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ABSTRACT Connected-vehicle system is an important component of smart cities. The complete benefits of
connected-vehicle technologies need the real-time information of all vehicles and other road users. However,
the existing connected-vehicle deployments obtain the real-time status of connected vehicles, but without
knowing the unconnected traffic since there are still many unconnected vehicles and pedestrians on the roads.
Therefore, it is urgent to find an approach to collect the high-resolution real-time status of unconnected
road users. When it is difficult for all vehicles, pedestrians, and bicyclists to broadcast their real-time status
in the near future, enhancing the traffic infrastructures to actively sense and broadcast each road user’s
status is an intuitive solution to fill the data gap. This paper introduces a new-generation LiDAR-enhanced
connected infrastructures that can actively sense the high-resolution status of surrounding traffic participants
with roadside LiDAR sensors and broadcast connected-vehicle messages through DSRC roadside units.
The system architecture, the LiDAR data processing procedure, the data communication, and the first pilot
implementation at an intersection in Reno, Nevada are included in this paper. This research is the start of the
new-generation connected infrastructures serving connected/autonomous vehicles with the roadside LiDAR
sensors. It will accelerate the deployment of the connected network for the smart cities to improve traffic
safety, mobility, and fuel efficiency.

INDEX TERMS Connected-vehicle, LiDAR data, communication platform, smart cities.

I. INTRODUCTION
Connected-Vehicle (CV) technologies have been an
important component for the future intelligent transporta-
tion system (ITS) and the smart cities [1]. In an ideal
CV network, all road users can communicate with each
other through wireless communication technologies [2], [3].
The CV technologies have a bunch of benefits, including
reducing congestions, improving traffic safety, reducing fuel
consumptions, and improving mobility [4]. However, the
premise of achieving the complete benefits relies on the
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shared real-time traffic information of all road users [5].
The current CV deployments could not really provide the
expected advantages of the CV network since there are still
a large number of unconnected vehicles and pedestrians
on the roads [6]. How to find an approach to sensing the
high-resolution real-time status of unconnected road users
during the transition from the traditional traffic to the full
autonomous/connected traffic remains a challenge for traffic
engineers and researchers [7]. The roadside infrastructure
provides a bridge to build the communication between the
unconnected road users and connected vehicles on the road.
The vehicle-to-infrastructure communication is a major com-
ponent of the CV system [8]. In the existing deployment
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pilots, road infrastructures equipped with dedicated-short-
range-communication (DSRC) roadside units can broadcast
the real-time information to connected vehicles [9], [10]. The
information broadcasted by the infrastructures include posi-
tion correction messages, local map messages, basic safety
messages (BSMs)/approaching vehicle aggregators, traffic &
rail signal messages (such as Signal Phase & Timing – SPaT),
and local weather & road surfacemessages.Whenmost of the
infrastructure information is from the traffic signal controllers
and the traffic management center, the BSMs and approach-
ing vehicle warning rely on the received connected-vehicle
status. When it is difficult for all vehicles and pedestrians to
broadcast their real-time status in the near future, enhancing
the traffic infrastructures to actively sense and broadcast
each road user’s status is an intuitive solution to fill the data
gap [11]–[13].

There are already many existing traffic sensors installed
along the road network, but data from these conventional
traffic sensors are not the high-resolution micro traffic data
(HRMTD-mainly including speed, location, direction, and
timestamp) required by the CV network. The traditional traf-
fic sensors such as loop detectors, video detectors, Bluetooth
sensors and radar sensors mainly provide macro traffic data
such as traffic flow rates, average speeds, and occupancy,
so the existing sensors cannot offer HRMTD. For example,
the conventional video sensors measure vehicle speed using
the predefined detection zones, which is actually average
speed in the predefined detection zones [14]. HRMTD can
be collected by probe vehicles or connected vehicles with the
GPS logging function. However, probe vehicles or the low
number of connected vehicles provide only sample data of the
traffic fleet on roads, while the connected vehicle applications
need the data of all road users. Even the latest crowdsourced
data, such as real-time travel time information from Wave,
is still the macro-level traffic information that is generated by
aggregating probe vehicle data. The new sensor technologies
need to be explored to enhance the connected traffic infras-
tructures to sense the HRMTD of all traffic participants.

