

Figure 20 shows the model obtained by IM algorithm.
It uses the method of adding invisible transitions to improve
the precision, but still does not mine non-free-choice struc-
tures in the model, so the model obtained by this algorithm
has low precision.

FIGURE 18. A model mined by α++ algorithm.

FIGURE 19. A model mined by HM and ILP algorithm.

FIGURE 20. A model mined by IM algorithm.

The model obtained by IM, HM, and ILP algorithms can-
not accurately reflect the outpatient process.When the patient
comes to the hospital for the first time, he/she needs to register
a hospital card and then is given a new medical record book.
However, those people who are not the first time are called
‘‘old patients’’. They have a hospital card and a medical
record book previously. The hospital card and medical record
book can be only read and updated. The model obtained by
IM, HM, and ILP algorithms allow that ‘‘old patients’’ are
given a new medical record book, which is impossible in the
real process. Therefore, the models obtained by IM, HM, and
ILP algorithms have low precision.

Figure 21 shows a DPNmodel obtained by αTR algorithm.
This algorithm mines the association rules in the model. The
association rules limit the firing rules of Petri nets through

FIGURE 21. A model mined by αTR algorithm.

81222 VOLUME 7, 2019

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

association rules. It can describe non-free-choice structures
in the model. Compared with the IM and α++ algorithms,
our algorithm does not add additional places, directed arcs,
and invisible transitions, which ensures the simplicity of the
model. Compared with the model of ILP algorithm and HM
algorithm, the model by αTR algorithm has high precision.
It does not allow behaviors that do not exist in the outpatient
process.

Figures 22 and 23 show the precision and fitness of models
obtained by five algorithms. It can be seen from the figure that
the fitness and precision of our algorithm mining models are
the same as α++ algorithm. We adopt association rules on
Petri nets. The α++ algorithm uses extra places to change the
firing rule of the Petri net. It has been proved that the two
algorithms achieve the same effect when mining non-free-
choice structures. However, from the perspective of model
structure, the model by our algorithm mining is simpler. The
models obtained by the five algorithms have the same fitness,
but the models obtained by α++ and αTR algorithms have
higher precision than the other three algorithms.

FIGURE 22. Precision.

FIGURE 23. Fitness.

In summary, our algorithm can effectively mine models
with non-free-choice structures, and the simple models have
higher fitness and precision.

D. LOOP-COUNT-DRIVEN-CHOICE STRUCTURE
In this subsection, we analyze the real process of an
e-commerce system. In the process, a loop-count-driven-
choice structure is included. This kind of structure is
widely found in systems that include password verification
in login processes. Therefore, studying loop-count-driven-
choice structure is beneficial to better describe the system
process. Table 4 shows information about five event logs.
Table 5 shows the symbols in the model and the activities
represented by the symbols. Next, we compare the models
obtained by five algorithms.

TABLE 4. The information of five event logs.

TABLE 5. Notations.

Figure 24 shows a DPNmodel obtained by αTR algorithm.
We can see that the sub-process ‘‘re-entering a password and
verifying the password, and payment failing’’ occurs once or
twice without causing the account to be frozen. When there
are no ‘‘payment failing’’ and ‘‘re-entering a password’’ in
the trace, which proves that the consumer pays successfully
after entering the password once. When the aforementioned

FIGURE 24. A Model Mined by αTR Algorithm.

VOLUME 7, 2019 81223

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

FIGURE 25. A Model Mined by α++, HM, and ILP Algorithm.

FIGURE 26. A Model Mined by IM Algorithm.

FIGURE 27. Precision.

sub-process occurs three times, which means the consumer
has reentered a wrong password three times. When the con-
sumer re-enters the password next time, if the verification still
fails, it proves that the account may be at risk. In order to pro-
tect the security of the account, it is necessary to temporarily
freeze the account. These two association rules obtained by
αTR algorithm helps us better understand the freeze account
process.

Figure 25 shows the model obtained by α++, ILP, and HM
algorithms. The above algorithms cannot obtain loop-count-
driven-choice structures in the model. It shows that freezing
the account is likely to occur after any number of times of
re-entering the password and verification failed, which is
obviously wrong. Therefore, this model has low precision.

