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ABSTRACT Energy harvesting has been considered as a promising technique to decrease the conventional
grid energy expenditure. However, most renewable energy sources are unreliable and random. To overcome
these drawbacks, besides the commonly adopted approaches such as purchasing power from the grid and
deploying batteries, energy cooperation is an appealing solution. In this paper, we investigate the energy
management problem by jointly optimizing the data admission rate, transmit power, energy sharing among
base stations (BSs), battery charging and discharging rate, and the energy purchased from the grid in
hybrid energy powered cellular networks. First, the long-term average total cost minimization problem
under the constraints on limited battery size and users’ data rate requirements is formulated as a stochastic
optimization problem. Employing the Lyapunov optimization technique and alternating direction method of
multipliers (ADMM), we propose an online distributed algorithm, referred to as distributed online energy
management algorithm (DOEMA), where the current system states are needed, without requiring the system
statistic or future information. Furthermore, the proposed algorithm can be implemented in a parallel and
completely distributed fashion, which could provide more engineering guidelines for practical communica-
tion protocols compared with the centralized algorithm. The extensive simulation results are conducted to
demonstrate the correctness of the theoretical analysis and validate the performance improvement against
other algorithms in terms of system total cost reduction.

INDEX TERMS Multi-cell networks, renewable energy, energy cooperation, stochastic optimization,
ADMM, distributed online algorithm.

I. INTRODUCTION
Energy harvesting, which collects cheap and clean renew-
able energy from ambient environment, has been recog-
nized as a promising technology to prolong the lifetime of
energy constrained networks in a sustainable way. Whereas,
most renewable energy sources are unreliable and random,
which increases the energy management complexity. To
tackle these challenges, three approaches are commonly used.
One is that each base station (BS) can purchase back-up
power from the traditional grid to ensure a reliable ser-
vice for the users [1]. Furthermore, deploying batteries to
store the surplus energy, and to discharge when the electric-
ity price is high [2]. Moreover, exploiting the geographical
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diversity of renewable energy can further utilize the lim-
ited renewable energy effectively, and thus reduce the grid
energy expenditure significantly [3]. As a consequence,
it is of great importance to apply these three approaches
comprehensively to exploit the limited available renew-
able energy effectively in hybrid energy powered cellular
networks.

Abundant works have devoted to investigating the energy
management problem in cellular networks with hybrid energy
supply, which can be mainly classified into two categories,
namely the energy management policies without energy
cooperation, and the energy cooperation enabled strategies.
The former studied the system with only a single BS or sev-
eral BSs operating independently without energy cooperation
[4]–[11]. Based on the non-causal renewable energy and
traffic information, the authors in [4] proposed an offline
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energy allocation algorithm with infinite battery capacity to
reduce the total on-grid energy consumption. By leverag-
ing the priori distributions of the renewable energy arrival
and data arrival, an optimal deterministic offline resource
scheduling policy was exhibited in [5] to minimize the energy
consumption. Assuming the availability of non-causal infor-
mation, the authors in [6] devised an offline resource allo-
cation algorithm for the system power costs minimization.
While, it is hard to obtain the exact non-causal information
during the time-varying energy harvesting process in real-
world applications and the capacity of the battery is limited as
well. Without requiring the prior knowledge of channel and
harvested energy information, an online resource allocation
algorithm was developed in [7] to fully exploit the harvested
energy. Aiming at the system energy consumption mini-
mization, three online energy management strategies were
presented in [8], [9] and [10], respectively. Exploiting the
traffic load and harvested energy forecasts, the work [11]
proposed an online energy aware and adaptive management
algorithm to make the renewable energy self-sufficiency pos-
sible. Although different energy management schemes were
presented in the aforementioned works [7]–[11], the mini-
mum and maximum energy level of BSs’ battery have rarely
been studied. In addition, energy cooperation among BSs
was neglected as well, which may result in a suboptimal
configuration between the renewable energy and the arrived
traffic load.

To exploit the geographical energy diversity, many
researches have devoted to developing the energy cooper-
ation among the BSs [12]–[17]. In order to minimize the
grid energy expenditure, two static cost-efficient resource
allocation algorithms were presented in [12] to reshape the
spatial renewable energy and mobile traffic. Besides, through
jointly optimizing the user association and spatial distribution
of renewable energy, the work [13] developed the optimal
offline energy management algorithm to minimize the grid
energy expenditure of heterogeneous networks. Aiming at the
amount of conventional energy consumed minimization, the
authors in [14] proposed the optimal offline energy coop-
eration policy under known the renewable energy profile
and energy demand profile at all BSs, and then developed
an online energy cooperation algorithm when the renewable
energy and demand profiles are stochastic and only causally
known at each BS. Considering the harvested energy trans-
ferred between BSs, the authors in [15] devised an online
power allocation algorithm in millimeter wave networks to
alleviate the harvested energy imbalance problem and reduce
the energy waste. A model predictive based online power
management strategy was presented in [16] for the compu-
tation of energy allocation and transfer across BSs to com-
pensate the imbalance in the harvested energy. Taking the
noncooperative energy-harvesting BSs into account, the
work [17] designed two novel online energy trading
approaches to minimize the nonrenewable energy consump-
tion. Nevertheless, the energy management problems formu-
lated in the aforementioned works [12]–[17] were solved in

a centralized manner with high computational complexity, as
there is a large amount of data/information exchanged among
BSs. Comparedwith the centralized algorithm, the distributed
control policy can provide more engineering guidelines for
practical communication protocols. Although a distributed
energy-bandwidth allocation algorithmwas presented in [18],
the results were based on the impractical assumption that the
harvested energy and channel state information are known
non-causally before scheduling.

