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ABSTRACT The problem of gridding microarray images remains a challenging task. This is because
microarray images are usually contaminated with noise and artifacts, such as low intensity and poor
quality spots. In this paper, a new gridding technique for microarray images is introduced. The proposed
technique includes both global gridding (sub-array detection) and local gridding (individual spot detection).
Our technique is developed based on multi-resolution analysis and a new adaptive threshold method. The
proposed framework is fully automated in the sense that it does not need any user intervention and the only
input required is the microarray image. The presented technique can be applied to images with different
specifications, such as resolution, number of sub-arrays, number of spots in each sub-array, and noise
levels. The experimental results show that the proposed method is highly accurate when compared with
the existing software tools as well as with recently published techniques. Our results also show that the
presented approach is very effective for gridding microarray images with low intensity, poor quality spots,
and missing/irregular spots. The spot detection accuracy of the proposed method is improved by up to 5.48%
compared with that of the other published algorithms.

INDEX TERMS cDNA microarray images, fully automatic gridding, sub-array detection, spot detection,
gene expression.

I. INTRODUCTION
Deoxyribonucleic acid (DNA) microarray technology is a
powerful tool for evaluating the expression levels for several
thousands of genes simultaneously. Microarray technology
has been widely used in many applications such as genetic
research, understanding and diagnosis of diseases, and phar-
macology research. A DNA microarray is a tiny glass slide
on which known DNA sequences or genes in solution have
been robotically spotted in a rectangular or square grid; one
gene per spot. Often, these slides are referred to as gene chips
or DNA chips.

DNA microarrays are prepared by obtaining a control tis-
sue sample and a test tissue sample. Then, from each sample,
mRNA sequences are extracted and labeled with different
fluorescent dye. Cy3 (green) is usually used for labeling the
mRNA sequences of the control sample and Cy5 (red) is used
for labeling the mRNA sequences of the test sample. The
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labeled mRNA sequences of the two samples are hybridized
to the array simultaneously. The array is then washed to
remove the mRNA sequences that are not hybridized. After
washing, a laser scanner is used to capture the microarray
image [1]. Then, fluorescent measurements of red and green
channels will return the expression level for every gene repre-
sented by a spot in the microarray image. Fig. 1 illustrates the
preparation steps for a microarray slide and the acquisition of
its microarray image. As it can be seen from Fig.1, a microar-
ray image is usually composed of rectangular or square areas
called sub-arrays; each sub-array contains a number of spots.
Each spot represents the expression level of a single gene.

Processing of microarray images consists of three steps:
gridding, segmentation and quantification [2]. Gridding is the
first main step in extracting data from a microarray image.
It is the process of identifying the area of each sub-array
within an image (global gridding) and then identifying the
area of each spot within each sub-array (local gridding). Seg-
mentation is the process that separates spot pixels from back-
ground pixels within each spot area. Quantification, which is
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FIGURE 1. The preparation steps for a cDNA microarray slide and the
acquisition of its microarray image.

the last step, is to calculate intensity values for the foreground
and background pixels for each spot of the microarray image.
These intensity values are used to estimate the expression
levels of the genes represented in the microarray image.

Gridding (also known as addressing) is themost fundamen-
tal and important step in microarray image analysis. Accurate
gridding helps substantially in improving the efficiency of the
segmentation and quantification steps. To extract each spot
from the microarray image, first the image has to be divided
into sub-arrays (global gridding) and each sub-array has to be
separated into spot regions (local gridding).

There are several problems with microarray images that
make the gridding process a difficult task. First, Even
though microarrays arrange spots on a relatively regular grid,
in the real situation, the exact location of the grid may
vary due to mechanical constraints in the spotting process
and hybridization inconsistencies [3]. Second, very often
microarray images have some tilt or rotation that occurs
during printing or scanning. Third, the spots of a microarray
image can vary in size, shape and position due to noise in the
sample preparation and hybridization processes. In addition,
spot intensity levels are highly variable since different genes
may express differently and weak spots are often difficult
to detect. Fig. 2 illustrates some of these microarray image
problems.