Figure 26 shows themodel obtained by IM algorithm. First,
there are several invisible transitions in this model, which
reduce the simplicity of the model. In addition, this model
allows traces like <. . . , k , m, j, . . .>, which is obviously not
presented in real business. Therefore, IM algorithm cannot

mine loop-count-driven-choice structures, and models mined
by it has low precision.
Next, we compare the precision and fitness of the model.

Figures 27 and 28 show the precision and fitness of models.
Although the models obtained by the five algorithms have the
same value of fitness, models mined by our algorithm have
the highest precision over the others.

FIGURE 28. Fitness.

In summary, our algorithm can effectively mine the model
containing the loop-count-driven-choice structures.

V. CONCLUSION
In this paper, an algorithm is proposed to construct mod-
els with indirect dependencies. Through this algorithm,
we can mine the four kinds of structures that contain indirect
dependency, i.e., loop-count-driven-choice structure, choice-
driven-loop structure, non-free-choice structure, and semi-
non-free-choice structure. Then in order to solve the problem
that Petri nets are difficult to express indirect dependence,
we extend Petri nets and express indirect dependencies by
association rules. Some experiments on two real-world busi-
ness process cases and two artificial cases are carried out
on ProM. The results show that our algorithm is effective.
Besides, models mined by our algorithm have higher preci-
sion than other algorithms mine. This method can be used to
construct real process models, which helps people to further
understand the system operation, thereby discovering system
bottlenecks and optimizing the process. Our future work will
focus on indirect dependencies in multiple parallel structures
and other complex structures.

REFERENCES
[1] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and

Enhancement of Business Processes. Berlin, Germany: Springer, 2011,
pp. 1–10.

[2] A. K. A. de Medeiros, W. M. P. van der Aalst, and A. J. M. M. Weijters,
‘‘Workflow mining: Current status and future directions,’’ in On The Move
toMeaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. Berlin,
Germany: Springer, 2003, pp. 389–406.

[3] W. van der Aalst, T. Weijters, and L. Maruster, ‘‘Workflow mining: Dis-
covering process models from event logs,’’ IEEE Trans. Knowl. Data Eng.,
vol. 16, no. 9, pp. 1128–1142, Sep. 2004.

81224 VOLUME 7, 2019

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

[4] A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and
A. J. M. M. Weijters, ‘‘Process mining: Extending the α-algorithm to mine
short loops,’’ Ph.D. dissertation, Dept. Technol. Man., Eindhoven Univ.
Technol., Eindhoven, The Netherlands, 2004.

[5] L. Wen, W. van der Aalst, J. Wang, and J. Sun, ‘‘Mining process models
with non-free-choice constructs,’’ Data Mining Knowl. Discovery, vol. 15,
no. 2, pp. 145–180, 2007.

[6] L. Wen, J. Wang, W. van der Aalst, B. Huang, and J. Sun, ‘‘Mining process
models with prime invisible tasks,’’ Data Knowl. Eng., vol. 69, no. 10,
pp. 999–1021, Oct. 2010.

[7] J. Li, D. Liu, and B. Yang, ‘‘Process mining: Extending α-algorithm to
mine duplicate tasks in process logs,’’ in Advances in Web and Network
Technologies, and Information Management. Berlin, Germany: Springer,
2007, pp. 396–407.

[8] A. K. A. deMedeiros, A. J. M.M.Weijters, andW. van der Aalst, ‘‘Genetic
process mining: An experimental evaluation,’’ Data Mining Knowl. Dis-
covery, vol. 14, no. 2, pp. 245–304, 2007.

[9] W. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen,
E. Kindler, and C. W. Günther, ‘‘Process mining: A two-step approach to
balance between underfitting and overfitting,’’ Softw. Syst. Model., vol. 9,
no. 1, pp. 87–111, 2010.

[10] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, ‘‘Deriving
Petri nets from finite transition systems,’’ IEEE Trans. Comput., vol. 47,
no. 8, pp. 859–882, Aug. 1998.

[11] J. Carmona, J. Cortadella, and M. Kishinevsky, ‘‘A region-based algorithm
for discovering Petri nets from event logs,’’ presented at the 6th Int. Conf.
Bus. Process Manage., Milan, Italy, Sep. 2008.