The above observations give rise to the need for an online
distributed energy management policy which should be capa-
ble of efficiently exploiting the limited available renewable
energy with the dynamic of the electricity price taking into
account. Specifically, we investigate the energy management
problem by jointly considering the data admission control,
power allocation, energy exchanging among BSs, battery
charging and discharging, and energy purchased from the grid
in cellular networks with hybrid energy supply. Firstly, we
formulate it as a stochastic optimization problem to minimize
the long term system cost with the users’ data rate require-
ments and the battery time-coupling constraints taken into
consideration. Then, an online distributed algorithm, named
distributed online energy management algorithm (DOEMA),
is proposed to solve this problem employing the Lyapunov
optimization technique and alternating direction method of
multipliers (ADMM).

Our major contributions are summarized as follows:
• A stochastic programming problem is formulated to
minimize the time averaged total cost of the sys-
tem with the considerations of many practical factors,
e.g., the users’ data rate requirements, the limited bat-
tery capacity, the dynamic of the electricity price, the
stochastic data arrivals, the time-varying wireless chan-
nels, and the intermittent energy harvesting.

• Employing the Lyapunov optimization technique and
ADMM, an online algorithm is proposed to solve the for-
mulated problem, which is a fully distributed algorithm
where each BS can make decisions on their own at each
time slot requiring only the knowledge of instantaneous
system state.

• The asymptotic optimality of the proposed algorithm is
analyzed in detail by selecting an appropriate value of
the control parameter V . Moreover, extensive simulation
results are conducted to demonstrate the correctness
of the theoretical analysis and exhibit the performance
improvement against other algorithms without energy
cooperation or batteries in terms of long term system
cost reduction.

The rest of this paper is structured as follows. In Section II,
the system model is described in detail, and then a stochastic
programming problem is formulated. Section III devises a
distributed online energy management algorithm to settle the
formulated problem. The theoretical results are presented in
Section IV. The performance of the proposed algorithms is
evaluated by simulation in Section V. Finally, we conclude
our paper in Section VI.
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FIGURE 1. Topology example of the hybrid energy powered cellular
network.

II. SYSTEM MODEL
In this section, we first describe the network model,
the energy supply model, and the battery model. Then, based
on these aforementioned models, the energy management
problem is formulated.

A. NETWORK MODEL
As illustrated in Fig. 1, we consider a multi-cell downlink
system consisting of M cells. Each cell is comprised of one
BS, which is equipped with N antennas and serves only one
single-antenna user. Then, we denote the set of M pairs of
BSs and its corresponding user byM, i.e.,M = {1, · · · ,M}.
The network is assumed to operate in slotted time and time
slot t refers to the interval [t, t + 1), t ∈ {1, 2, · · · ,+∞}.
For notational convenience, we also assume the length of
each time slot is normalized to unity and thus we will utilize
the terms ‘‘energy’’ and ‘‘power’’ interchangeably throughout
this paper. Additionally, the network is a queuing system and
each BS imaintains the data queueQi(t) for its corresponding
user. The process of random data arrival is represented by
(Ai(t)), where Ai(t) denotes the amount of data destined for
user i at time slot t . Through the data admission control, the
newly arrived data (Ai(t)) is stored into the data queue (Qi(t)).
Let ai(t) indicate the data rate admission control of each BS
at time slot t , where 0 6 ai(t) 6 Ai(t).

The channel vector from BS i to its corresponding user at
time slot t is denoted by hi(t) ∈ CN×1 and the associated
information signal is represented by si(t). As in [19], we apply
the ZF beamforming strategy and only optimize the transmit
power of each BS. Letwi(t) denote the associated normalized
ZF beamforming vector for user i. As such, the transmitted
signal for user i is

xi(t) =
√
Pi(t)wi(t)si(t), (1)

where the information signal si(t) is assumed to be a complex
random variable with zero mean and unit variance. Conse-
quently, the received signal at user i is

yi(t) = hHi (t)xi(t)+ νi(t), (2)

where the intercell interference is assumed to be completely
removed by adopting the ZF beamforming, and νi(t) indicates
the additive circular complex Gaussian noise with zero mean
and variance σ 2

i .
Employing the ZF beamforming, the achievable data rate

of user i at time slot t is calculated by

Ri(t) = W log (1+ Pi(t)gi(t)) , (3)

where gi(t) = |hHi (t)wi(t)|2/σ 2
i , and W is the allocated

bandwidth for each user.
Given the amount of the admitted data ai(t) and the trans-

mission rate Ri(t), each BS’s data queueQi(t) evolves accord-
ing to

Qi(t + 1) = [Qi(t)− Ri(t)]+ + ai(t), (4)

where [y]+ = max{y, 0}.

B. ENERGY SUPPLY MODEL
Each BS has access to both the energy from the energy
harvesting device and the energy from the conventional main
grid. To be specific, each BS is equipped with an energy har-
vester that is capable of collecting renewable energy through
solar panels and/or wind turbines. The amount of harvested
energy at BS i at time slot t is denoted by Hi(t), Hi(t) 6
Hmax
i , which is an independent and identically distributed

(i.i.d.) process across different BSs and time slots. In addition,
we consider a linear time-varying energy cost model for the
conventional energy purchased from the main grid. Let Gi(t)
represent the amount of conventional energy drawn from the
grid to BS i at time slot t , then the energy cost is

Cg(t) = pg(t)
∑
i∈M

Gi(t), (5)

where pg(t) indicates the price of purchasing one unit of
power from the grid at time slot t . As in [21]–[26], we assume
that pg(t) is an i.i.d. process across different slots and bounded

by pg(t) ∈
[
pmin
g , pmax

g

]
.