These problems make processing of microarray images is
often hard to automate. Thus, there are three different grid-
ding methodologies according to the degree of human inter-
vention. These methods are manual gridding, semiautomatic
gridding and fully automated gridding. These techniques are
described in the following subsections.

A. MANUAL GRIDDING
This is the first method used for gridding microarray images.
In this method, all the parameters required for gridding are
provided manually. These parameters are the number of
sub-arrays in the microarray image, the number of spots in
each sub-array, and the spot size.

FIGURE 2. The right side image is a typical microarray image containing
16 sub-arrays arranged in a grid of 4 × 4 sub-arrays. Each sub-array has
8 × 10 features (spots). Also the right side image shows some image
rotation problem and the left side image shows some spot problems
within the sub- array.

There are several software packages such as ScanAlyze [4],
Spot Finder [5], ImaGene [6] and GenePix [7] that are used
for manual gridding of microarray images. These systems
provide Graphical User Interface (GUI) tools for assisting the
user to manually provide the number of sub-arrays, the num-
ber of spots in each sub-array, and the spot size. For exam-
ple, in GenePix, the user must assign the layout of blocks,
the number of spots in each block, and the distances of spot
centers from adjacent rows and columns. The approach in [8]
presents a method for gridding microarray images based on
axis projections. This method requires user intervention in
order to manually adjust the locations of the grids.

In general, the advantage of this method is that it can
provide ‘perfect’ grid alignment. The disadvantage of this
method is introducing considerable inaccuracy due to human
errors, particularly with arrays having irregular spacing
between the spots and large variation in spot sizes. In addi-
tion, the method is very time consuming and is not applicable
for high density microarray images [9].

B. SEMIAUTOMATIC GRIDDING
This gridding method reduces the human intervention in the
sense that it requires from the user to partially provide some
of the gridding parameters in order to achieve correctness of
gridding results. For example, the approach in [10] performs
spot detection based on Markov random field (MRF) method
and some heuristic criteria. This method requires the num-
ber of rows and the number of columns per sub-grid to be
manually provided. The approach in [11] describes a semi-
automatic system which mainly focuses on the problem of
finding individual spots with high accuracy. In general, semi-
automatic gridding methods might not be sufficient to meet
the requirements for high throughput processing of microar-
ray images [9].

C. FULLY AUTOMATIC GRIDDING
Automatic gridding algorithms identify all spots of microar-
ray images without any human intervention. Many automatic
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gridding approaches are proposed for sub-array gridding and
spot detection. For example, the approach in [12] describes
a fully automatic gridding methodology using intensity pro-
jection profiles of microarray images. This gridding method
is sensitive to contaminations and large number of missing
spots.

The approach in [13] proposes automatic gridding of DNA
microarray images using optimum sub-array. The approach
is based on the selection of an optimum sub-image and then
the intensity projection profiles of this optimum sub-image
are used to calculate the parameters for gridding. On the
other hand, the approach in [14] describes a global grid-
ding methodology in which Radon transform is used for
detecting and correcting rotations and then the algorithm
applies morphological operators to separate the sub-arrays in
a cDNAmicroarray image. Another method in [15] describes
an approach for cDNA microarray gridding which is based
on a hierarchical refinement algorithm. The approach applies
rotation correction and local fine-tuning before performing
the gridding process.

The approach in [16] presents a fully automatic method
for microarray gridding. The method first finds the locations
of sub-arrays of the entire image and then determines the
co-ordinates of spots in each sub-array. The method detects
and corrects rotation in the image by applying affine transfor-
mation.

The approach in [17] is an automatic gridding method that
applies a genetic algorithm (GA) to accurately determine the
line segments constituting borders between adjacent blocks
or spots.