The Light Detection and Ranging (LiDAR) technology has
the capability to detect the surrounding objects with high
accuracy and long measuring distance. During each scan,
the LiDAR sensor collects a cloud of points with X, Y and
Z coordinates of surrounding objects with relatively high
accuracy. LiDAR sensors can continuously work without the
influence of light conditions. By now, LiDAR sensors are
rarely used for roadside deployment because of the histori-
cal high price of LiDAR sensors. Fortunately, cost-efficient
LiDAR sensors have been manufactured and available on
the market [15]. The reduced price allows the deployment of
LiDAR sensors along a road network to provide HRMTD of
all traffic, which will significantly change the current con-
nected vehicle deployment and other traffic engineering prac-
tices. With the new cost-efficient LiDAR sensors, the authors
have designed and developed new-generation connected
infrastructures that actively sense the high-resolution status of
surrounding traffic participants with roadside LiDAR sensors

and broadcast connected-vehicle messages through DSRC
roadside units. A diagram to demonstrate the principle of the
new connected infrastructures is shown in Figure 1.

FIGURE 1. Principle of LiDAR-enhanced connected infrastructure sensing
and broadcasting HRMTD.

This paper introduces the design of the new connected
infrastructures and the first pilot implementation at an inter-
section in Reno, Nevada. This paper is organized as fol-
lows. Section 2 introduces the architecture of the LiDAR
enhanced architecture for the hardware components of the
system. Section 3 documents the LiDAR data processing
flow, which is the key component of the new connected
infrastructures. Section 4 is about the data communication
system. Section 5 evaluates the performance of the proposed
communication system. Section 6 demonstrates the first pilot
study of the roadside LiDAR-enhanced infrastructure in the
world. The last section summarizes this research and intro-
duces the future effort to extend this study.

II. ARCHITECTURE OF THE LIDAR-ENHANCED
CONNECTED INFRASTRUCTURE
The LiDAR-enhanced connected infrastructure integrates
roadside LiDAR sensors, connected vehicle technologies,
and existing traffic control devices. The system architecture
is shown in Figure 2.

A. ROADSIDE SYSTEM
• Traffic signal controller – Besides the function of traf-
fic signal control, the traffic signal controller provides
the real-time traffic signal information that is pack-
aged as DSRC SPaT messages for broadcasting. It is
connected to a field computer through a router with
Ethernet cables. The real-time traffic signal informa-
tion can be read from conventional traffic controllers
through the national transportation communications for
ITS protocol (NTCIP) [16]. New traffic signal con-
trollers directly provide SPaT messages, such as the
Trafficware 980ATC TS-2 Type 2 Signal Controller.

• Roadside LiDAR sensors – LiDAR sensors are
installed at the four corners (or at two diagonal cor-
ners, which is determined by the intersection size and
geometry) of an intersection for the full coverage of the
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FIGURE 2. System architecture of the LiDAR-based connected
infrastructure.

intersection area. For a road segment, the LiDAR sen-
sors are installed along roadsides. The distance between
sensors along a road segment is determined by the
effective detection range. The 360-degree LiDAR sen-
sors are for real-time detection and tracking of vehi-
cle/pedestrian/bicyclist movement. It needs to be noted
that some LiDAR sensors without 360-degree detection
angle may also be considered, but this paper focuses
on the application of 360-degree LiDAR sensors for
its easy installation, maintenance, and data integration.
In this research, the roadside LiDAR infrastructure was
developed based on the VLP-16 LiDAR sensor. The
VLP-16 LiDAR can create 360◦ 3D point cloud by
using 16 laser/detector pairs mounted in a compact hous-
ing. The housing rapidly spins to scan the surround-
ing environment with a range of 100 m (328 ft.). The
LiDARhas the rotational speed of 5-20 rotations per sec-
ond, which can generate 600,000 3D points per second.
It can cover 360-degree horizontal field of view (FOV)
and a 30-degree vertical FOV. The VLP-16 reports the
coordinates in spherical coordinates (r, ω, α), which
can be converted into Cartesian coordinates (x, y, z)
automatically by the sensor. The roadside LiDAR can
be deployed along the roadside permanently. The suit-
able position for LiDAR installation should consider the
detection range (the vertical of the field of view is usu-
ally limited) and potential vandalism. The recommended
height for the roadside LiDAR deployment is 7ft∼9ft
above the ground [17].

• Field computer – a field computer at each intersection
is to process real-time data from sensors, traffic signal
controller and connected vehicles. It packages DSRC
messages and communicates with the different roadside
components.

• External hard drives – external hard drives are optional
for field data archiving when the communication from
the infrastructure to the data center is not set up or is
interrupted.