We further assume that the energy can be exchanged
among BSs, which can for instance happen through a power
grid or as a wireless power transfer [12], [18]. Let Ek,i(t)
denote the amount of energy that BS i exchanges with BS k at
time slot t . If BS i draw energy from BS k in time slot t , then
Ek,i(t) > 0; otherwise, BS i distributes energy to BS k and
Ek,i(t) < 0. Similarity to [21] and [27], the energy sharing
balance should be satisfied, then we have

Ek,i(t)+ Ei,k (t) = 0. (6)

C. BATTERY MODEL
In the following, we describe the battery model in detail. Let
Bi(t) denote the amount of energy stored in the rechargeable
battery of BS i at time slot t . Then, we have

Bmin
i 6 Bi(t) 6 Bmax

i , i ∈M, (7)
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whereBmin is theminimum bound of the battery level to avoid
battery sulfation, while Bmax indicates the maximum capacity
of the battery.

Let Eci (t) and E
d
i (t) denote the amount of charged energy

and discharged energy at time slot t , respectively. Similarity
to [20] and [21], the battery level Bi(t) evolves as

Bi(t + 1) =
[
Bi(t)− Edi (t)

]+
+ Eci (t). (8)

To indicate whether the rechargeable battery of BS i is
charged or discharged at time slot t , we introduce two
indicator functions, i.e., I ci (t) = 1

(
Eci (t) > 0

)
and Idi (t) =

1
(
Edi (t) > 0

)
. Without loss of generality, we assume that

charging and discharging cannot be done simultaneously.
As a consequence, we have

I ci (t)+ I
d
i (t) 6 1, (9)

0 6 Eci (t) 6 Ecmax
i I ci (t), (10)

0 6 Edi (t) 6 min
[
Bi(t),Ed max

i Idi (t)
]
, (11)

where Ecmax
i and Ed max

i are the maximum charging and
discharging power for the battery of BS i, respectively.
Due to the fact that the rechargeable battery usually has

a certain number of operation times, cost would be incurred
during the procurement and maintenance of battery [21].
Therefore, we introduce Cb(t) as the amortized cost of charg-
ing and discharging over the lifetime, and model the cost of
energy charging and discharging operations as

Cb(t) =
∑
i∈M

pb
(
Eci (t)+ E

d
i (t)

)
, (12)

where pb is the fixed cost resulted from the every charg-
ing or discharging operation.

D. PROBLEM FORMULATION
With the aforementioned models, we address the energy
management problem by jointly optimizing the admitted
data rate {ai(t)}, and that the transmit power of each BS
{Pi(t)}, and that the conventional energy drawn from the
main grid {Gi(t)}, and that exchanged between BSs {Ek,i(t)},
and that charged/discharged to/from the battery of each BS
{Eci (t),E

d
i (t)} to minimize the time averaged total system

cost, while satisfying the constraints of users’ required data
rate and the limited battery size. Thus, the optimization
problem is formulated as

P1 : minC , lim
T→∞

1
T

T∑
t=1

(
Cg(t)+ Cb(t)

)
(13)

s.t. (C1) : ai > areqi , ∀i ∈M,

(C2) : Bmin
i 6 Bi(t) 6 Bmax

i , ∀i ∈M, t

(C3) : Ek,i(t)+ Ei,k (t) = 0, ∀i, k ∈M, t,

(C4) : Pi(t)+ Eci (t) 6 Gi(t)+ Hi(t)+ Edi (t)

+

∑
k∈M,k 6=i

Ek,i(t), ∀i, k ∈M, t,

(C5) : I ci (t)+ I
d
i (t) 6 1, ∀i ∈M, t,

(C6) : 0 6 Eci (t) 6 Ecmax
i I ci (t),∀i ∈M, t,

(C7) :06Edi (t)6min
[
Bi(t), Ed max

i Idi (t)
]
,

∀i ∈M, t,

(C8) : 0 6 ai(t) 6 Ai(t), ∀i ∈M, t,

(C9) : 0 6 Pi(t) 6 Pmax
i , ∀i ∈M, t,

(C10) : 0 6 Gi(t) 6 Gmax
i , ∀i ∈M, t,

(C11) : Qi(t) is mean rate stable, ∀i ∈M, t.

In P1, ai = lim
T→∞

1
T

T−1∑
t=0

ai(t), a
req
i is the required data rate

for user i, while Pmax
i and Gmax

i are the maximum transmit
power and energy purchased from the grid of BS i. (C1) rep-
resents the constraint of long-term average data rate, which
guarantees the QoS requirement of each user. (C3) guarantees
the energy sharing must be balanced in the system. (C4) is the
energy neutralization constraint of each BS, which presents
that the expenditure energy of each BS and battery charged
energy are satisfied by (i) the harvested energy and/or (ii) the
drawing energy from other BSs and/or (iii) the discharging
from the battery and/or (iv) the drawing energy from the
main grid. (C2), (C6) − (C10) denote the bounds of energy
level in the battery, charging rate and discharging rate, data
admission rate, transmit power, and energy purchased from
the grid of BS i.
Problem P1 is a long-term optimization problem and the

minimization of the objective function relies on the deci-
sions over the whole operation time. Accordingly, the lack of
future system state information hinders the network to obtain
the minimum system cost. Although this problem can be
settled by employing the traditional dynamic programming,
the curse of dimensionality will make the computational
complexity too high. What’s more, it requires to have the
knowledge of the future system state information. Therefore,
we exploit the Lyapunov optimization framework to deal with
problem P1.

