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ABSTRACT Temporary mobile social networks has been used at hotels, concerts, theme parks, and sports
arenas, where people form a mobile social group for a short time with a common interest or activity. People
confined to such specific places or activities are allowed to join the temporary mobile social networks
using their main social network accounts (e.g., Foursquare, Facebook). Users registered for the same
business/research conference may have common connections and thus may be willing to travel together
in the conference city. Traveling with temporal friends can improve the mobile users’ experiences as well as
help them save money. Currently, renting cars to travel around becomes very general, and one car usually
can contain at least four guests. Therefore, traveling with temporal friends can help those guests save their
travel cost, such as renting cost and oil cost. To this end, in this paper, we propose a group-wise itinerary
planning framework to improve the mobile users’ experiences. The experiment results over real data sets
illustrate the effectiveness of our proposed framework.

INDEX TERMS Travel planning, temporal mobile social network, mobile computing.

I. INTRODUCTION
The concept of temporary mobile social networks has been
used at hotels, concerts, theme parks, and sports arenas,
where people form a mobile social group for a short time
with a common interest or activity. People confined to such
specific places or activities are allowed to join the tempo-
rary mobile social networks using their main social network
accounts (e.g., Foursquare, Facebook). Then they could text
the entire group, share pictures or locations, and set up sub-
groups, etc. For example, LobbyFriend is a hotel social net-
work designed to connect a current guest to other fellow
guests and the hotel staff, as well as to a live feed of what
is happening in or around the hotel. When a guest checks out
of the hotel, all her interactions in the temporarymobile social
network are erased.

The associate editor coordinating the review of this manuscript and
approving it for publication was Honghao Gao.

A key functionality in temporary mobile social networks is
traveling. For instance, in hotel social networks, guests may
come for the same business/research conference, that is, those
guests may have common connections and thus are willing to
travel together in the conference city. Traveling with temporal
friends may improve the feeling of those guests as well as
help them savemoney. Currently, renting cars to travel around
becomes very general, and one car usually can contain at least
4 guests. Therefore, traveling with temporal friends can help
those guests save their travel cost, such as renting cost and
oil cost.

However, simply and indiscriminately organize guests into
temporal mobile social groups may risk the users’ experi-
ences. The main reason is that, even though those guests
gather together for the same conferences/meetings/concert,
their available times and interests may vary a lot. For instance,
some are not willing to wake up until 10:00 am, while
some may enjoy the sunshine at 8:00. Some guests are inter-
ested in museums while some like delicious foods. It is not
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TABLE 1. Differences between prior work and our system.

FIGURE 1. Example of the framework.

appropriate to organize users with very different active times
into one group, since this assignment may lead a waste
of time. Also, putting guests with very different interest
preferences into the same group is not a good choice,
as their requirements cannot be satisfied along a single
itinerary.

To this end, we propose a framework designed for tempo-
rary mobile social networks to suggest group-wise itinerary
plans. In this framework, when a guest registers at a con-
ference/meeting, the hotel will collect his available time
periods for traveling and interest preferences. As illustrated
in Figure 1, we first put the relevant guests into a group and
the group sizes are limited by car capacity (e.g. 4). Then,
we recommend the itinerary for each group such that guests’
traveling experiences can be improved and their time limits
can be satisfied. For the relevance requirement in guest group-
ing steps, we combine available-time and interest-preference
factors to measure the relevance of registered guests.

Specifically, we generate the mobile social-temporal groups
through considering guests’ interest preferences and available
times step by step.

There exist some researches studying similar problems
as this paper does. To compare with them, we summarizes
the differences between our paper and existing frameworks
in Table 1. In this paper, to improve the quality of suggested
itineraries, we consider the deadline and preference of each
user, the popularity and crowdedness (e.g. waiting time)
of each point of interest (POI). For each generated group,
we limit its size according to general capacity of cars, that is
4. As far as we know, no paper has studied the same problem
as we do. The contributions of our work can be summarized
as follows:

• We propose the group-wise itinerary planning frame-
work, which can be used to improve the traveling exper-
iments of users in a mobile social-temporal network.

• We design relevance measure functions to groups users
in terms of their interest preferences and available
times.

• We discuss different the itinerary recommendation
methods for group-wise users.

• We evaluate our proposed framework through extensive
experiments based on a real social network data set.

The rest of this paper is organized as follows. We first
review the preliminaries of this paper and present our pro-
posed framework in Section II. Then, we train the city model
in Section III and allocate car groups in Section IV. In
Section V, we describe the itinerary recommendation meth-
ods. Section VI analyzes experimental results. And related
literatures are discussed in Section VII. Finally, Section VIII
concludes this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT
In this section, we first illustrate the preliminaries definitions
used in this paper and then formally describe the framework
proposed in this paper.
U = {u1, . . . , un} be the set of users. V = {v1, . . . , vl}

be the set of POIs. Given that C = {c1, . . . , co} denotes the
set of all POI categories, each POI v belongs to a category
c ∈ C .
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A. POI
Given a user u who has visited k POIs, we define
his/her travel history as an ordered sequence, Squ =

((v1, tav1 , t
d
v1 ), . . . , (vl, t

a
vl , t

d
vl )), with each triplet (vx , tavx , t

d
vx )

comprising the visited POI vx , and the arrival time tavx , and
departure time tdvx . Thus,the visit duration at POI vx can be
determined by the difference between tavx and t

d
vx .