[12] R. Bergenthum, J. Desel, R. Lorenz, and S.Mauser, ‘‘Process mining based
on regions of languages,’’ presented at the 5th Int. Int. Conf. Bus. Process
Manage., Brisbane, QLD, Australia, Sep. 2007.

[13] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and
A. Serebrenik, ‘‘Process discovery using integer linear programming,’’
Fundam. Inform., vol. 94, nos. 3–4, pp. 387–412, 2010.

[14] C. W. Günther and W. M. P. van der Aalst, ‘‘Fuzzy mining—Adaptive pro-
cess simplification based on multi-perspective metrics,’’ presented at the
5th Int. Conf. Bus. Process Manage., Brisbane, QLD, Australia, Sep. 2007.

[15] A. J. M. M. Weijters and J. T. S. Ribeiro, ‘‘Flexible heuristics miner
(FHM),’’ in Proc. IEEE Symp. Comput. Intell. Data Mining (CIDM), Paris,
France, Apr. 2011, pp. 310–317.

[16] A. J. M. M.Weijters andW.M. P. van der Aalst, ‘‘Rediscovering workflow
models from event-based data using little thumb,’’ Integr. Comput.-Aided
Eng., vol. 10, no. 2, pp. 151–162, 2003.

[17] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, ‘‘Discov-
ering block-structured process models from event logs—A constructive
approach,’’ inProc. Int. Conf. Appl. Theory Petri Nets Concurrency. Berlin,
Germany: Springer, 2013, pp. 311–329.

[18] W. Li, H. Zhu, W. Liu, D. Chen, J. Jiang, and Q. Jin, ‘‘An anti-noise
process mining algorithm based on minimum spanning tree clustering,’’
IEEE Access, vol. 6, pp. 48756–48764, 2018.

[19] O. Kalynychenko, S. Chalyi, Y. Bodyanskiy, V. Golian, and N. Golian,
‘‘Implementation of searchmechanism for implicit dependences in process
mining,’’ in Proc. Int. Conf. Intell. Data Acquisition Adv. Comput. Syst.
(IDAACS), Berlin, Germany, Sep. 2013, pp. 138–142.

[20] R. Sarno, P. L. I. Sari, D. Sunaryono, B. Amaliah, and I. Mukhlash,
‘‘Mining decision to discover the relation of rules among decision points
in a non-free choice construct,’’ in Proc. Int. Conf. Inf., Commun. Technol.
Syst. (ICTS), Surabaya, Indonesia, Sep. 2014, pp. 53–58.

[21] W. Zheng, Y. Du, L. Qi, and L. Wang, ‘‘A method for repairing process
models containing a choice with concurrency structure by using logic Petri
nets,’’ IEEE Access, vol. 7, pp. 13106–13120, 2019.

[22] X. Zhang, Y. Du, L. Qi, and H. Sun, ‘‘Repairing process models con-
taining choice structures via logic Petri nets,’’ IEEE Access, vol. 6,
pp. 53796–53810, 2018.

[23] Y. Xu, Y. Du, W. Luan, L. Qi, and H. Sun, ‘‘Repairing process models
with logical concurrent and casual relations via logical Petri nets,’’ IEEE
Access, vol. 6, pp. 56340–56355, 2018.

[24] Z. Y. He, Y. Du, L. Wang, L. Qi, and H. C. Sun, ‘‘An alpha-FL algorithm
for discovering free loop structures from incomplete event logs,’’ IEEE
Access, vol. 6, pp. 27885–27901, 2018.

[25] W. Luan, L. Qi, and Y. Du, ‘‘Composition of logical Petri nets and com-
patibility analysis,’’ IEEE Access, vol. 5, pp. 9152–9162, 2017.

[26] Y. X. Teng, Y. Y. Du, L. Qi, andW. J. Luan, ‘‘A logic Petri net-basedmethod
for repairing process models with concurrent blocks,’’ IEEE Access, vol. 7,
pp. 8266–8282, 2018.

[27] J. Lekić and D. Milićev, ‘‘Discovering block–structured parallel process
models from causally complete event logs,’’ J. Elect. Eng., vol. 67, no. 2,
pp. 111–123, 2016.