III. LYAPUNOV OPTIMIZATION AND
DISTRIBUTED ONLINE ALGORITHM
In this section, we first introduce two virtual queues to tackle
constraints (C1) and (C2). Then, we apply the Lyapunov opti-
mization and the ADMM technique to develop the distributed
online energy management algorithm (DOEMA), which is
a fully distributed algorithm that each BS makes optimal
decisions at each time slot and only requires knowledge of
the instantaneous system state.

A. TWO VIRTUAL QUEUES
1) VIRTUAL QUEUE FOR USERS’ DATA RATE REQUIREMENT
The constraint (C1) in P1 is a long-term average constraint,
which makes problem P1 intractable. To settle it, we employ
the queuing theory to transform all these inequality con-
straints into queue stability problems [7]. More specifically,
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we define the virtual queue Zi(t), which evolves according to

Zi(t + 1) =
[
Zi(t)− ai(t)+ a

req
i

]+
. (14)

As shown in [7], Zi(t) is mean rate stable if

lim
T→∞

1
T

T−1∑
t=0

E{Zi(t)} < +∞. (15)

Then, we give the following lemma.
Lemma 1: If Zi(t) is mean rate stable, the long-term average

rate constraint of user i can be satisfied.

2) VIRTUAL QUEUE FOR BATTERY LEVEL
It can be observed that the battery level constraint (C2)
couples the current charging and discharging strategy and
that in future. For instance, an aggressive charging decision
currently may cause the short of available capacity to store
energy in future even if the electricity price is lower. To elimi-
nate the temporal correlation of the charging and discharging,
we construct the virtual queue Yi(t) as

Yi(t) = Bi(t)− Bmin
i − E

d max
i − Vpmax

g , (16)

with update equation as follows

Yi(t + 1) = Yi(t)+ Eci (t)− E
d
i (t). (17)

B. LYAPUNOV OPTIMIZATION
Similarity to [22] and [23], we apply the Lyapunov optimiza-
tion technique to design an online policy to settle problem
P1. Let 2(t) , [Q(t),Y (t),Z (t)] represent the concatenated
vector of all Qi(t) and Yi(t), and Zi(t). Thus, the Lyapunov
function is defined as

L(2(t)) ,
1
2

∑
i∈M

{
Q2
i (t)+ Y

2
i (t)+ Z

2
i (t)

}
.

Then, the conditional Lyapunov drift at time slot t is

1(2(t)) , E{L(2(t + 1))− L(2(t))|2(t)}.

Employing the Lyapunov optimization technique, the pol-
icy is to make decisions for minimizing the bound of the
following ‘‘drift-plus-penalty’’ expression1V (t) at each time
slot

1V (t) , 1(2(t))+ V
(
Cg(t)+ Cb(t)

)
,

where V is a non-negative control parameter, which can be
tuned to control C arbitrarily close to the optimal value with
a corresponding tradeoff with the data queue size.

In the following, we will present the upper bound of1V (t)
through Lemma 2.
Lemma 2: Suppose the system state information A, h, H

and pg are i.i.d. over different time slots. For V > 0, all
possible values of2(t), and any feasible energy management
decisions made at each time slot t , the upper bound of the
1V (t) is given by

1V (t) 6 D+
∑
i∈M

E {Qi(t) (ai(t)− Ri(t)) |2(t)}

+

∑
i∈M

E
{
Yi(t)

(
Eci (t)− E

d
i (t)

)
|2(t)

}
+

∑
i∈M

E
{
Zi(t)

[
areqi − ai(t)

]
|2(t)

}
+VE

{(
Cg(t)+ Cb(t)

)
|2(t)

}
,

where D is a positive constant and satisfies

D >
1
2
M
{(
Amax
i
)2
+max

[(
Ecmax
i

)2
,
(
Ed max
i

)2]
+ max

[(
areqi

)2
,
(
Amax
i − areqi

)2]}
.

Proof: See Appendix A. �
Following the general Lyapunov optimization framework,

we observe the current queue values 2(t) , [Q(t), Y (t),
Z (t)], and then make decisions for ai = {ai(t)}, Pi = {Pi(t)},
Gi = {Gi(t)}, Ek,i = {Ek,i(t)}, Eci = {E

c
i (t)}, and Edi =

{Edi (t)} to minimize the upper bound of 1V (t) at each time
slot. Then, we have the following problem P2

P2 : min
∑
i∈M

Ui(ai,Pi,Gi,Eci ,E
d
i ,Ek,i)

s.t. (C3)− (C10), (18)

where Ui
(
ai,Pi,Gi,Eci ,E

d
i ,Ek,i

)
= Qi(t) (ai(t)− Ri(t)) +

Yi(t)
(
Eci (t)− E

d
i (t)

)
+ Zi(t)

[
areqi − ai(t)

]
+ Vpg(t)Gi(t) +

Vpb
(
Eci (t)+ E

d
i (t)

)
.

C. DISTRIBUTED ONLINE ALGORITHM
It is obvious that P2 is not strictly convex since both the
objective function and the constraints are linear functions.
Consequently, the traditional dual decomposition cannot be
utilized here due to the fact that it needs the problem to
be strictly convex. As shown in [24]–[27], ADMM can be
adopted to settle a large-scale convex optimization problem
without assuming strict convexity of the separable objec-
tive function. What’s more, the distributed algorithm can be
implemented in a parallel and completely distributed fashion
and thus provide more engineering guidelines for practi-
cal communication protocols compared with the centralized
algorithm. Motivated by this analysis, we propose an online
ADMM-based distributed algorithm.