B. AVERAGE POI VISIT DURATION
Given a set of travel histories for all users U , we determine
the average visit duration for a POI v as follows:

Dur(v) =
1
n

∑
u∈Uvx

∑
vx∈Squ

(tdvx − t
a
vx )δ(vx = v), ∀v ∈ V (1)

C. POI POPULARITY
The popularity of a POI v is defined as: the number of visits
Visit(v) at POI v in the travel history of all users, normalize
the value to [0, 1]. We use photo number as a approximation
for visit number.

Pop(v) =
Visit(v)

Max(Visit(vi))
∀vi ∈ V (2)

For example, if there are 3 POIs in total, and Visit(1) = 10,
Visit(2) = 50, Visit(3) = 20, then Pop(1) = 0.2, Pop(1) = 1,
Pop(3) = 0.4.

D. POI CROWDEDNESS
For POI v, we define the crowdedness Crd(v, t) at time t
using the number of users visited POI v in time t divided by
the max visit user number during history period of time Tp.
For example, visit user number at a POI is 〈100, 200, 300〉
at:9:00,10:00 and 11:00. The crowdedness during these three
hours is 〈0.3, 0.6, 1.0〉.

The traffic crowdedness are widely provided by several
map services. Obtaining accurate estimates of POI crowd-
edness in future can be modeled as a time series regression
and forecasting problem which is an important problem but
is beyond the scope of this paper, when such estimation
method is available it can be incorporated as it is in our
framework. Such as ARMA [7] model predict the number of
people per hour on each POI using the history data. In our
implementation we use the average number of people per
hour on each POI in the history data as the predict and we
calculate the POI’s visit number by counting its photo number
as a approximation:

Crd(v, t) =
Visit(v, t)

Max(Visit(v, tp))
∀tp ∈ Tp (3)

E. USER INTEREST PREFERENCE
Given that Visitu(v) as the total number of visits by user u at
POI v during the history, Visitu(c) as the total number of visits
by user u at all the POI belongs to category c, we use the set
of photos taken by user u as a approximation and we define

FIGURE 2. Framework.

the interest preference of user u in category c as:

Intu(c) =
Visitu(c)

Max(Visitu(ci))
∀ci ∈ C (4)

where Visitu(c) =
∑

v∈c Visitu(v). In short, the interest prefer-
ence of a user u in POI category c is based on the number of
photos of POI that belongs to category c, and normalize the
value to [0, 1]. The intuition behind this definition is that a
user is more likely to take more photos at a POI category that
interests him/her, and less photos otherwise.

EIu = 〈Intu(ci), . . . , Intu(co)〉 , ∀{c1, . . . , co} ∈ C (5)

F. ITINERARY PLANNING FRAMEWORK
As shown in Fig. 2, our proposed group-wise itinerary plan-
ning framework first group users into level-1 groups accord-
ing to their interest preferences. After that, users’ available
times are taken into consideration to subdivide these level-
1 groups into smaller groups, and each group’s size is limited
to the car capacity (e.g., 4). With generated groups, route
recommender will suggest the itinerary for each group to
satisfy group members’ preferences as well as their time
constraints.

III. STEP 1 OFFLINE CITY MODEL TRAIN
Because the categories are fairly stable in a city and there
are not so many different kinds of interest preference
among users according to history travel itinerary. In order to
improve users’ experiences by provide relevant service and
improve the system efficiency in following steps, we train
the offline city model and find the principal interest patterns
in the city which guides us what kind of interest similarity
threshold(CT ) we should set in Step 2.

Given that the n users are belong to k interest patterns, let
P = {p1, . . . , pk} be the set of interest preference patterns
in the city. pk is a city interest preference pattern, which is
a clustering center and a user cluster ptk = {u1, . . . , uq}
represented by pk denote the q users in the kth interest pattern
have similar interest preference.
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The k centers are:

pk =
1
|ptk |

∑
u∈ptk

Iu, ∀pt ∈ P (6)

In this paper, we use Gaussian Mixture Model(GMM) to
cluster users and analyze travel pattern. Formed by using
a suficient number of Gaussians, and by adjusting their
means and covariances as well as the coeficients in the linear
combination, almost any continuous density can be approx-
imated to arbitrary accuracy [8]. Effective clustering max-
imizes intra-cluster similarities and minimizes inter-cluster
similarities [9]. The interest preference similarity between
two users are calculated by cosine similarity Cos(ui, uj) =
EIui ·
EIuj

‖ EIui‖·‖
EIuj‖

, which tells us how similar two users are in terms

of their interest preference.
The average cosine similarity of all pair-wise combinations

of users in a cluster pt is defined as intra-cluster similarity
Intra(ptk ) :

1
(|ptk | · (|ptk | − 1))

∑
ui∈ptk

∑
uj∈ptk ,uj 6=ui

Cos(ui, uj) (7)

The similarity between patterns is defined as inter-pattern
similarity, for efficiency, we use the similarity between two
cluster center rather than the similarity of all pair-wise com-
binations of two patterns’ members respectively. The mean
value of a Gaussian component is regarded as a clustering
center.