• WI-FI router – a WI-FI router is the hub for the
communication of roadside components through Eth-
ernet. It also provides the convenient connection for
researchers/engineers to test and debug the system.

• DSRC roadside unit(s) (RSUs) – DSRC RSUs are for
two-way communication between the connected infras-
tructure and connected vehicles/pedestrians/bicyclists.
It receives the real-time status from the connected vehi-
cles and broadcasts the DSRC messages extracted from
the LiDAR data and other data sources.

B. TRAFFIC DATA CENTER
The traffic data center is for the remote traffic operation,
data archiving, data integration, traffic performance evalu-
ation, traffic control optimization, traffic data visualization,
and other related functions. It is normally connected to the
roadside system through the fibers.

C. CONNECTED ROAD USERS
A connected vehicle is equipped with an on-board DSRC
communication device and a personal smart device such as
smartphones and tablets. The on-board DSRC unit receives
real-time DSRC messages. At the same time, the DSRC
on-board unit broadcasts its own real-time information to
other vehicles and the connected infrastructures. An appli-
cation on the personal device is connected to the on-board
DSRC unit through Bluetooth to receive the real-time traffic
data and guide drivers. Connected pedestrians/bicyclists are
with portable DSRC units and personal devices such as smart
phones. It is a similar system as the connected vehicles.

III. LIDAR DATA PROCESSING
Research efforts have been conducted to process LiDAR data
for 3-D feature maps, detecting terrain, vehicles, pedestrians
and other objects for robots or autonomous vehicles, which
are all for on-board systems [18]. However, the data input
and output of on-board sensing systems are different from
the extraction of HRMTD from roadside sensors. The LiDAR
sensors installed on robots or autonomous vehicles move
along with the platforms (robots or vehicles), so the algo-
rithms identify obstacles and other vehicles along the moving
path. The roadside LiDAR sensors are fixed and the data
processing needs to identify and track the movements of all
traffic participants in the detected area. The fixed LiDAR sen-
sors collect data in a larger detection range than the on-board
systems with the similar LiDAR sensors, so the roadside
LiDAR processing needs to be able to detect and track traffic
participants with lower LiDAR point density and lower data
quality [19]. When the LiDAR sensors on autonomous vehi-
cles are often merged with vision sensors and radar sensors,
the roadside infrastructure needs to rely on the LiDAR sen-
sors only [20]. In this research, combination of LiDAR and
video sensors was considered, but this option was suspended
with consideration of the expected benefits, the required com-
putational power, and installation/maintenance difficulties.
Therefore, a procedure to process roadside LiDAR data is
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needed. In the literature review, few existing studies was
found to extract HRMTD with roadside LIDAR sensors. The
only related research [21] tested the roadside LiDAR to count
traffic volumes.

For the specific requirements of the roadside LiDAR
data processing, the authors have developed a com-
plete procedure from streaming roadside LiDAR data to
the output of HRMTD. The data processing procedure
include, background filtering [22], object clustering [23],
object classification [24], lane identification [25], and target
tracking [10]. The data processing procedure is demonstrated
with the flow chart in Figure 3.

FIGURE 3. LiDAR data processing procedure to extract HRMTD.

A. BACKGROUND FILTERING
The LiDAR creates point clouds for all of its scanned objects,
including road users, buildings, trees, and ground surface.
The buildings, trees, and ground surfaces were irrelevant
information for the HRMTD and were considered as back-
grounds. Background filtering is to identify and exclude
backgrounds, which is an initial but important step for
LiDAR data processing. An automatic background-filtering

algorithm was developed in this research to identify and
exclude background points from the LiDAR data. The back-
ground filtering algorithm includes three major parts: frame
aggregation, rasterization, and threshold identification [22].
For one frame, without comparing to other frames, it is dif-
ficult to know which cube represents background when there
are moving objects in the space. By aggregating multiple
frames (1500∼3500) into one coordinate, the density of back-
ground points should be higher than that of non-background
points. The whole space can be then rasterized into small
cubes with the same side length. By giving a pre-defined
threshold of point density for each cube, the cube can be iden-
tified as background cube or non-background cube [3]. The
density threshold for identifying background areas are adap-
tively adjusted at different distances from the sensor [22].
Then the identified background space is used to exclude
the background points from LiDAR data. Any points in the
background cubes are excluded from the space. An example
of before-after background filtering is shown in Figure 4.
The data were collected at the N Virginia St@ 15th St in

FIGURE 4. Background filtering. (a) Raw LiDAR Points. (b) After
Background Filtering.
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Reno, Nevada. The LiDAR was permanently installed on the
top of the pedestrian signal (about 7ft above the ground).
It is shown that most background points were filtered after
background filtering.