1) ADMM-BASED DISTRIBUTED ENERGY
MANAGEMENT ALGORITHM
Since ADMM is applied to a large-scale convex optimization
problem with separable objective function and linear equality
constraints, we transform P2 into the following problem P3
by introducing auxiliary variables ek,i(t) for the energy shar-
ing decisions to replace constraint (C3) as in [25] and [27].
Accordingly, we have

P3 :

min
ai,Pi,Gi,Eci ,E

d
i ,Ek,i,ek,i

∑
i∈M

Ui(ai,Pi,Gi,Eci ,E
d
i ,Ek,i)

(19)
s.t. (C4)− (C10),
ek,i(t) = Ek,i(t), ∀i, k ∈M, k 6= i, (20)
ek,i(t)+ ei,k (t) = 0, ∀i, k ∈M, k 6= i. (21)
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L1 =
∑
i∈M

[
Ui(ai,Pi,Gi,Eci ,E

d
i ,Ek,i)+

∑
k∈M,k 6=i

(
ρ
2

(
ek,i(t)− Ek,i(t)

)2
+ λk,i(t)

(
ek,i(t)− Ek,i(t)

))]
, (22)

L2 =
∑
i∈M

Ui(ai,Pi,Gi,Eci ,E
d
i ,Ek,i)+

∑
k∈M,k 6=i

(ρ
2

(
ek,i(t)− Ek,i(t)

)2
+ λk,i(t)

(
ek,i(t)− Ek,i(t)

))
+µi(t)

Pi(t)+ Eci (t)− Gi(t)− Hi(t)− Edi (t)− ∑
k∈M,k 6=i

Ek,i(t)

 . (28)

To deal with problem P3, we adopt {λk,i(t)} as the dual
variables with respect to constraint (20), and thus the aug-
mented Lagrangian for problemP3 is given by (22), as shown
at the top of this page, where ρ > 0 is a parameter for the
quadratic penalty of constraint.

By employing the ADMM to the problemP3, we first min-
imize the augmented Lagrangian in (22) over the local deci-
sion variables ai,Pi,Gi,Eci ,E

d
i ,Ek,i, then over the global

energy sharing variables {ek,i(t)}, and finally update the dual
variables {λk,i(t)}. In the following, we describe the problem
solution procedure in detail.

It is noteworthy that the first step of the ADMM to problem
P3 is completely decentralized. More specifically, BSs solve
their local optimization problems in parallel based on fixed
dual variables λnk,i(t) and auxiliary variables enk,i(t), where n
is the iteration index.

Local optimization problem:

min
ai,Pi,Gi,Eci ,E

d
i ,Ek,i

Ui(ai,Pi,Gi,Eci ,E
d
i ,Ek,i)

+

∑
k∈M,k 6=i

(ρ
2

(
enk,i(t)− Ek,i(t)

)2
− λnk,i(t)Ek,i(t)

)
s.t. (C4)− (C10), (23)

Now, let us focus on the second step of the ADMM to
problem P3. Based on the obtained energy sharing deci-
sions En+1k,i (t) from the above local optimization problem, the
higher level global optimization problem updates the auxil-
iary variables en+1k,i (t) and dual variables λn+1k,i (t) is given by

min
ek,i(t)

∑
i∈M

∑
k 6=i

(
ρ

2

(
ek,i(t)−E

n+1
k,i (t)

)2
+λnk,i(t)ek,i(t)

)
s.t. ek,i(t)+ ei,k (t) = 0, ∀i, k ∈M, k 6= i. (24)

It is observed that the auxiliary variables are only coupled
between each pair of exchanging BSs, we can settle the higher
level optimization problem by the following problem

min
ek,i(t),ei,k (t)

ρ

2

(
ek,i(t)− E

n+1
k,i (t)

)2
+ λnk,i(t)ek,i(t)

+
ρ

2

(
ei,k (t)− E

n+1
i,k (t)

)2
+ λni,k (t)ei,k (t)

s.t. ek,i(t)+ ei,k (t) = 0, ∀i, k ∈M, k 6= i, (25)

and achieve the optimal closed-form solution as

en+1k,i (t)=
ρ
(
En+1k,i (t)−En+1i,k (t)

)
−

(
λnk,i(t)−λ

n
i,k (t)

)
2ρ

. (26)

The final step of the ADMM to problem P3 is the dual
variable update. Based on the obtained en+1k,i (t) and En+1k,i (t),
the dual variables are updated according to

λn+1k,i (t) = λnk,i(t)+ ρ
(
en+1k,i (t)− En+1k,i (t)

)
. (27)

In the following, we present the detailed solution procedure
of the local optimization problem (23).

2) THE SOLUTION PROCEDURE OF THE
LOCAL OPTIMIZATION PROBLEM
It can be easily derived that the objective function is jointly
concave over ai,Pi,Gi,Eci ,E

d
i ,Ek,i and all the constraints

are convex sets by definition. Relaxing constraint (C4) by
adopting Lagrangian multiplier µi(t) at time slot t , it makes
sense to form the Lagrangian as (28), as shown at the top of
this page.

Then, the Lagrangian dual problem can be given by

F(µi) = maxminL2
(
ai,Pi,Gi,Eci ,E

d
i ,Ek,i, µi

)
s.t. µi(t) > 0.

We solve the above dual problem via the projected subgra-
dient approach and achieve the following subproblems:

a: DATA ADMISSION RATE CONTROL SUBPROBLEM

min [Qi(t)− Zi(t)] ai(t). (29)

s.t. (C8).

Given Lagrangian multiplier µi(t), we obtain the optimal
data admission rate of BS i as

ai(t) =

{
Ai(t), if Qi(t) 6 Zi(t),
0, otherwise.