Many approaches are developed for local gridding which
basically assume that the sub-grids are already identified such
as the method in [18]. This method presents an automatic
approach for finding spot locations. The method applies a
hill-climbing approach to maximize the intensities of the
spots. One or more starting pixels must be predefined that
will affect the final result.

The gridding approach in [19] uses improved Otsu method
to obtain an optimal threshold that separates spot pixels from
background pixels. In this method, the grid lines are opti-
mized by a heuristic technique with the help of estimating the
distribution of the spots. The approach in [20] applies Otsu
method optimized by the multilevel thresholds to achieve
accurate microarray gridding.

The approach in [21] also describes an automatic grid-
ding technique based on intensity projection profiles for the
special-domain microarray images. The method first applies
Radon transform to correct any rotation in the microarray
images. Also, as a preprocessing step, a histogram based
thresholdmethod is used to enhance the intensity of the image
spots. Finally, a refinement technique is applied to detect and
correct grid line errors.

Many of the above mentioned approaches perform grid-
ding for microarray images in the spatial domain. A prepro-
cessing step is usually applied in these algorithms in order
to reduce the effect of noise. In particular, there are many

filters which are usually used to reduce noise such as mean,
median, and morphological filters. Mean filters introduce
blurring to images when are used for reducing noise. The
median filter is a nonlinear filter which can remove noise
without blurring sharp edges, but it will eliminate some useful
spot information. The morphological filter can achieve fairly
good noise reduction but the design of the structure element
depends on actual image contents.

The problem of automatic gridding is complicated by the
fact that microarray images are usually highly contaminated
with noise and artifacts due to the wet lab processes. Some
of the artifacts, which often occur in microarray images and
contribute in complicating the gridding process, are rotation,
misalignment and local deformation of the ideal rectangular
grid. Therefore, there is a high need for development of
gridding methods which are accurate and robust against these
problems.

In this paper, a new fully automatic gridding technique is
introduced. The presented technique is developed based on
multi-resolution analysis and an adaptive threshold method.

The main reason of using multi-resolution analysis is that
huge amount of image data will be eliminated because the
coarse-scale sub-band of the microarray image is the only
sub-band that will be used in performing global and local
gridding. Also the use of multi-resolution analysis will elimi-
nate the need for pre-processing operations for noise removal.
Especially, discrete wavelet transform plays an important role
in reducing noise from images and it has been shown to be
more effective than filteringmethods [22]–[24]. Furthermore,
the advantage of using the wavelet transform is that it allows
us to perform multiple decompositions in order to distinguish
the distance between sub-arrays and spots. That is, the multi-
resolution capability of the DWT makes it possible to detect
features at a resolution that may go undetected at another.
DWT can often compress or de-noise a signal without appre-
ciable degradation.

The proposed adaptive threshold method will be applied in
local gridding because the projection profiles of the microar-
ray images are often non-uniform due to some spots may
be missed or the spots may have low intensity and poor
quality [25], [20].

This paper is organized as follows. Introduction is given in
Section 1. Section 2 describes the different datasets (materi-
als) that are used to test the proposed gridding technique. The
proposed technique is presented in Section 3. Experimental
results are given in Section 4. Conclusions are provided in
Section 5.

II. DATASETS
Four different databases of cDNA microarray images are
used for testing the proposed gridding method. The images
are selected from different sources to have different spot
sizes, shapes, and scanning resolutions, in order to accurately
evaluate the efficiency of the proposed method.

The first dataset consists of 14 microarray images selected
from Computational Cancer Genomics (CCG) group of the
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Swiss Institute of Bioinformatics (SIB) [26]. The images
selected are those with IDs from 661 to 667. Each experiment
ID includes two channels (Cy3 and Cy5). The microarray
images are stored in TIFF format, with image resolution
of 1000× 1000 pixels, and spot resolution of 18× 18 pixels.
Each image has 4 sub arrays and each sub array has different
number of spots. The number of spots in each sub-array is
ranging from 35 to 49 spots.