B. OBJECT CLUSTERING
With the background being filtered and the road/lane bound-
aries being determined, the LiDAR points in each data frame
need to be clustered to identify the traffic participants. The
DBSCAN (density-based spatial clustering of applications
with noise) [26] method was employed to cluster the LiDAR
points. The conventional DBSCAN method was adjusted to
adaptively adjust algorithm parameters at the different dis-
tances from the LiDAR sensor [14]. The point p whether
belongs to one cluster is determined by two parameters:
searching radius (ε) and minimal points (MinPts). The ε is
used to determine whether another points is the neighbor-
hood (N) of p. The N containing the number of points (nN)
equal to or larger than MinPts is considered as high density.
Based on ε and MinPts, one point can be assigned to one
of the three categories: core point (p ∈ N & nN ≥ MinPts),
border point (p ε N & nN < MinPts), and noise point
(p /∈ N ). A cluster contains core points and border points.
The traditional DBSCAN using the fixed values of ε and
MinPts could not cluster the points with varying density. For
the points scanned by the roadside LiDAR, the density of
points decreased with the increasing distance to LiDAR [27].
Therefore, it is difficult to cluster the points using the fixed
MinPts and ε. Dynamic parameters were then developed for
DBSCAN considering the LiDAR sensor’s mechanical struc-
ture and the features of LiDAR points. The primary criterion
of ε selection is to make sure points scanned by different
beams (different heights) can be detected as the neighbor.
Therefore,

ε ≥ d (1)

where d is the height difference between two adjacent laser
beams. d can be estimated based on the distance between
point to LiDAR [14], [28]. A recent study [5] showed that
the modified DBSCAN can achieve an accuracy of more
than 97%.

C. CLASSIFICATION OF TRAFFIC PARTICIPANT TYPES
Type of traffic participants is an important property of
the HRMTD for connected vehicles. Distinction between
different participant types, mainly pedestrians and vehi-
cles, is needed after the clustering process. The classifi-
cation of one object is also critical for the analysis of
the vehicle-pedestrian conflict [29]. Since the LiDAR can
generate the point cloud for its scanned object, the shape
information can be generated for each object. The selected
features used to distinguish the vehicles and pedestrians
include number of points, object length, height profile, dif-
ference between height and length, and distance to LiDAR.
By comparing the performance of different classification
methods including naive Bayes, k-nearest neighbor, support

vector machine, random forest, and backpropagation artifi-
cial neural network, it was found that random forest can
achieve the best performance with the relatively low comput-
ing cost [24]. The training results of the random forest model
are shown in Table 1.

TABLE 1. Evaluation of the random forest model.

The data were collected at three sites: Baring Blvd, N Vir-
ginia St@15th St, and N Sierra St@11th St in Reno, Nevada.
The results showed that 95% and higher accuracy can be
obtained with the data collected from different sites.

D. AUTOMATIC IDENTIFICATION OF LANE SPACE
The road/lane location in the 3D space is another important
feature for accurate and efficient HRMTD extraction. With
the road/lane boundary information, the influence of uninter-
ested objects can be reduced from the data processing. Vehi-
cle/pedestrian tracking can be more accurate in the known
road/lane space. This research developed an algorithm to
automatically identify boundaries of traffic lanes with aggre-
gated vehicle points. This method firstly aggregates vehicle
trajectories in a time period (such as 15 minutes) to learn the
vehicle paths, then identifies the road/lane 3D coordinates
with the aggregated paths [25]. The vehicle points belonging
to the same lane were grouped together using the DBSCAN
algorithm. The selected value for ε was 1.2 m and the value
for MinPts was 10 based on the regression method developed
by Wu et al. [3], [25]. This lane identification algorithm can
release engineers from themanual lane determination and can
avoid any error caused by manual work. Figure 5 shows an
example of the lane identification results.

The data were collected at the Baring Blvd at the front of
Edward C Reed High School. It is shown that the location of
each lane can be generated correctly.