(30)

b: TRANSMIT POWER CONTROL SUBPROBLEM

min µi(t)Pi(t)− Qi(t)W log (1+ Pi(t)gi(t)) (31)

s.t. (C9).
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Given the Lagrangian multiplier µi(t), we obtain the opti-
mal transmit power of BS i as

Pi(t) =
[
WQi(t) ln 2
µi(t)

−
1

gi(t)

]Pmax
i

0
. (32)

c: BATTERY CHARGING AND DISCHARGING SUBPROBLEM

min [Yi(t)+Vpb+µi(t)]Eci (t)+[Vpb−Yi(t)−µi(t)]E
d
i (t)
(33)

s.t. (C5), (C6), (C7).

Given the Lagrangian multiplier µi(t), we obtain the opti-
mal battery charging rate and discharging rate of BS i as

Eci (t) =

{
Ecmax
i , if Yi(t) 6 −Vpb − µi(t),

0, otherwise.
(34)

Edi (t) =

{
min

[
Bi(t),Ed max

i

]
, if Yi(t) > Vpb − µi(t),

0, otherwise.
(35)

d: GRID ENERGY PURCHASE SUBPROBLEM

min
[
Vpg(t)− µi(t)

)
]Gi(t)

s.t. (C10). (36)

Given the Lagrangian multiplier µi(t), we obtain the opti-
mal energy purchased from the main grid of BS i as

Gi(t) =

{
Gmax
i , if Vpg(t) 6 µi(t),

0, otherwise.
(37)

e: ENERGY SHARING RATE CONTROL SUBPROBLEM

min
∑

k∈M,k 6=i

(ρ
2

(
enk,i(t)−Ek,i(t)

)2
−
(
λnk,i(t)+µi(t)

)
Ek,i(t)

)
(38)

Given the Lagrangian multiplier µi(t), we obtain the opti-
mal energy sharing rate of BS i as

En+1k,i (t) = enk,i(t)+
1
ρ

(
λnk,i(t)+ µi(t)

)
. (39)

The dual variables are updated at each iteration m with the
projected subgradient methods as

µm+1i (t) = µmi (t)+ δ
m

Pi(t)+ Eci (t)− Gi(t)− Hi(t)
−Edi (t)−

∑
k∈M,k 6=i

Ek,i(t)

 , (40)

where δm is the stepsize of BS i at iteration k .
The specifical distributed online energy management

algorithm procedure, which is referred to as DOEMA,
is described in Algorithm 1. The computational complexity
of the proposed DOEMA is O( 6M

3

ε21
), which comprises of

two parts: the outer global optimization loop O(M2) and

Algorithm 1 Distributed Online Energy Management
Algorithm (DOEMA)
Initialization: At every time slot t , observe the system state
2(t) = [Q(t),Y (t),Z (t)], A(t), h(t), H (t), Pg(t). Set the
iteration index n = 0, error tolerance ε2 > 0, and ρ = 1,
initial the multipliers λ0k,i(t) = 0.
Step1: Solve the local optimization problem:

Initialization: Set the iteration indexm = 0, error tolerance
ε1 > 0, δ = 2, and µ0

i (t) = 0.
Repeat the following steps a)-c):

a): Atm-th iteration, based on the current value of dual vari-
ables µmi (t), λ

n
k,i(t), and the auxiliary variables enk,i(t), each

BS calculates ai(t), Pi(t), ECi (t), E
D
i (t), Gi(t), and µ

m+1
i (t)

according to Eqs. (30), (32), (34), (35), (37), and (39),
respectively;

b): Each BS updates the Lagrange multiplier µm+1i (t)
according to Eq. (40).

c): Set the iteration index m = m + 1, and then
repeat steps a) and b) until the terminal condition is satisfied,
i.e.,

∑
i∈M

∣∣∣µm+1i (t)− µmi (t)
∣∣∣ 6 ε1

Step2: Solve the global problem: based on the energy sharing
rate En+1k,i (t) obtained in Step 1, each BS updates en+1k,i (t) and
λn+1k,i (t) according to Eq. (26) and Eq. (27).
Step3: Set n = n+1 and go to Step1 until satisfying the termi-
nation criterion, i.e.,

∑
i∈M

∑
k∈M,k 6=i

∣∣∣(enk,i(t)− Enk,i(t))∣∣∣ 6 ε2.
Step4: Update Qi(t), Yi(t), and Zi(t) according to Eqs. (4),
(16), and (14), respectively.

the inner local optimization loop O( 6M
ε21

), where ε1 denotes

the maximum error tolerance. More specifically, the iteration
number of the outer global optimization loop is O(M2) [18],
while the iteration number of the inner local optimization
loop is O( 6M

ε21
) because that the adopted subgradient method

converges to the desired state only after O( 1
ε21
) iterations.

IV. PERFORMANCE ANALYSIS
In this section, the performance of the proposed algorithm is
analyzed.

We firstly demonstrate that the battery energy level Bi(t) is
always in the range [Bmin

i ,Bmax
i ] for all time slots through the

following Lemma 3.
Lemma 3: Sine the energy level of BS i’s battery is bounded

by Bmin
i 6 Bi(t) 6 Bmax

i with respect to the virtual queue
definition in Eq. (16), Yi(t) is bounded by V ∈ [0,Vmax],
then, we have

Yi(t) 6 Bmax
i − Bmin

i − E
d max
i − Vpmax

g , (41)

Yi(t) > −Ed max
i − Vpmax

g , (42)

where Vmax = mini

[
Bmax
i −B

min
i −E

cmax
i (t)−Ed max

i (t)
pmax
g

]
, which can

guarantee the constraint of the battery energy level.
Proof: See Appendix B. �

VOLUME 7, 2019 83349



P. Du et al.: ADMM-Based Distributed Online Algorithm for Energy Management

Next, we present the performance guarantees of our pro-
posed algorithm when the system state information is i.i.d.
over different time slots.
Theorem 1: Let Uopt denote the optimal value of problem

P1 and Upro be the time-averaged value obtained through the
proposed algorithm. When the system state informationA, h,
H and pg are i.i.d across different time slots, we can prove
that the following inequality is valid:

0 6 lim
T→∞

Upro
− lim

T→∞
Uopt 6

D
V
. (43)

Proof: See Appendix C. �

V. SIMULATION RESULTS
In this section, extensive experiments are conducted to verify
the theoretical results derived in Section IV and demonstrate
the performance improvement against other algorithms in
terms of system total cost reduction.