Pattern inter similarity is defined as:

Inter(pi, pj) =
Epi · Epj

‖ Epi‖ · ‖ Epj‖
, ∀pi, pj ∈ P (8)

Formally, our goal is to find a best set of k patterns P that:

Max
1
k

∑k
1 Intra(ptk )

1
(k·(k−1))

∑
pi∈P

∑
pj∈P,pj 6=pi Inter(pi, pj)

(9)

Suppose we find the best k patterns, and we part current
users into k level-1 groups with distinguishing interest pref-
erence. In this way, users in the same level-1 group can be
allocated by their available time in parallel which will reduce
the server-side response time.

IV. STEP 2 CAR GROUP ALLOCATION
We aim to meet users’ interests and time schedule while
saving cost by grouping similar users according to the overlap
of their available time, then allocate them into some small car
groups and recommend them to travel together, even if they
need to change their travel schedule slightly. In this section,
we first introduce the notations used in group allocation, then
we describe the methods used to allocation users in this paper,
and finally we illustrate the evaluation metrics to measure the
group allocation performance.

User label: From Step 1, we get the travel pattern model
with k centers. We get users’ query as u = (I , t, vs).
We assign users into k level-1 groups by comparing u.I with
each k pattern centers then marked them with label u.l.

User’s query: Users with travel pattern label, each user
is defined as u = {I , l, t, vs}, where u.I is user’s interest
preference. u.t = [ts, te] is the user’s start time and end time.
u.vs is the user’s start point.

Time Similarity: We calculate time period similarity
between users ui and uj by jaccard similarity also known as
intersection over union.

TS(ui, uj) =
ui.t ∩ uj.t
ui.t ∪ uj.t

(10)

User Similarity: Then we calculate similarity between
ui, uj by

Sim(ui, uj) = µTS(ui, uj)+ (1− µ)Cos(ui, uj) (11)

Cos is the interest preference similarity between two users.
Thresholds: We set threshold DT for maximum start/end

time difference between two users, TT for the lowest time
similarity and CT for the lowest interest cosine similarity of
users in a car group. We use the minimum Intra(ptk ) among
all clusters in Step 1 as CT .

Car Capacity: CA The maximum user number of a group.
Occupancy Rate: The lowest car occupancy rate OR

which means at least OR × CA users in a group, otherwise
it’s no need to group them up because everyone spends too
much to rent a car.

Car Group G = {g1, . . . , gm} is the set of car groups
and each |g| is smaller than CA and larger than OR × CA.
Each g is defined by (I , ts, te, vs), where g.I is group’s interest
preference.

EIg =
〈
Intg(c1), . . . , Intg(co)

〉
, ∀{c1, . . . , co} ∈ C (12)

g.ts is the group’s start time and g.te is group’s end time. g.vs
is the group’s start point. In this problem, we assume all users
are start at the same query point.

Group’s start time and end time:

g.ts = max
(u∈g)

u.ts (13)

g.te = min
(u∈g)

u.te (14)

Group’s Interest Preference: One main challenge in rec-
ommending and planning itineraries for a group is the diverse
interest preferences among group users. To address these
diverse interest preferences, we construct a collective group
interest preference.We define the interest preference of group
g in category c as:

Intg(c)=ω · rel(u, c)+(1− ω) · (amax−dis(u, c)), ∀u ∈ g

(15)

where: amax is MaxIntui (cj) among all users in the
group, the group relevance for category c is defined as
rel(u, c) = 1

|g|

∑
u∈g Intu(c), which captures the users’

interest relevance of the category cj by using the aver-
age preference score among group members. The group
disagreement for category c is defined as dis(u, c) =

1
(|g|(|g|−1))

∑
ui∈g

∑
uj∈g,uj 6=ui |Intui (c)− Intuj (c)|.
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Algorithm 1 Car Group Allocation
Input: a level-1 group g, CA, OR, DT , TT , CT
Output: G = {g1, g2, · · · , gm}
1: waitQueue← ∅, G ← ∅, singlePerson← ∅
2: used ← ∅
3: while g \ used 6= ∅ do
4: u′← first u ∈ g \ used ,
5: candi← emptyMaxHeap(CA− 1)
6: for u′′ ∈ g \ {used ∪ u′} do
7: if SG(u′, u′′) then
8: candi← candi ∪ u′′

9: end if
10: end for
11: if OR× CA− 1 ≤ |candi| ≤ CA− 1 then
12: g′← u′ ∪ candi, G ← G ∪ g′
13: used ← used ∪ u′ ∪ candi
14: else
15: used ← used ∪ u′, waitQueue← u′

16: end if
17: end while
18: g← waitQueue go to line 2
19: if u ∈ waitQueue /∈ Groups then
20: singlePerson← singlePerson ∪ u
21: end if
22: return G ∪ singlePerson

Problem Define: Given (1) car capacity: CA, (2) occu-
pancy rate OR, (3) users’ queries U . Our goal is to group
more people travel together and each group size is bounded by
CA and OR, in the meantime, maximum total average cosine
similarity and time similarity of users in each group including
users who should travel alone.