E. OBJECT TRACKING
Tracking is to identify the same object in continuous data
frame. The commonly used methods for tracking include
nearest neighbor, Kalman Filtering, and multiple hypothesis
tracking [30]–[32]. For a vehicle, a single LiDAR sensor
can only scan parts of it. A centroid point of the scanned
points may change heavily frame by frame. Due to its large
size and the tiny time interval between two frames, unstable
centroid point will cause extreme systematic bias in speed.
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FIGURE 5. Lane identificatio. (a) Field Site. (b) Generated Lanes.

Thus, a corner point with the shortest distance to the sensor is
used as the reference point of a vehicle since this point is more
stable. The Global Nearest Neighbor (GNN) was applied
to track the same vehicles in different frames [33]. Three
factors are considered for object tracking – distances between
an object in a previous frame to all objects in the current
frame, the speed estimated from the historical trajectories,
and the time difference between the considered two frames.
An object in the current frame is matched to an object in
the previous frame, if the distance between the two objects
is less than the distance calculated by the estimated speed
and time difference. For the case that several objects in the
current frame all in the estimated distance range, the object
with minimal distance is matched. The tracking uses lane
information to limit the searching area. When an object in the
current frame cannot find a matched object in the previous
frame, a new tracking ID is assigned, which means a new
object is detected. For some frames where clusters cannot
be detected, the Kalman filter can be used to predict the
status of the missing object, thus improving the tracking
continuity [14].

F. EXTRACTION OF HRMTD
The major data elements in HRMTD for the connected-
vehicle applications include vehicle location, speed,

FIGURE 6. Different reference points of a vehicle.
(a) minimum-area-rectangular calculation. (b) Example of a vehicle at
different locations of a LiDAR sensor.

movement direction, and timestamp. When the location,
direction and timestamp can be directly obtained from the tra-
jectories. The speed calculation was given a specific consid-
eration. First, the minimum-area-rectangular is calculated for
the clustered points of each vehicle, as shown in Figure 6 (a).
A, B, C and D points represent the vertices of the rectangular;
O is the center point; E and F represent actual vehicle corners
estimated with the LiDAR points. E and F points include
the timestamp information that is used for speed calculation.
The locations of E and F are determined by averaging the
LiDAR points in a fixed range of A and B. Vehicle speed
can be calculated with the location difference of tracked
vehicles in two frames divided by the time difference. Ideally,
the corner points E and F, and the center point O can all
be used for the calculation. However, when the vehicle is
at different locations, the LiDAR points are reflected from
different surfaces of a vehicle. A demonstration is shown
in Figure 6 (b). When the vehicle is on the left side of the
LiDAR sensor, the sensor can detect A, B and C points. When
the vehicle is in front of the sensor (the closest location), only
A and B points are detected. When the vehicle is on the right
side of the sensor, only A, B and D can be detected. That
means the corner points closest to the sensor are the most
reliable and accurate. So, when the vehicle is approaching
the sensor, the front-right corner point F is used for the speed
calculation; when the vehicle is leaving the sensor, the rear-
right corner point E is used for speed calculation. With data
of multiple LiDAR sensors, a vehicle can have more points to
describe the shape. In that situation, this developed method
still works well to determine the best reference points.
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TABLE 2. Data properties included in the HRMTD from roadside LiDAR
data.

The HRMTD extracted by the data processing includes
the properties of each traffic participant, as listed in Table 2.
When describing a vehicle’s position with X, Y and Z values,
the ‘‘TrackPointType’’ tells the reference point of the vehicle
coordinate – whether it is the center point or any of the
corner points. Table 2 includes more data properties than the
DSRC BSM. The content and format of a BSM are defined
in Standard SAE J2735. Therefore, the connected vehicle
applications can select the needed information from the list.
For example, there is no object type element in BSM, so the
length value in a BSM can be customized to describe the
difference of a pedestrian and a vehicle.

IV. DATA COMMUNICATION
A roadside system named DSRC-Bluetooth communica-
tion and mobile application with LiDAR sensor (DBCMA-
LS) was developed to stream LiDAR data, package and
transfer DSRC basic-safety messages (BSM) via dedicated
short-range communications (DSRC). An onboard system
was developed to receive, decode the DSRC messages, trans-
fer decoded information through Bluetooth and visualize the
LiDAR data in a smart phone application [34].

A. SYSTEM STRUCTURE
The DBCMA-LS system has two major parts: Roadside
Unit (RSU) framework and Onboard Unit (OBU) framework,
as shown in Figure 7.

The developed DBCMA-LS aims to:
1) Collecting data from different sensors such as connected

traffic participants, traffic signals, and roadside LiDAR data.

FIGURE 7. DBCMA-LS system structur.