[28] Y. Y. Wang and Y. Y. Du, ‘‘Conformance checking based on extended
footprint matrix,’’ J. Shandong Univ. Sci. Technol., Nature Sci., vol. 37,
no. 2, pp. 9–15, 2018.

[29] F. Yang, N. Q. Wu, Y. Qiao, and R. Su, ‘‘Polynomial approach to optimal
one-wafer cyclic scheduling of treelike hybrid multi-cluster tools via Petri
nets,’’ IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 270–280, Jan. 2018.

[30] N. Wu, M. Zhou, and Z. Li, ‘‘Short-term scheduling of crude-oil opera-
tions: Enhancement of crude-oil operations scheduling using a Petri net-
based control-theoretic approach,’’ IEEE Robot. Autom. Mag., vol. 22,
no. 2, pp. 64–76, Jun. 2015.

[31] S. Wang, C. Wang, and M. Zhou, ‘‘Controllability conditions of resultant
siphons in a class of Petri nets,’’ IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol. 42, no. 5, pp. 1206–1215, Sep. 2012.

[32] N. Q. Wu, F. Chu, C. Chu, and M. C. Zhou, ‘‘Petri net modeling and cycle-
time analysis of dual-arm cluster tools with wafer revisiting,’’ IEEE Trans.
Syst., Man, Cybern. Syst., vol. 43, no. 1, pp. 196–207, Jan. 2013.

[33] S. Wang, D. You, andM. Zhou, ‘‘A necessary and sufficient condition for a
resource subset to generate a strict minimal siphon in S 4PR,’’ IEEE Trans.
Autom. Control, vol. 62, no. 8, pp. 4173–4179, Aug. 2017.

[34] S. Zhang, N. Wu, Z. Li, T. Qu, and C. Li, ‘‘Petri net-based approach to
short-term scheduling of crude oil operations with less tank requirement,’’
Inf. Sci., vol. 417, pp. 247–261, Nov. 2017.

[35] Q. Zhu, M. Zhou, Y. Qiao, and N. Wu, ‘‘Petri net modeling and scheduling
of a close-down process for time-constrained single-arm cluster tools,’’
IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 3, pp. 389–400,
Mar. 2018.

[36] D. Xiang, G. Liu, C. Yan, and C. Jiang, ‘‘Detecting data-flow errors based
on Petri nets with data operations,’’ IEEE/CAA J. Autom. Sinica, vol. 5,
no. 1, pp. 251–260, Jan. 2018.

[37] S. Wang, D. You, and C. Seatzu, ‘‘A novel approach for constraint trans-
formation in Petri nets with uncontrollable transitions,’’ IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 48, no. 8, pp. 1403–1410, Aug. 2018.

[38] D.M. Xiang, G. J. Liu, C. G. Yan, and C. J. Jiang, ‘‘A guard-driven analysis
approach of workflow net with data,’’ IEEE Trans. Services Comput., to be
published. doi: 10.1109/TSC.2019.2899086.

[39] Q. Hu, Y. Y. Du, and S. X. Yu, ‘‘Service net algebra based on logic Petri
nets,’’ Inf. Sci., vol. 268, pp. 271–289, Jun. 2014.

[40] C. Liu, H. Duan, Q. Zeng, M. Zhou, F. Lu, and J. Cheng, ‘‘Towards
comprehensive support for privacy preservation cross-organization busi-
ness process mining,’’ IEEE Trans. Service Comput., to be published.
doi: 10.1109/TSC.2016.2617331.

[41] L. Qi, M. C. Zhou, and W. J. Luan, ‘‘A two-level traffic light control
strategy for preventing incident-based urban traffic congestion,’’ IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 13–24, Jan. 2016.

[42] L. Qi, M. Zhou, and W. Luan, ‘‘Impact of driving behavior on traffic delay
at a congested signalized intersection,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 7, pp. 1882–1893, Jul. 2017.

[43] L. Qi, M. Zhou, and W. Luan, ‘‘Emergency traffic-light control system
design for intersections subject to accidents,’’ IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 1, pp. 170–183, Jan. 2016.