A. METHOD
Since the optimal solution needs to check all possible com-
binations with vary high complexity, we design a greedy
algorithm to allocation each level-1 groups into small car
groups as described in Algorithm 1. We use a waitQueue
to wait for more queries. Finally, when a group g created,
their query would send to itinerary and they would get their
recommended travel schedule, as in Setp 3. If the user is not
satisfied with the result, he/she can quit the group and adjust
his/her time schedule or interest preference as needed, then
we can redo our car group allocation for the group members.
The key idea is that, we use the following rules and use a fixed
size heap to store [OR× CA− 1,CA− 1] most similar users
for each user.
Rule 1: If u and u′ both sent a query, the start time of u is

earlier than u′, we service u first. We organize user’s query
sorted by start time. If users start times are same, we want to
keep them sorted by end time.
Lemma: Suppose there are u1.ts = 9 : 00, u2.ts = 9 :

10, u3.ts = 9 : 20, u4.ts = 9 : 30, u5.ts = 9 : 40, u1 is
the earliest user according to start time among users. We find

TABLE 2. Users’ similarity.

u1’s similar users starting from 9:00, then we find u2’s similar
users starting from 9:10 except u1 whose start time earlier
than himself. If u2 can group with u1, when we find u1’s
similar user previously, we would group u1 with u2. Then
when we consider u2, u1 and u2 already in a group, so it’s
no need to consider u2 with u1.
Rule 2: If u and u′ both sent queries, we use function

SG(u, u′) to determine whether u and u′ should be allocated
in a same group. SG(u, u′) returns true if u and u′ satisfies
DT , TT and CT , we call u is feasible for u′ and u′ is feasible
for u.
Furthermore, although the number of similar users is not

enough(lower than OR× CA) to become a group, the results
of itinerary recommended for them are similar. Thus, there
is no need for itinerary recommended to perform for each
individual traveler. Instead of trying to derive the exact
travel schedule which may incur large computation overhead,
we send their queries as a batch to drive only one itinerary for
them.
Example:
Suppose {u1, u2, u3, u4, u5} are tagged with the same

level-1 group label by model in Step 1 as g.l1 and Table 2
shows their similarity. First, we mark all users not used in
g. u1, u2, u3, u4, u5 are sorted by their start and end time.
Suppose CA = 2, OR = 1, a car can carry only 2 peo-
ple. We choose u1 who has the earliest start time as u′ in
line 4. Then we maintain a maximum heap with size of
CA − 1(except u′) which store the users most similar to u1.
After we traverse all users fesiable for u1 We find u1 and u2
are most suitable to travel together, so we group them and
mark them as used in line 13. Next step, u3 is the earliest and
not used u′, then we group {u3, u4} together. Finally, u5 needs
to travel alone.

We we set CA = 3, OR = 1, {u1, u2, u3} will in a group.
Although u4, u5 satisfies SG(u4, u5), it’s more economical
for them to travel alone rather than to share a car together.
However, u4, u5 have similar category and time schedule,
we will invoke our itinerary recommend service(Step 3) only
once and return them with the same itinerary recommen-
dation which avoids unnecessary computations and offers
correctness at the same time.

B. GROUP EVALUATION
We use average time utilization, car utilization, and
interest similarity of all groups to evaluation car group
allocation.
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1) TIME UTILIZATION
The average time utilization of all users in a group g:

Tu(g) =
1
|g|

∑
u∈g

g.te − g.ts
u.te − u.ts

(16)

The average time utilization of all groups G :

Tu(G) =
1
|G|

∑
g∈G

1
|g|

∑
u∈g

g.te − g.ts
u.te − u.ts

(17)

2) CAR UTILIZATION
The average car utilization of all users in a group g:

Cu(g) =


|g|
CA
, if

|g|
CA

>= OR

0, otherwise
(18)

The car utilization of all groups G :

Cu(G) =
1
|G|

∑
g∈G

Cu(g) (19)

3) USER INTEREST SIMILARITY
A group average cosine similarity is the average interest
cosine similarity of all pair-wise combinations of users in
group g:

Cos(g) =
1
|g|

∑
ui∈g

∑
uj∈g,uj 6=ui

EIui · EIuj
‖ EIui‖ · ‖ EIuj‖

(20)

The average cosine similarity of all groups G :

Cos(G) =
1
|G|

∑
g∈G

1
|g|

∑
ui∈g

∑
uj∈g,uj 6=ui

EIui · EIuj
‖ EIui‖ · ‖ EIuj‖

(21)

V. STEP 3 ITINERARY RECOMMENDATION WITH POI
CROWDEDNESS
After group allocation, an optimal itinerary will be recom-
mended for each group. In this section, we first describe the
requirements for an itinerary, after that, three methods are
proposed to recommend itineraries.

For each group g with category preference g.I , start time
g.ts, end time g.te and start point g.vs, we recommend a
itinerary Rg = {v1, v2, . . . , vn} such that the following object
function is maximized:

Score(Rg) =
∑
v∈Rg

prg(v) (22)

where the profit prg(v, t) means that group g visit POI v at
time t , and v belongs to category c which is defined as:

prg(v, t) =
(ρ · Pop(v)+ (1− ρ) · Ig(c))γ

Crd(v, t)
(23)

And the itinerary constraints are as following:
Rule 1: Each itinerary can visit same POI only once which

avoids blindly searching back and forth among POIs or
rounding in cyclewhich is only time consumingwith no profit
collected.

Rule 2: Group time budget. The itinerary total time cost
Cost(R) associated with a total stay time on each POI and a
total transit time

Cost(R) = Dist(vs, v1)+ Dist(vn, vs)

+

∑
vi∈R

(Dur(vi)+ Dist(vi, vi+1)) (24)

should not exceed g.te − g.ts. We use Sat(vi, vj, t) returns
true if leaving from vi at time t to visit vj has enough time to
reach the destination vs within the budget time.