FIGURE 8. Modules in the DBCMA-LS RSU framework.

2) Formatting data into the standard basic safety mes-
sages (BSM) and signal phase and timing messages (SPaT).

3) Transferring data from RSU to OBU via DSRC network
and from OBU to mobile devices via Bluetooth network.

4) Dividing encoded BSM or SPaT into sub-packets
to achieve efficient transmission between on-board DSRC
devices and mobile devices through Bluetooth communica-
tion.

5) Regrouping and unpacking BSM or SPaT sub-packets
in the mobile application.

6) Visualizing the real-time status of other traffic par-
ticipants and providing a safety alerting service on mobile
devices.

B. DBCMA-LS RSU FRAMEWORK
The RSU framework is linked to a commercially available
DSRC roadside unit (RSU) that broadcasts and receives
DSRC packets. The data collection module, data processing
engine, and packet processing engine were implemented in
the Next Unit of Computing (NUC) computer [30], as shown
in Figure 8.

The data collection module with several standard
application-programming interfaces (APIs) was created to
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FIGURE 9. Modules of DBCMA-LS OBU framewor.

extract data from different sensors. It can read traffic signal
timing data from the traffic signal controller via Ethernet
connection based on the National Transportation Commu-
nications for ITS Protocol (NTCIP). The data collection
module streams roadside LiDAR data via Ethernet based on
a custom API.

The data processing engine was used to process the
received data and convert them into standard SPaT or BSM
messages. The real-time traffic signal timing data is encoded
to SPaT messages. The information of road users generated
from LiDAR sensor data is integrated in the data fusion mod-
ule. The combined information of road users is then encoded
as BSM messages. The historical data were stored in a local
database for debugging.

The encrypted SPaT and BSM messages are to be trans-
ferred via DSRC/Bluetooth communication by the user data-
gram protocol (UDP). A UDP packet needs to go through at
least two hops to reach the destination: one hop in the DSRC
network and the other hop in the Bluetooth connection. Since
the bandwidth decreases and packet loss rate increases in a
multi-hop environment, data packets have to be processed in
the packet-processing engine to guarantee the communica-
tion performance of the system. Data packets are split into
smaller sub-packets to meet the bandwidth of the Bluetooth
connection.

C. DBCMA-LS OBU FRAMEWORK
The OBU device can receive the real-time SPaT and BSM
messages and forward the messages to a mobile device via
the Bluetooth connection, as shown in Figure 9. A packet
resolving engine implemented in the mobile app regroups
the sub-packets, decrypts the data and decodes it to real-time
status of road users and traffic signal. The mobile applica-
tion is used to visualize the received data. The application
is also developed to offer the safety warning informa-
tion to drivers. Connected-vehicle built-in sensors such as
GPS/Magnetic/Gyro could be used to help determine the
position and direction of the connected vehicle.

Data visualization can help the customers check the
real-time traffic situation. A map view is designed to dis-
play the user’s vehicle and the surrounding road users. The
customer can observe the general distance information from

displayed distance circles. The zoom and move features of
the interface are developed to show traffic participants in
the remote area. The real-time traffic signal timing status is
displayed at the top-right corner of the screen as a countdown
signal head.

In the module of safety warning service, the trajectories
of nearby road users can be predicted based on historical
speeds, locations, and directions. Then the collision model
can evaluate the level of the risk and send a warning message
to drivers when the level of the risk is high (by displaying it
at the bottom of the screen).

V. ANALYSIS OF DBCMA-LS
A. DELAY AND PACKET-DROPPING PROBABILITY IN THE
DSRC/BLUETOOTH NETWORK
The performance of DBCMA-LS relies on the effectiveness
and stability of exchanging information between the RSU
framework and the OBU framework [35]. The delay and
packet-dropping probability of the system are examined to
evaluate the performance of DBCMA-LS.