The common simulation parameters are listed as follows,
unless otherwise specified. We have conducted a set of sim-
ulations on a scenario which consists of three BSs as shown
in Fig. 1. As in [12], [18] and [19], themaximum transmission
power of each BS is 40 W, and the energy-harvesting rate
Hi(t) are distributed within [5, 20] W. Similarity to [19],
we adopt the complex Gaussian distributed channel with
zero mean and unit variance. Additionally, the signal-noise-
ratio (SNR) g is uniformly distributed with the interval
[gmin, gmax], where gmin = 5 and gmax = 15. The positive
stepsize of the Lagrange multiplier µ in Eq. (40) is set as
δ = 2 in our simulations. In addition, the maximum toler-
ances are set to ε1 = ε2 = 0.001. Similarity to [7], the rate
requirement of each user is set to 200 kbps and the traffic
arrival rate (Ai(t)) is assumed to be randomly distributed
within a range of [200, 256] kbps. All the initial queue sizes
are set to be zero and several other parameters are given as
follows: W = 104 Hz, Bmin

= 20 W, Bmax
= 50 W, ρ = 1,

pb = 0.01.

FIGURE 2. The average system cost of different algorithms versus V.

Fig. 2 depicts that the time averaged system cost C
obtained by the proposed algorithm DOEMA versus the con-
trol parameter V . It is seen from Fig. 2 that the time averaged

FIGURE 3. The average queue length versus V.

system cost C under proposed algorithm increases as the
control parameter V increases and that it increases to the
optimum at the speed of 1/V . This consolidates the theo-
retical analysis in Theorem 1. Hence, we can conclude that
the C eventually converges to the optimal value of problem
P2 with a sufficiently large V , which verifies the asymptotic
optimality of the proposed algorithm DOEMA. As shown
in Fig. 2, the proposed algorithm outperforms the strategy
without energy cooperation, which enhances the importance
of exploiting the geographical energy diversity. This also
demonstrates that the proposed algorithm can significantly
decrease the long term system cost.

Fig. 3 plots the average data queue length of the first BS
with respect to the control parameter V . We can observe that
the average data queue length under the proposed algorithm
increases when V increases and it grows linearly with V ,
and thus validates Theorem 1. Combining Fig. 2 and Fig. 3,
we conclude that the proposed algorithm can guarantee dif-
ferent performance requirements by adjusting V to strike
a balance between the queue backlog and the system cost.
Hence, it quantitatively provides insights into the crucial
tradeoff between the system cost and the data queue length,
which presents a significant approach to control the network
utility and the needed storage capacities of data buffers in
practical system design.

Fig. 4 depicts the energy level of different batteries within
the 100 time slots. We can observe that each battery energy
level Bi(t) is always in the range [Bmin,Bmax] for all time
slots, which verifies the theoretical analysis in Lemma 3 and
further suggests that the proposed algorithm can be imple-
mented into practical networks with limited battery size.

We also study the long term average system cost per-
formance versus the average electricity price for the three
algorithms, namely the proposed algorithm, the algorithm
without energy cooperation or battery, in Fig. 5 and Fig. 6,
respectively. It is readily observed from Fig. 5 that the curve
of the proposed algorithm is strictly lower than the scheme
without energy cooperation. As the average electricity price
pg increases, the performance gap between the proposed algo-
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FIGURE 4. The energy level of different batteries at each time slot.

FIGURE 5. The average system cost of different algorithms versus the
average electricity price pg.

FIGURE 6. The average system cost of different algorithms versus the
average electricity price pg.

rithm and the scheme without energy cooperation becomes
larger. This can be accounted by the fact that the energy coop-
eration will bring in more benefit when the electricity price is

higher. Furthermore, the performance gap will become larger
when the average harvested energy rate is higher. Addition-
ally, it can be observed from Fig. 6 that the performance of
the proposed algorithm is superior to the algorithm without
battery. This further verifies that the algorithm presented in
the paper can decrease the system cost of the hybrid energy
powered cellular networks.

VI. CONCLUSION
In this paper, we have formulated a stochastic optimization
problem taking into account of the limited battery size and
users’ data rate requirements to minimize the long term
system total cost in hybrid energy powered cellular net-
works by jointly optimizing the data admission rate, trans-
mit power, energy exchanging among BSs, battery charging
and discharging rate, and energy purchased from the grid.
Correspondingly, we have devised an online distributed algo-
rithm, referred to DOEMA, to settle this problem with the
aid of the Lyapunov optimization and ADMM technique.
We have conducted extensive simulation to demonstrate the
advantages of the proposed algorithm.

APPENDIX
This section contains the proofs of the lemmas and theorems
in this paper.

A. PROOF OF LEMMA 2
According to the inequality (max[x−y, 0]+a)2 6 x2+a2+
2x(a − y), we square both sides of Eq. (4), and then apply
a2i (t) 6

(
Amax
i

)2. Hence, we have the following
Q2
i (t + 1)6Q2

i (t)+
(
Amax
i
)2
+ 2Qi(t) (ai(t)− Ri(t)) .