[44] B. F. van Dongen, A. K. A. de Medeiros, and H. M. W. Verbeek,
‘‘The ProM framework: A new era in process mining tool support,’’
in Proc. Int. Conf. Appl. Theory Petri Nets, Miami, FL, USA, 2005,
pp. 444–454.

[45] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and
W. M. P. van der Aalst, ‘‘Measuring precision of modeled behavior,’’ Inf.
Syst. e-Bus. Manage., vol. 13, no. 1, pp. 37–67, Feb. 2015.

HUIMING SUN received the B.S. degree from
the Shandong University of Science and Technol-
ogy, Qingdao, China, in 2017, where he is cur-
rently pursuing the M.S. degree with the College
of Computer Science and Engineering. His current
research interests include process mining, Petri
nets, and workflow.

VOLUME 7, 2019 81225

http://dx.doi.org/10.1109/TSC.2019.2899086
http://dx.doi.org/10.1109/TSC.2016.2617331

H. Sun et al.: Method for Mining Process Models With Indirect Dependences via Petri Nets

YUYUE DU received the B.S. degree from Shan-
dong University, Jinan, China, in 1982, the M.S.
degree from the Nanjing University of Aeronautics
and Astronautics, Nanjing, China, in 1991, and
the Ph.D. degree in computer application from
Tongji University, Shanghai, China, in 2003. He is
currently a Professor with the College of Informa-
tion Science and Engineering, Shandong Univer-
sity of Science and Technology, Qingdao, China.
He has taken in over ten projects supported by

the National Natural Science Foundation, the National Key Basic Research
Developing Program, and other important and key projects at provincial
levels. He has published over 140 papers in domestic and international
academic publications, and they are embodied over 80 times by SCI and EI
and cited over 270 times by others. His research interests include formal
engineering, Petri nets, real-time systems, Web services, and workflows.
He is a member of the Professional Committee of Petri nets of the China
Computer Federation.

LIANG QI (S’16–M’18) received the B.S. degree
in information and computing science and theM.S.
degree in computer software and theory from the
Shandong University of Science and Technology,
Qingdao, China, in 2009 and 2012, respectively,
and the Ph.D. degree in computer software and
theory from Tongji University, Shanghai, China,
in 2017. From 2015 to 2017, he was a Visiting
Student with the Department of Electrical and
Computer Engineering, New Jersey Institute of

Technology, Newark, NJ, USA. He is currently with the Shandong Uni-
versity of Science and Technology. He has authored over 35 papers in
journals and conference proceedings, including the IEEE TRANSACTIONS

ON SYSTEM, MAN AND CYBERNETICS: SYSTEMS, the IEEE TRANSACTIONS ON

INTELLIGENT TRANSPORTATION SYSTEMS, the IEEE/CAA JOURNALOFAUTOMATICA

SINICA, the IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, the IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, and the IEEE
TRANSACTIONSONCYBERNETICS. His interests include Petri nets, machine learn-
ing, intelligent transportation systems, and optimization. He received the
Best Student Paper Award-Finalist at the 15th IEEE International Conference
on Networking, Sensing and Control (ICNSC’2018).

ZHAOYANG HE received the B.S. degree from
the Shandong University of Science and Technol-
ogy, Qingdao, China, in 2016, where he is cur-
rently pursuing the M.S. degree with the College
of Computer Science and Engineering. His current
research interests include process mining, Petri
nets, and workflow.

81226 VOLUME 7, 2019

	INTRODUCTION
	PRELIMINARIES
	INDIRECT DEPENDENCY
	LOOP STRUCTURE
	CHOICE STRUCTURE
	ASSOCIATION RULES
	EXTENDED PETRI NET
	TR ALGORITHM

	EXPERIMENTAL EVALUATION
	SEMI-NON-FREE-CHOICE STRUCTURE
	CHOICE-DRIVEN-LOOP STRUCTURE
	NON-FREE-CHOICE STRUCTURE
	LOOP-COUNT-DRIVEN-CHOICE STRUCTURE

	CONCLUSION
	REFERENCES
	Biographies
	HUIMING SUN
	YUYUE DU
	LIANG QI
	ZHAOYANG HE