The delay and packet-dropping probability in DSRC net-
work are modeled according to the general scenario - the
Institute of Electrical and Electronics Engineers (IEEE)
802.11p-based DSRC communication for a platoon of con-
nected vehicles. In this scene, nodes are all within communi-
cation range. As documented in previous studies [36], packet
delay can be estimated with

DDSRC =
2n∑
i=i

E [Di] , (2)

where n is the total number of hop;E[Di] is the average packet
delay of hop i, which can be calculated by

E[Di] = E[Xi] · E[si], (3)

where E[Xi] is the average number of time slots required for
successfully transmitting a packet and E[si] is the average
length of a time slot. In this case, as a general scenario of
DSRC communication, E[Xi] and E[si] can be treated as
constants, and E[Di] ≈ E[D] [36].
The packet-dropping probability is given by

pDSRC = 1−
2n∏
i=1

(1− pd,i), (4)

where pd,i is the probability that a packet from hop i is
dropped. It can also be treated as constant in this case, and
pd,i ≈ pd .
The typical value of delay DBluetooth and packet-dropping

probability pBluetooth for the newest version of Bluetooth is
applied [33]. The delay and packet-dropping probability are
calculated with the assumptions of average packet interval
E[I ] and average packet size E[L]. As a result, all related
parameter values are listed in Table 3.
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TABLE 3. Parameter values for delay and packet-dropping probability.

B. SUB-PACKET IN DSRC/BLUETOOTH COMMUNICATION
High-frequency large-size packets produced by the roadside
LiDAR data are transferred through the DSRC/Bluetooth
network, so they need to be divided into small sub-packets to
meet the limitation of both DSRC and Bluetooth connections.
When a packet is divided into several sub-packets, the overall
delay of the original packet can be shown as:

DnL(LS , I )= (DDSRC + DBluetooth)
⌈
L
LS

⌉
+ (
⌈
L
LS

⌉
− 1)I

= (2n · E[D]+ DBluetooth)
⌈
L
LS

⌉
+ (
⌈
L
LS

⌉
− 1)I

(5)

where L is the size of original packet, LS is the size of the
sub-packet, I is the packet interval between sub-packets, and
de is the rounding up operator.

The original packet drops when any of the sub-packets
is lost. The packet-dropping probability increases when the
packet interval is too small. The packet-dropping probability
of the original packet can be described as:

pnL(LS )= 1−[(1−pDSRC )(1−pBluetooth) min(I/E(I ), 1)]

⌈
L
LS

⌉

= 1−
[
(1−pd )2n(1−pBluetooth) min(I/E(I ), 1)

]⌈ L
LS

⌉
(6)

Based on the equations (5) and (6), both delay and packet-
dropping probability will increase when a large packet is
divided into several sub-packets. LS and I must be carefully
chosen to ensure the performance of DBCMA-LS.

C. PERFORMANCE ANALYSIS OF DBSCMA-LS
In the case of packet loss, an equivalent packet delay is
defined to better estimate the actual delay time, shown as

D̂nL(LS , I ) =
DnL(LS , I )
1− pnL(LS )

(7)

The DBCMA-LS RSU framework transfers the BSMmes-
sages to the mobile application in real time. Therefore,
the performance of DBCMA-LS is evaluated according to the
average delay of the DBCMA-LS system, which means the
equivalent delay of the delivered BSM packet without packet

FIGURE 10. Implementation of pilot DBCMA-LS RSU framework.

loss, shown as

DDBCMA−LS =
1

n(Lmax − Lmin)

nmax∑
n=1

Lmax∑
L=Lmin

D̂nL(LS , I )

=
1

n(Lmax − Lmin)

nmax∑
n=1

Lmax∑
L=Lmin

DnL(LS , I )
1− pnL(LS )

(8)

where Lmax and Lmin are the maximum and minimum size of
the package in the system, and nmax is the maximum size of
the DSRC network.

Based on the performance evaluation, the message interval
between sub-packets can be chosen to reach the minimum
average delay of the DBCMA-LS system. Therefore, the best
interval Î for the packet process engine is calculated by
solving the following optimization problem:

min
I

DDBCMA-LS (I ) =
1

n (Lmax − Lmin)

×

nmax∑
n=1

Imax∑
L=Lmin

DnL (LS , I )
1− pnL (LS)

s.t. I ≥ Imin,Lmin = LS ,Lmax = k · Lmin (9)

where k is the max number of divided sub-packets, and
Imin is the minimum interval required by DSRC/Bluetooth
hardware. It should to be noted that Î varies based on different
k and nmax; boundary conditions need to be further limited to
achieve a global optimal solution.

VI. IMPLEMENTATION OF DBCMA-LS
The world-first DBCMA-LS system with two VLP-16
LiDAR sensors was installed at a signalized intersection
around the University of Nevada Reno (UNR), as shown
in Figure 10. The field site picture is shown in Figure 11.
A microwave antenna was also installed at the intersection
and reserved for further wireless communication to the con-
trol center at UNR.
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FIGURE 11. Field Picture of DBCMA-LS RSU.