The second dataset of images is drawn from the University
of California; San Francisco [27]. The microarray images
are stored in TIFF format, with image resolution of 1512 ×
1488 pixels, and spot resolution of 8 × 8 pixels. This dataset
contains two images. Each image has 36 sub-grids arranged
in 6 rows and 6 columns. Each sub-grid has 210 spots.

The third dataset consists of images which are taken
from Gene Expression Omnibus [28]. Thirteen images
are selected for testing the proposed method. These
images correspond to channels 1 and 2 for experiments
IDs GSM15898, GSM16101, GSM16389, GSM16391 and
experiments IDs GSM17137, GSM17163, GSM17186,
GSM17190 and GSM17192. The resolution of these images
ranges from 1802× 1942 to 5997× 2200 pixels. The images
are in TIFF format. The spot resolution is 12 × 12 pixels.
Also each image contains 48 sub-grids, arranged in 12 rows
and 4 columns; each sub array has 182 spots.

The fourth dataset of images are drawn from [29]. Fourteen
images were selected for testing the proposed method. These
images correspond to channels 1 and 2 for experiments IDs
1302, 1303, 1309, 1310, 1311, 1312, and 1313. The images
have resolution of 1024× 1024 pixels and are in TIFF format.
The spot resolution is 8× 8 pixels. Each image contains four
sub arrays and each sub array contains 1,600 spots.

III. THE PROPOSED GRIDDING TECHNIQUE
In this section, the proposed fully automatic method for grid-
ding microarray images is presented. The method is capable
of processing microarray images without any user interven-
tion (does not require any input parameters).

The proposed method consists of two major steps:
(1) global gridding, and (2) local gridding. These two steps
are presented in the following two subsections.

A. THE PROPOSED GLOBAL GRIDDING APPROACH
The main idea of the proposed global gridding method is
to decompose the microarray image, using Haar DWT, into
three decomposition levels and then use the coarse scale
sub-band of the third decomposition level to define the
sub-arrays within the microarray image. The reason for per-
forming three decomposition levels is to ensure that the dis-
tance between spots becomes very small such that it will not
appear in the projection profile trajectories of the microarray
image specially after smoothing the trajectories. However,
the distance between sub-arrays will stay well pronounced
in the trajectories even after smoothing. This will make the
outer sides of sub-arrays are very clear in the trajectories and

therefore the grid lines between sub-arrays can be accurately
determined.

The detailed steps of our proposed automatic sub-gridding
algorithm are shown in Fig. 3 and are explained as follows:

FIGURE 3. A block diagram showing the steps of our global gridding
algorithm.

Step 1: Convert the RGB microarray image into a gray-
scale image. The gray-scale image will be referred to as
F(x, y) and it will be considered of sizeM × N pixels.
Step 2:Detect and correct any tilt in the image using Radon

transform method presented in [21].
Step 3: Decompose the microarray image, F(x, y) , using

Haar DWT into three levels. Fig. 4 shows the coarse scale
sub-band of the third decomposition level for a microarray
image taken from the third dataset. As it can be observed from
the coarse scale sub-band, the spots within each sub-array
are almost merged together. That is, the distances between
spots become very small compared to distances between sub-
arrays. The coarse scale sub-band of the third decomposition
level will be referred to as LL3(w, h).

FIGURE 4. The coarse scale sub-band after the third decomposition level
for a microarray image taken from the third dataset.

Step 4:Calculate the horizontal projection profile (HP) and
the vertical projection profile (VP) for LL3 as follows:

HP(w) =
h=H−1∑
h=0

LL3(w, h)

where, H =
N
8

, w =
(
0, 1, . . . . . . ,

M
8
− 1

)
(1)

VP(h) =
W=W−1∑
w=0

LL3(w, h)

where, W =
M
8

, h =
(
0, 1, . . . . . . ,

N
8
− 1

)
(2)
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Step 5: Perform smoothing for HP and VP profiles using
a three-point moving average filter. The smoothed HP and
VP are shown in Fig. 5.