A. METHOD 1 BACKTRACK WITH PRUNING
Due to the Irregular profit changing with time, a brute-force
approach to solving itinerary recommendation is to do an
exhaustive search: we enumerate all candidate Itineraries
from the source vs at start time ts. Instead of searching in
a breadth-first manner which imposes a bottleneck on the
memory requirement, we search itineraries in a depth-first
manner, so that only the current branch at any level is searched
at any time.

Suppose that vi is the last POI of current partial
itinerary, which satisfies the group time budget. We need to
deeper search for its connected vj and extend current partial
itinerary by adding vj after visiting vi, by the way, add vj
into visited . Finally, if there is no POI could add to current
partial itinerary after vj, due to the constraints, wewill remove
vj from visited , remove vj from current partial itinerary and
backtrack to its pre-visited POI vi. Then we extend the partial
itinerary again without visited POI like vj. During the search
process we update the best itinerary with the highest profit
score as our final itinerary recommended to the group.

Algorithm 2 Backtrack With Pruning
Input: POI map, group query g, profit function prg
Output: optimal itinerary R
1: R← ∅, r ′← 〈vs→ ∅→ vs〉, visited ← ∅
2: for vj ∈ V \ visited do // Rule 1
3: if Sat(vi, vj, t) then // Rule 2
4: r ′← r ′ ∪ vj;
5: visited ← visited ∪ vj;
6: if Score(r ′) > Score(R) then
7: R← r ′;
8: end if
9: backtrack(r ′, visited);

10: r ′← r ′ \ vj;
11: visited ← visited \ vj;
12: end if
13: end for
14: return R

However, the backtrack search is computationally pro-

hibitive. The time complexity is O(|V |b
1

Distmin+Durmin
c), where

1 is a specified time budget, the route length is at
most b 1

Distmin+Durmin
c, where Distmin is the smallest distance
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between two POIs and Durmin is the smallest duration time
of all the POIs.
Example: There are POI 1, 2, 3 in the map and a group start

at vs. We use R to store the best itinerary. Initially, current
itinerary r ′ is 〈vs→ ∅→ vs〉 and POI 1, 2, 3 is not visited.
We add POI to r ′ until all POI are visited or time runs out,
so we get r ′ = 〈vs→ 1→ 2→ 3→ vs〉. Every time we
add one POI to extend our current itinerary, we compare it
with R and replace R with r ′ if current Socre(r ′) is higher
than Score(R). Then we remove 3 from r ′ and backtrack to
〈vs→ 1→ 2→ vs〉 level, but 3 are tried and no other POI
could try, so we remove 2 from r ′ further and backtrack to
〈vs→ 1→ vs〉 level. Then 2 is tried in this level so we extend
r ′ to 〈vs→ 1→ 3→ 2→ vs〉. Finally, we tried all possible
POI’s permutation within time budget and recoded the best
one as our result.

B. METHOD 2 GREEDY
To avoid the expensive Backtrack with Pruning search,
the greedy algorithm iteratively selects next POI vj added
to current partial itinerary until no other POIs can be added
to the itinerary. We choose the next POI whose strategy
function f (vj) =

pr(vj,t)
Dist(vi,vj)+Dur(vj)+Dist(vj,vs)

is maximal and
no constraints are violated, where vi is the previously visited
POI, t is the arrive timeof POI vj.

Algorithm 3 Greedy
Input: POI map, group query g, strategy function f (v)
Output: optimal itinerary R
1: R← ∅, r ′← 〈vs→ ∅→ vs〉, visited ← ∅
2: while next 6= ∅ do
3: maxP← 0, next ← ∅
4: for vj ∈ V \ visited do // Rule 1
5: if Sat(vi, vj, t) and f (vj) > maxP then // Rule 2
6: maxP← f (vj), next ← vj;
7: end if
8: end for
9: visited ← visited ∪ vj, R← R ∪ next

10: end while
11: return R

Example: There are POI 1, 2, 3 in the map and a group
start at s. POI 1 has the highest profit from vs, so the partial
itinerary is 〈vs→ 1→ vs〉 and we choose next highest profit
POI from POI 1 until running out of time budget.

C. METHOD 3 BREADTH-FIRST-SEARCH WITH GREEDY
PRUNING
To avoid the expensive backtrack with pruning search,
we present a approximation algorithm BFS-GP which sac-
rifice optimality for efficiency. We use greedy pruning in
breadth first search to reduce the cost of enumerating all
possible itineraries.

The basic idea is to consider extending each generated
partial itinerary II . Each partial itinerary II is labeled by

II = (A,T , S,E, r, er, vi), where A is the set of POIs already
visited, T is the departure time from vi, S is the overall
profit collected(i.e., Score(r)) from current partial itinerary,
E is a Expect score which is the lower bound maximum
total profit collected by the fully extended itinerary which is
estimated by greedy strategy, r is the current partial itinerary
〈vs→ · · · → vi〉(without the sub-itinerary vi→ vs), er is the
full itinerary within time budget corresponding to E and vi
is the ending POI. Initially, there is only one feasible partial
itinerary II0 = (∅, g.ts, 0,E0, vs, er0, vs), representing the
empty itinerary s→ s.
Expect Score: Given a partial itinerary r ′ = 〈vs, · · · , vi〉,

its expect score E is defined as fllows:

Expect(r ′) = Score(r ′)+ extra(r ′) (25)

For efficiency reasons, we need to find a approximation
for extra(r ′) as big as possible without underestimating.
We use greedy strategy complete the partial itinerary from
vi by keeping selecting the next best vj such that its

pr(vj,II ′.T )
Dist(vi,vj)+Dur(vj)+Dist(vj,vs)

is maximal and no constraints are
violated until no other POIs are can be added to the itinerary.