The DBCMA-LS OBU system includes the DSRC OBU
device and an Android phone with an implemented applica-
tion, as shown in Figure 12.

FIGURE 12. DBCMA-LS OBU framework.

OBU device received the traffic information from DSRC
and displayed the corresponding information on themap view
of the Android application. The map is always centered at the
location of the device so that user canmonitor the surrounding
traffic participants.

The end-to-end packet delay and the packet-dropping prob-
ability of the implemented DBCMA-LS system were tested
in the field. In the test cases, packets of different sizes (L)
were transferred. Different packet intervals (I ) of sub-packets
were used to seek the optimal communication performance
of DBCMA-LS. The interval between two packets was long
enough so that packages were not affected by each other.
The end-to-end packet delay (De2e(L, I )) was counted by
the time difference between the current GPS time on the
Android device and GPS timestamp in the BSM message.
The end-to-end packet-dropping probability (pe2e(L, I )) was
calculated by dividing the number of successfully resolved
packages by the total number of packages. It was shown
in Figure 13 that end-to-end packet delay increased with
the increasing packet size. When the packet interval is less
than 20 ms, communication becomes congested with the

FIGURE 13. End-to-en acket delays.

FIGURE 14. End-to-end packet-dropping probabilities.

larger packet size. This can lead to a rapid increase of delay.
Figure 14 shows that the packet-dropping probability was
relatively low.When the packet interval is less than 20ms, the
packet-dropping probability increases, indicating the reliabil-
ity of the communication is degraded. With the rise of packet
interval and packet size, the sub-packet may be influenced by
the following packet. This can increase the packet-dropping
probability.

The pilot study shows that when the interval is between
20 and 40 ms, the best performance of the system can be
achieved. In this research, Î = 30 ms was selected as the
best packet interval. The end-to-end equivalent packet delay
( D̂nL(LS , Î )

∣∣∣
n=1,Ls=E[L]

) is shown in Figure 15.

It is shown that the maximum equivalent packet delay was
less than 200ms with a packet less than 8 MB. The limited
delay can guarantee the real-time applications of the CV
network.

VII. SUMMARY
This research is the start of the new-generation connected
infrastructures serving connected/autonomous vehicles with
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FIGURE 15. Equivalent packet delays of DBCMA-LS.

the roadside LiDAR sensors. The proposed connected-vehicle
system is an important component of smart cities. The high-
resolution roadside LiDAR data can solve the issue with
existing connected vehicle deployments that do not have
HRMTD of unconnected vehicles. Full benefits of con-
nected/autonomous vehicles, such as the crash-avoidance
applications and Eco-driving applications, can be expected
with the new connected infrastructure. The new connected
infrastructure can accelerate the deployment of connected-
vehicle technologies, and be used as a guidance to deploy
LiDAR-based connected infrastructures on other roads,
regions and states. This system can collect the HRMTD of
unconnected traffic road users and broadcast the HRMTD
to the connected vehicles. The drivers can see any possible
safety-critical events by receiving the warning information
through the developed App. Therefore, the traffic safety can
be improved with the proposed system.

Opportunities related to the LiDAR-based connected
infrastructure can go beyond connected-vehicle applications.
The high-resolution micro traffic data will also change exist-
ing traffic safety engineering and traffic operation. For exam-
ple, the micro-level trajectories of vehicles and pedestrians at
intersections can be used to analyze intersection traffic safety
and signal performance with much more details than the tra-
ditional safety and performance analysis. The existing Rect-
angular Rapid Flash Beacon (RRFB) for midblock pedestrian
crosswalks can be upgraded to an automatic pedestrian signal
with the real-time high-resolution micro traffic data. Warning
of wildlife crossing highways can be automatically triggered
when the real-time micro traffic data shows wildlife cross-
ing. The high-resolution micro traffic data can also support
adaptive traffic signal control systems. Unconnected vehicles
and pedestrians can all benefit from the high-resolution micro
traffic data.

The future research will extend the pilot connected inter-
section to a segment of the arterial with LiDAR sensors
deployed and connected along the road segment. The differ-
ent intersections and facilities will create different scenarios

to demonstrate how the roadside LiDAR data improve safety,
mobility and efficiency. The proposed method can help create
the connected network for the smart cities. How to integrate
the connected-vehicle system with other systems in the smart
cities is another research topic. The proposed systemmay also
reduce the fuel consumption of vehicles by providing a better
route using the HRMTDdata, which can be another important
contribution to the smart cities.
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