Analogously, for Yi(t), we can obtain

Y 2
i (t + 1) 6 Y 2

i (t)+
(
Eci (t)− E

d
i (t)

)2
+ 2Yi(t)

(
Eci (t)− E

d
i (t)

)
.

Squaring both sides of Eq. (14), we have

Z2
i (t + 1)6Z2

i (t)+
[
areqi − ai(t)

]2
+ 2Zi(t)

[
areqi − ai(t)

]
.

Based on the above inequality, we can obtain

1V (t) 6 D+
∑
i∈M

E {Qi(t) (ai(t)− Ri(t)) |2(t)}

+

∑
i∈M

E
{
Zi(t)

[
areqi − ai(t)

]
|2(t)

}
+VE

{(
Cg(t)+ Cb(t)

)
|2(t)

}
.

where D is a positive constant and satisfies

D >
1
2
M
{(
Amax
i
)2
+max

[(
Ecmax
i

)2
,
(
Ed max
i

)2]
+ max

[(
areqi

)2
,
(
Amax
i − areqi

)2]}
.
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B. PROOF OF LEMMA 3
The mathematical induction is applied to demonstrate
Lemma 3.

It is obvious that all the constraints can be satisfied when
the time slot t = 0. According to Eq. (16), we have

−Ed max
i −Vpmax

g 6Yi(0)6Bmax
i − B

min
i − E

d max
i − Vpmax

g .

If we assume that the constraints hold when t = t0, i.e.,

−Ed max
i − Vpmax

g 6Yi(t0)6Bmax
i − B

min
i − E

d max
i − Vpmax

g .

Then, we will demonstrate that all the constraints can be
guaranteed when t = t0 + 1 as well.Firstly, we demonstrate
that constraint (41) is guaranteed when t = t0 + 1.
a) If Yi(t) 6 −Vpb−µi(t), we have Edi (t) = 0. According

to (17), we have

Yi(t0 + 1) = Yi(t0)+ Ecmax
i − Edi (t) 6 Yi(t0)+ Ecmax

i .

Based on the inequation that Yi(t0) < 0, Yi(t0 + 1) <
Ecmax
i , and the definition of Vmax, we can achieve

Ecmax
i 6 Bmax

i − Bmin
i − E

d max
i − Vmaxpmax

g

6 Bmax
i − Bmin

i − E
d max
i − Vpmax

g .

Then, we have the following inequation

Yi(t0 + 1)6Yi(t0)+Ecmax
i 6Bmax

i − B
min
i − E

d max
i − Vpmax

g .

b) If Yi(t) > −Vpb(t) − µi(t), we have Eci (t) = 0. Based
on (17), we have

Yi(t0 + 1) = Yi(t0)− Edi (t) 6 Yi(t0)

6 Bmax
i − Bmin

i − E
d max
i − Vpmax

g .

To sum up, the demonstration of inequation (41) is com-
pleted now.

As for the inequation (42), if Yi(t) 6 −Vpb − µi(t), we
haveEdi (t) = 0. According to (17), we can obtain Yi(t0+1) =
Yi(t0)+ Ecmax

i (t). Then, we have

Yi(t0 + 1) > Yi(t0) > −Ed max
i − Vpmax

g .

If Yi(t) > −Vpb−µi(t), we haveEci (t) = 0, and combining
(17), we can obtain

Yi(t0 + 1) = Yi(t0)− Edi (t)

> Yi(t0)− Ed max
i

> −Vpg(t)− Ed max
i

> −Vpmax
g − Ed max

i .

As a consequence, the proof of inequation (42) is
completed.

C. PROOF OF THEOREM 1
It can be easily derived that the feasibility can be guaran-
teed. It should be noticed that the values obtained from the
proposed algorithm can guarantee all the constraints in P2.
As such, what we should do is to demonstrate that these
values also guarantee the constraints for P1. Hence, these

values can satisfy constraint (C2). According to Lemma 2
and (41), we have

−Vpmax
g − Ed max

i 6 Bi(t)− Bmin
i − E

d max
i − Vpmax

g

6 Bmax
i − Bmin

i − E
d max
i − Vpmax

g ,

and we can obtain that Bmin
i 6 Bi(t) 6 Bmax

i , then constraint
(C2) is satisfied.

In the following, we present the suboptimality of the
proposed algorithm. The proposed algorithm is obtained by
minimizing the upper bound of the 1V (t), and the proposed
algorithm would greedily explore all control policies. Taking
the control decisions refer to the stationary, randomized strat-
egy in P2 into account, we have the following

1(2(t))+ V
(
Cg(t)+ Cb(t)

)
6 D+

∑
i∈M

E {Qi(t) (ai(t)− Ri(t)) |2(t)}

+

∑
i∈M

E
{
Yi(t)

(
Eci (t)− E

d
i (t)

)
|2(t)

}
+

∑
i∈M

E
{
Zi(t)

[
areqi − ai(t)

]
|2(t)

}
+VE

{(
Cg(t)+ Cb(t)

)
|2(t)

}
= D+ VUpro 6 D+ VUopt .

Summing over t ∈ {0, 1, . . . ,T−1} for the above equation,
we have

V
T−1∑
t=0

E{
(
Cg(t)+ Cb(t)

)
} + E{L(2(T − 1))} − E{L(2(0))}

6 TD+ TVUopt .

Dividing by TV and utilizing the fact that both E{L(2(T −
1))} and E{L(2(0))} are finite constant, we have

Upro
=

1
T

T−1∑
t=0

E{
(
Cg(t)+ Cb(t)

)
} 6

D
V
+ Uopt .
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