At the k th iteration(k > 0), the BFS-GP algorithm extends
each II of size k − 1 to a new partial itinerary of size k
by add a new POI. Specifically, a partial itinerary II =
(A,T , S,E, r, er, vi) is extended into a new partial itinerary
II ′ associated with POI j /∈ II .A according to the follow rules:

II ′.A = II .A ∪ {vj}
II ′.T = II .T + Dist(vi, vj)+ Dur(vj)
II ′.S = II .S + pr(vj, II .T + Dist(vi, vj))
II ′.r = II .r → vj
II ′.E, II ′.er = Expect(II ′.r)

(26)

A new partial itinerary II ′ continues to extend if
Sat(vi, vj, II .T ) returns true and II ′.E > II .E . Intuitively,
this means that the current partial itinerary r of the II can be
extended to vj and then finished at the destination vs within
the time budget. Besides, add vj to current partial itinerary
will not decrease the expect total profit E as otherwise we
would rather follow the greedy strategy.

We organize those partial itineraries by a queue Q. In each
step, we select one partial itinerary IIi from the queue. Then
extend it to generate more candidate partial itinerary by
adding a new POI at the end of the itinerary in IIi.r . Those
new extended itineraries whose time cost is smaller than
the time budget and Expect score is higher than the Expect
score before extended are enqueued. In this way, the more
promising itineraries are kept and at the same time guarantee
efficient computing. We terminate the algorithm when Q is
empty.
Example: Consider the example graph in Fig. 3. There

are POI 1, 2, 3 and they are belong to category c1, c2, c3
respectively. A group’s query is (g.I , 9 : 00, 18 : 00, vs),
where the group is start from vs at 9:00 am and g.I is
〈c1 = 2, c2 = 1, c3 = 3〉. And Fig. 3.e shows the crowded-
ness of POI 1, 2, 3 in a day from 9:00 am to 18:00 pm,
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FIGURE 3. Steps of BFS-GP.

Algorithm 4 BFS-GP
Input: POI map G, group profit function pr , group query g
Output: Itinerary, R
1: Queue Q, R← ∅
2: E0, er0← greedy(s, g.ts),
3: II0← (∅, g.ts, 0,E0, s, er0, s)
4: Q.enqueue(II0)
5: while Q is not empty do
6: II ← Q.dequeue();
7: for vj ∈ V \ II .A do
8: if Sat(vi, vj, II .T ) then
9: II ′.r ← II .r → vj

10: II ′.T ← II .T + Dist(vi, vj)+ Dur(vj)
11: II ′.E, partR′.er ← Expect(II ′.r)
12: II ′ ← (II .A ∪ {vj}, II ′.T , II .S + pr(vj, II .T +

Dist(vi, vj)), II ′.E, II ′.r, II .er, vj);
13: if II ′.E > Score(R) then
14: R← II ′.er ;
15: else if II ′.E > IIi.E then
16: Q.enqueue(II ′)
17: end if
18: end if
19: end for
20: end while
21: return R→ vs

for simplicity we assume there are 3 crowdedness types:
red:1, yellow:0.5, green:0.2. Suppose 1 is the nearest POI
from vs and 3 is the farthest. For each POI i, the touring
time Dur(i) is set to 30 minutes. We compute E0 = 9 and
er0 = 〈vs→ 1→ 2→ 3〉 using greedy strategy in (25). The
initial II0 is (∅, 9 : 00, 0, 9, 〈vs〉 , 〈vs→ 1→ 2→ 3〉 , vs)
and enqueue it to Q then dequeue it as current partial
itinerary II in line 6. First, we add 1 to II and get
II ′ = ({1}, 11 : 30, 4, 9, 〈vs→ 1〉 , 〈vs→ 1→ 2→ 3〉 , 1),
II ′.E = 9 is not more than II .E , so we will not enqueue
it and prune it. Then, we add 2 and get II ′ = ({2}, 12 :
00, 5, 12, 〈vs→ 2〉 , 〈vs→ 2→ 1→ 3〉 , 2) which is bet-
ter than II , so we enqueue it and wait for extending it
at next time. Adding 3 is also promising and should be
enqueued. Every time we generate a new partial itinerary II ′,

we compare it with our recorded best itinerary R and replace
R with a better one, if current complete itinerary II ′.er
has a better score II ′.E than R. Now the best result is
24 and the best itinerary R is 〈vs→ 3→ 1→ 2〉. In the
next level as Fig. 3(c), we dequeue II ′ = ({2}, 12 :
00, 5, 12, 〈vs→ 2〉 , 〈vs→ 2→ 1→ 3〉 , 2) from Q and we
extend it with 1 and 2 and get the new partial itinerary
〈vs→ 2→ 3〉 with expect score II ′.E = 21 are enqueued,
by the way, we update our best result R. And expend II .r =
〈vs→ 3〉 using POI 2 and 1, and 〈vs→ 3→ 2〉 has expect
score 30. Now current best itinerary R is 〈vs→ 3→ 2→ 1〉
with score as 30. Keeping dequeue partial itineraries from Q
and extends them until Q is empty. Finally, we get our best
itinerary in R which is 〈vs→ 3→ 2→ 1〉 with score 30.