FIGURE 5. (a) The horizontal projection profile of the LL3 sub-band after
smoothing. (b) The vertical projection profile of the LL3 sub-band after
smoothing.

Step 6: Calculate the standard deviations for HP and VP
profiles.
Step 7: Find the minimum and maximum peaks in the

projection profiles HP and VP using the algorithm given
in [30]. This algorithm implements a simple idea which is
that the local maxima are detected between valleys. Thus,
the algorithm looks for the highest point, around which
there are points lower by a ‘‘peak threshold’’ on both sides.
However, the proposed global gridding algorithm uses the
standard deviations of HP and VP as peak thresholds in place
of the delta value used in [30]. The standard deviation is used
as the peak threshold because it is a measure for the variations
of the projection profile around its mean. Therefore, small
peaks which arise due to noise will not be detected. As it can
be seen from Fig. 6, this method is able to select the proper
peaks and ignore the minor peaks.
Step 8: Allocate the vertical and horizontal grid lines at

the minimum points which are determined in step 7. The
locations of the horizontal grid lines and the locations of the
vertical grid lines will be denoted by HL and VL respectively.
Step 9: Determine the locations of the horizontal and ver-

tical grid lines for the original microarray image (the special
domain microarray image) as following:

FH = H∗L8 (3)

FIGURE 6. (a) The minimum and maximum peaks in the horizontal
projection profile. (b) The minimum and maximum peaks in the vertical
projection profile.

FV = V ∗L 8 (4)

Step 10:Map these grid lines FH and FV onto the original
microarray image for producing sub-gridding. Fig. 7 shows a
microarray image from the third dataset (GEO) after perform-
ing sub-array detection using the proposed global gridding
approach.

FIGURE 7. A microarray image taken from the third dataset (GEO) after
performing sub-array detection using the proposed global gridding
approach.
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B. THE PROPOSED LOCALGRIDDING APPROACH
As it has been stated previously, a microarray image usually
contains a number of sub-arrays where each sub-array is a
rectangular block of spots. The sub-array detection is per-
formed by the method presented in the previous section. After
sub-array detection, the aim is to separate each sub-array
into spot regions (local gridding). The proposed local grid-
ding method proceeds as follows: Each sub-array image is
decomposed using Haar DWT into one decomposition level
to remove the noise but to keep the spacing between spots.
Then, the horizontal and vertical projection profiles are com-
puted and a local adaptive threshold technique is applied to
each sub-array to determine the grid lines between spots. This
local adaptive threshold method is used because applying one
global threshold is not always suitable for local gridding.
The adaptive local threshold method performs better than
one global threshold because some maximum peaks might
come lower than the global threshold and also someminimum
peaks might come larger than the global threshold. This often
occurs because some spots may be missed or the spots may
have low intensity and poor quality, therefore the projection
profiles often become non-uniform. In our local threshold
method, the value of the threshold is calculated based on the
mean of the local region. Fig. 8 shows a block diagram for
the steps of the proposed local gridding method.

FIGURE 8. A block diagram showing the steps of our local gridding
algorithm.

The steps of the local gridding algorithm are explained as
follows:
Step 1: Decompose the sub-array image using Haar DWT

into one decomposition level. The sub-array image will be
referred to as F1(x, y) and is assumed to be of sizeM1 × N1.
Step 2: Calculate the horizontal projection profile (HPs)

and vertical projection profile (VPs) for the coarse scale sub-
band (LL) ofF1(x, y); these profiles are calculated as follows:

HPS (w) =
h=H−1∑
h=0

LL(w, h)

where,H =
N1

2
, w =

(
0, 1, . . . . . . ,

M1

2
− 1

)
(5)