However, due to the greedy expect score, BFS-GP loses
the optimality in some cases. For example, suppose the par-
tial itinerary r = 〈vs→ 1→ 3→ 2〉, Score(r) is 30. But
when we calculate the Expect score of partial itinerary r ′ =
〈vs→ 1〉, because POI 2 is nearer than 3 to 1, we extend
r ′ with

〈
r ′→ 2→ 3

〉
and we compute the Expect score is

9 which is not larger than the Expect score we calculate from
partial itinerary vs.While the route 〈vs→ 1→ 3→ 2→ vs〉
could be the optimal solution, but it cannot be generate
because r ′ = 〈vs→ 1〉 was pruned.

VI. EXPERIMENTAL STUDY
A. EXPERIMENTAL SETTINGS
We evaluate the algorithms above on datasets extracted from
Flickr photos [10] in four cities, namely, Edinburgh, Mel-
bourne, Osaka and Toronto, with statistics shown in Table 3.
All datasets are provided by Lim et al. [3], [4], [11].
Our algorithms are implemented in Java and Python

sklearn package. All the experiments were run on a PC with
3.6 GHz Intel i7 Quad-Core and 16 GB of RAM.

B. EFFECT OF STEP 1.OFFLINE CITY MODEL TRAIN
Based on the entire set of users’ photos as a good approxima-
tion for real-life tourist visits for each city, we first construct
the interest preference vector I for all users u ∈ U , as stated
in (5). We perform offline model in Step 1, Table 4. shows
the result of Step 1 for each dataset. The best k represents the
goal in (9) is maximum when we use GMM model find the
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TABLE 3. A summary of the datasets.

FIGURE 4. The Inter similarity of k Groups in Setp 1.

TABLE 4. Evaluation of step 1.

best clusters partition by history data. The Inter(P) line shows
the average inter-cluster similarity of k patterns’ pair-wise
combinations. If some clusters’ inter cosine similarity score
Inter(pi, pj) is high, those clusters will be merged and redun-
dant. The intra-cluster cosine similarity Intra(ptk ) shows how
similar users in those k clusters respectively are in therms of
their interest which also can help us to determine what cosine
threshold CT we should set in Step 2. In this experimental we
set CT using the lowest cosine similarity among k clusters by
GMMmodel. As shown in the table, the average intra-cluster
similarity Intra(P) of all clusters are very high, suggesting
good cluster compactness.

The heat map in Fig. 4 shows the correlation coefficients
between each pattern, the deeper the color the more different
between two patterns and the light color means the two pat-
terns should be merged into one cluster. As shown in Fig. 4,
the gaussian mixture model (GMM) in Step 1 achieves great
intra-cluster similarity, clear distinguish patterns and less
redundancy on all datasets.

FIGURE 5. Evalution results of all groups in Setp 2.

In this way, we get most k representative travel pattern in
a city and in the rest of the experiments, users are classified
to distinguish level-1 groups with label u.l.

C. EFFECT OF STEP 2.CAR GROUP ALLOCATION
Due to users’ check-in times in datasets are too scattered and
their travel time during a day are usually too short which is
not suitable for our problem. All users’ start time u.ts and end
time u.te were generated randomly from 9:00 to 11:00 and
16:00 to 18:00, so the time budget for groups could range
from 5 hours to 9 hours. Car Capacity Ca is set to 5 users,
and occupancy rate OR is set to 0.8, and the longest time
difference threshold DT is set to 60 minutes, the lowest time
similarity TT is set to 0.75, mu is set to 0.5, ω is set to 0.5.
From previous step, part user into k distinct groups and set
the lowest Intra(ptk ) among all k patterns as cosine threshold
CT , we compare each user with those k patterns and label
them by u.l and part them into k distinct level-1 groups.

Fig. 5 shows the evaluation results stated in Section IV-B
of each small car groups in each dataset after Step 2.

Table 5. shows the average evaluation results on each
dataset. Although our Car Group Allocation algorithm is not
a optimal solution, as show in Table 5., the average time
utilization Tu(G) is over 90% on each datasets, which means
users travel in a same car or travel alone have more than 90%
time overlap, which means for every users, the budget time
wait for someone else are at most 60minutes withinDT as we
have set. And the average cosine similarity Cos(G) is much
higher than and the lowest cosine CT we expect in Setp 1.
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TABLE 5. Average evalution results of Step 2.

Cu(G) and single person shows our method groups most of
people. And the runtime is a single-threaded execution time
which is also acceptable.

After we use the equationPs in Section IV to organize
all users’ queries by groups’ query set G, and query their
recommended itineraries in Step 3.

D. EFFECT OF STEP 3.ITINERARY RECOMMEND
In this section, we evaluate the itinerary search methods in
Section V.
Based on Definition (1), we use the time taken of a user’s

first and last photo at a POI to determine his/her visit duration
and determine the average visit duration of every POI in four
cities respectively. For some cold POIs whose duration time
can not be computed, we use the average of all POIs’ duration
time in the city to represent. The crowdedness of each POI is
calculated by (3). Andwe assume the start point(hotel s) is the
most popular POI in a city. The distance Dist(vi.vj) between
two POIs were estimated using their Euclidean distance. If
the distance is smaller than 1 km, we travel on foot and set a
walking speed of 4 km/hour, which is from the literature [11],
otherwise, we travel by car, the time cost estimated using
Google Maps.1

Fig. 6 (left column) presents the score of the itinerary rec-
ommended by backtrack with pruning, greedy and BFS-GP
method. The first three use y-axis being the ratio of profit
score of itineraries found by BFS-GP and greedy to optimal
profit score found by backtrack with pruning over all groups
and x-axis being the time budget(hour) b of each group.
Note that the optimal backtrack method can’t perform on
Melbourne dataset due to the large POI numbers, so we don’t
have a optimal result to evaluate the BFS-GP and greedy. For
the first three datasets, on the average BFS-GP performs 98%
of optimal solution. Greedy performs about 10% worse than
optimal Backtrack, as its search strategy is rather simple and
about 8% worse than BFS-GP.

In rare cases, BFS-GP contains too many possible partial
itineraries, so we can use a Priority Queue with fixed capacity
|Q| replace the Queue in BFS-GP algorithm line 1 which
adjusts the size of queue by removing the IIs with the lowest
scores and keep the top |Q| most promising IIs. The queue
size should be set according to the real-word application.
In this experiment, Q size is set to 100. The last one in Fig. 6
(left column) is the ratio(y-axis) of the score of itineraries

1https://www.google.com/maps

FIGURE 6. Effect of step 3: (left) (a)(b)(c) are the ratio(y-axis) of the score
of itineraries found by BFS-GP to the score of itineraries found by
Backtrack with pruning vs each groups’ time budget(x-axis), and (d) is the
ratio(y-axis) of the score of itineraries found by BFS-GP using limited size
priority queue to the score of itineraries found by BFS-GP vs each groups’
time budget(x-axis); (right) the runtime(y-axis) vs each groups’ time
budget(x-axis).

found by BFS-GP using limited size priority queue to the
score of itineraries found by BFS-GP vs each groups’ time
budget(x-axis);
Fig. 6(right column) presents the runtime of those three

algorithms for per group, with y-axis being the run-
time(seconds) and x-axis being the time budget of a trip
b(hours). Greedy have a fast and stable runtime because
Greedy only maintain one route, but this feature also over-
looks other possible combinations of POIs, thus hardly find-
ing optimal solutions.When the feasible POI number is larger
than 30, backtrack with pruning algorithm runs over 5 min-
utes. But Backtrack is still the best way to find the optimal
itinerary when the travel city has a small number of POI or
to find a best way inside a big POI. In Fig. 6 (d), BFS-GP
using priority queue optimize the efficiency of BFS-GP at
some time and find the result same as BFS-GP at the most
of time.
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In summary, Backtrack with pruning finds the optimal
solution; BFS-GP is a very good trade-off for efficiency at a
slightly lower itinerary profit score than the optimal solution.

VII. RELATED WORK
A. GROUP-WISE ITINERARY PLANNING
There exist some researches studying the group-wise itinerary
planning problem [1]–[6]. However, none of them consider
the constraints as complete as this paper does. In this paper,
to improve the quality of suggested itineraries, we consider
the deadline and preference of each user, the popularity and
crowdedness (e.g. waiting time) of each point of interest
(POI). Moreover, for each generated group, we limit its size
according to general capacity of cars, that is 4.

B. ROUTE RECOMMENDATION
The route recommendation problem is related to the orien-
teering problem [12] that is a variant of the selective traveling
salesman problem [13], where (i) not all requests need to be
completed, and (ii) the cost is the sum of the total travel
time and the penalty of rejected requests. The orienteering
problem is well studied, but only several works [14]–[16]
consider the Orienteering Problems with each request hav-
ing a Time Window (OPTW). The route recommendation
service [17], [18] is also provided in other forms including
trip planning [19], optimal sequenced routing [20] and path
searching [21]. They require finding the shortest route that
passes through specific types of points-of-interests.

C. SPATIAL QUERIES
Spatial queries (e.g., range queries [22], [23], nearest
neighbor queries [23], [24] and top-k spatial keyword
queries [25], [26]) has been extensively studied in recent
literatures, most of which employ the technique of safe region
to reduce the client-server communication cost significantly.
It is guaranteed that the query result remains unchanged as
long as the user is within the safe region. A new result and an
updated safe region are requested from the server if the user
leaves the safe region.

D. MOBILE INTERNET OF THINGS
References [27] and [28] designed protocols to solve con-
gestion and save energy in mobile IoT. Reference [29] use
cache policy to reduce latency and computation on edge
service. Reference [30] proposes a verification platform to
compute the service reliability and cost in the design phase.
Reference [31] studies the approach to build service composi-
tions in sharing community. Reference [32] proposes method
of performing a service reconfiguration. And [33] provides
method to guarantee data consistency of the dynamic replace-
ment for service Process.

VIII. CONCLUSION
In this paper, we propose a group-wise itinerary plan-
ning framework to improve the user experiences in tem-
poral mobile social network. In the studied problem, users

registered for the same business/research conference are
treated to have common connections and thus may be will-
ing to travel together in the conference city. Our method
generates temporal mobile groups of guests according to
their interest preferences and available times. For each group,
an itinerary is recommended to achieve maximum user satis-
factory. Experimental results depict the effectiveness of our
methods.
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