VPS (h) =
w=W−1∑
w=0

LL(w, h)

where,W =
M1

2
, h =

(
0, 1, . . . . . . ,

N1

2
− 1

)
(6)

Step 3: Compute an adaptive threshold value for the hori-
zontal projection profile (also an adaptive threshold value for
the vertical projection profile is computed the same way) as
follows:

First, compute the mean value (m) for the horizontal pro-
jection profile as shown in Fig. 9(a) (Fig. 10(a) for vertical
projection profile). Second, segment the horizontal projection
profile into two regions (R1,R2) as follows:

R1 = HPS (w), w < floor
(
M1

4

)
(7)

R2 = HPS (w), w ≥ floor
(
M1

4

)
(8)

and then compute a mean value (m1) for R1 and a mean value
(m2 ) for R2 as shown in Fig. 9(b) (Fig. 10(b) for vertical).
If m1 > k∗ , where k is a constant that has been determined

FIGURE 9. (a) The horizontal projection profile and the global mean
value (m) of this profile is indicated. (b) The horizontal projection profile
after it has been segmented into two regions (R1, R2) and the mean
values (m1, m2) of the two regions. (c) The horizontal projection profile
after segmenting it into four regions (R11, R121, R122, R2) and the mean
values of the four regions.
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FIGURE 10. (a) The vertical projection profile and the global mean
value (m) of this profile is indicated. (b) The vertical projection profile
after it has been segmented into two regions (R1, R2) and the mean
values (m1, m2) of the two regions.

empirically (k = 1.2 for the images of the datasets used in
this study). Then divide R1 region into two regions: R11 and
R12. Then compute mean values (m11), (m12) for these two
new regions and compare these mean values with the mean
value (m1) of region R1 for possible further division and so
on. This division process is illustrated in Fig. 9(c).
Step 4: Subtract the mean value from the corresponding

projection profile region. Let the outputs after subtracting the
mean values be FDHP and FDVP vectors.
Step 5:Convert FDHP and FDVP vectors into binary profile

trajectories as follows:

FH =

{
1, FDHP > 0
0, otherwise

(9)

FV =

{
1, FDVP > 0
0, otherwise

(10)

Step 6: Compute the middle of each interval of zeros in the
binary profile trajectories FH and FV . These middle points
are considered the locations of grid lines (boundaries between
spots). These middle points are written into the HLs and VLs
vectors.
Step 7: Apply the grid line optimization method presented

in [21] to modify any line errors in our local gridding method.
Step 8: Determine final horizontal and vertical gridding

for the original sub-array (the special domain sub-array) as

follows:

FHLs = HLs ∗ 2 (11)

FVLs = VLs ∗ 2 (12)

Step 9: Map these grid lines FHLs and FVLs onto the
sub-array to produce the spot regions as shown in Fig. 11.

FIGURE 11. Sub-array taken from an image of the 4th dataset: (a) before
local gridding. (b) After applying the proposed local gridding method.

C. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS
This section demonstrates the output of each of the two steps
of the proposed gridding method with typical microarray
images. That is, the performance of the proposed method
for global gridding and the performance of the proposed
method for local gridding are investigated and the accuracy
of each of the two steps is evaluated. In all experiments,
the only input given to each of the proposed steps is the image
itself and no other data is needed. Our gridding algorithm is
implemented using Matlab R2014b running on laptop with
Windows 8 platform.

1) PERFORMANCE OF THE SUB-ARRAY DETECTION
APPROACH
The proposed sub-array detection approach (global gridding
algorithm) is applied to 29 images taken from the first three
datasets. It is to be noticed that the images of these datasets
are different in resolution, number of sub-arrays, quality, and
noise level. Also some of these images contain large number
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FIGURE 12. Examples of successfully obtained Sub-grids after applying
the proposed global gridding method. (a) Sub-grid detection for an image
taken from 1st dataset (SIB). (b) Sub-grid detection for an image taken
from 2nd dataset (UCSF).

of poorly expressed spots. Fig. 12 illustrates the results of the
proposed global gridding method for images taken from first
and second datasets. Fig. 7 shows the global gridding for an
image of the third dataset.

To evaluate the effectiveness of the proposed sub-array
gridding approach, the accuracy of the method is computed
according to the following expression:

Accuracy =
NCorrect sub−arrays
NTotal Sub−arrays

× 100% (13)

The accuracy of the global gridding for each microar-
ray image of the three datasets is computed and presented
in Table. 1.

TABLE 1. Accuracy of the proposed global gridding approach for three
different databases.

From Table 1, it is observed that the accuracy of the first
dataset (SIB) is lower than that of the other two datasets. This

is because the covering glass of image 664 is misplaced and
the hybridization is very bad, and in image 665 the covering
glass is broken.

2) PERFORMANCE OF THE PROPOSED SPOT DETECTION
METHOD
The proposed spot detection method is tested on images taken
from four databases. The images of these databases vary in
image resolution, spot size, spot shape, spot resolution and
sub-array layout. Each microarray spot, after applying our
local gridding method, was visually classified into one of the
following three categories:

- Perfectly (P): A spot was ‘‘perfectly’’ gridded if all its
pixels were resided within the equivalent compartment of the
grid cell.

-Marginally (M):A spot was ‘‘marginally’’ gridded when
more than 80%of its pixels were residedwithin the equivalent
compartment of the grid cell.

- Incorrectly (I): A spot was ‘‘incorrectly’’ gridded when
less than 80% of the spot pixels were resided within its
respective grid cell.

The spot detection results are shown in Table. 2. In this
table, the results of the proposed method are compared with
the results of two existing methods: maximum between class
variance method [19] and Grid line refinement method [21].
The accuracy of the perfectly detected spots by the proposed
method and the other two methods is shown graphically
in Fig. 13.

TABLE 2. Spot detection accuracy obtained for the method presented
in [19], the method presented in [21], and the proposed method.

From Table 2, it is observed that the proposed method
has improved the spot detection accuracy compared to the
other two methods. In database 1, the proposed method
has achieved 5.48% accuracy improvement for spot detec-
tion compared to the other two methods. In database 2 and
database 3, the percentage of spots which are correctly placed
in their corresponding grid cells is very high, exceeding 97%.

For database 4, the proposed method has achieved 3.52%
accuracy improvement for spot detection compared to the
other two methods. Fig. 14 shows the local gridding results
for an image taken from database 4. This figure shows that the
proposed griddingmethod is able to detect a grid line which is
missed in the gridded image given in [19]. This performance
analysis indicates that the proposed method is robust against
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FIGURE 13. Accuracy of the perfectly detected spots by the proposed
method and the methods in [19] and [21].

FIGURE 14. Sub-grid taken from image 1310_ch1_OD046_green of the 4th

dataset.(a) Gridding result presented in [19]. (b) Gridding result after
applying the proposed method.

various noises and contaminations that are commonly found
in microarray images.

IV. CONCLUSION
The DNA microarray imaging technology has led to enor-
mous progress in the life sciences by allowing scientists to
analyze the expression of thousands of genes at a time. In this
paper, a fully automatic gridding method for cDNA microar-
ray images using multi-resolution analysis is presented. The
proposed approachmakes no assumptions about the spot size,

the number of rows and columns of sub-arrays or the number
of spots in themicroarray image. The proposedmethod is per-
formed using two main steps. First, it extracts the sub-arrays
of the entire microarray image (global gridding). Second,
it identifies the locations of the spots in each sub-array
(local gridding). The use of multi-resolution analysis in our
approach has eliminated the need of pre-processing opera-
tions for noise removal and the use of local adaptive threshold
method has produced optimal grid lines for separating the
spot regions.

The proposed method has been tested on microarray
images drawn from four sources. The experimental results
show that the proposed method improves the spot detection
accuracy compared to other published methods.
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