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ABSTRACT Index modulation assisted OFDM (OFDM-IM) has become a popular technique in wireless
communications. In this paper, we proposes a novel multilayer framework for OFDM-IM. Being quite
generic in its nature, the framework can be amalgamated with most of the OFDM-IM variants. For coherent
OFDM-IM, we propose three different schemes; 1) multilayer index modulation (MIM); 2) dual mode
MIM; and 3) compressive sampling aided MIM. The schemes strikes a compelling tradeoff between the
BER, energy efficiency and throughput. Finally, we extend this multilayer framework to non-coherent
index modulation, where the structure provides an improved BER performance compared to its single layer
counterpart, albeit this is achieved at the cost of reduced energy efficiency. The performance analysis of the
proposed scheme is confirmed by our simulation results.

INDEX TERMS Compressed sensing, energy efficiency, index modulation, non-coherent modulation,
OFDM.

LIST OF ACRONYMS
AWGN Additive white Gaussian noise
BER Bit error rate
CLER Cluster error rate
CSMIM Compressed sampling aided MIM
DMIM Dual mode MIM
Eb Energy required per bit transmission
FD Frequency domain
ICI Inter carrier interference
IER Index error rate
LLR Log likelihood ratio
MIM Multilayer index modulation
NC Non-coherent
OFDM-IM OFDM with index modulation
PAPR Peak-to-average power ratio
RIP Restricted isometric property
SNR Signal to noise ratio
TD Time domain
TP Throughput (Number of bits transmitted)

per OFDM frame

LIST OF SYMBOLS
Ac Complementary set of A
‖.‖p pth norm of the vector
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|.| Cardinality of the set
b.c Floor of the number
x Transmitted OFDM frame in frequency

domain
xT Transmitted OFDM frame in time domain
y Received OFDM frame in frequency domain
yT Received OFDM frame in time domain
h Channel frequency response
hT Channel impulse response
wF Noise in frequency domain
wT Noise in time domain
σ 2 Noise variance in frequency domain
σ 2
T Noise variance in time domain
σ 2
h Variance of channel frequency response

CN (µ,C) Complex Gaussian distribution with mean µ
and covariance matrix C

si A symbol from some constellation
Pr(.) Probability of some event
Fp Partial Fourier matrix
Pce Probability of cluster error
Pie Probability of index error
0b Set of sub-carrier indices

having non-zero values
Ib |0b|

B(n1, n2) Beta function
Iα(n1, n2) Regularized incomplete Beta function
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I. INTRODUCTION
In recent years, the field of wireless communication has
witnessed the emergence of a large number of variants of the
classic OFDM system relying on index modulation (OFDM-
IM) [1]–[4]. Explicitly, in OFDM-IM the information is con-
veyed both by classic symbols, as well as by the specific
subcarrier patterns it uses for transmitting the classic sym-
bols. It may be deemed to be one of the most promising
techniques for next generation wireless communication. The
popularity of this approach is due to its low BER, improved
peak-to-average power ratio (PAPR), robustness to inter car-
rier interference (ICI) and flexibility in selecting the number
of activated subcarriers according to the required trade-off
between its bandwidth efficiency and bit error rate (BER) [2].

OFDM-IM concept was introduced in the late nineties
by Frenger and Svensson [5]. However, Başar et al. [6]
have recently rekindled the research community’s interest.
To elaborate, in OFDM-IM, each OFDM block of N sub-
carriers is split into B clusters each having L subcarriers,
so that N = LB. In each of these clusters, only K out
of L subcarriers are used for transmitting classic symbols.
Additionally, a part of the incoming bit sequence is used for
selecting these K subcarriers in each of the clusters. Then,
the classic symbols are mapped to the appropriately selected
active subcarriers. Hence, in OFDM-IM, the information is
conveyed not only by the classic PSK/QAM symbols, but also
by the activated pattern of subcarriers that convey the classic
symbols.

However, a common criticism of OFDM-IM is its reduced
spectral efficiency compared to classic OFDM, since a part of
the subcarriers remains unused, albeit the power conserved
by the passive subcarriers may be assigned to the active
ones. Hence, a number of variants have been reported in the
literature for improving the performance. For example, in the
dual mode index modulation [7], a twin set of modulating
symbols is transmitted by activating the unused subcarri-
ers of the original OFDM-IM, so that the throughput (TP)
is improved. In another variant of OFDM-IM, namely in
quadrature index modulation [8], two separate bit sequences
are used for selecting the in-phase and the quadrature com-
ponent of the activated subcarriers. In [9], a pair of infor-
mation guided pre-coding schemes have been adopted for
improving the throughput, while a Huffman coded subcar-
rier selection procedure is used in [10]. A pair of enhanced
OFDM-IM versions have been reported in [11], where one of
the methods uses a joint I and Q subcarrier index selection,
while the other advocates a linear constellation pre-coding
technique for achieving diversity gain. A coordinated inter-
leaved OFDM-IM technique was proposed in [12] for com-
bating block fading and a trellis coded modulation scheme
was designed for improving the detection performance of
OFDM-IM [13]. Index modulation techniques have also been
adopted in vector OFDM [14], DCT OFDM [15], filter bank
multi-carrier systems [16], in generalized frequency divi-
sionmultiplexing [17], [18], generalized space and frequency
modulation [19], in MIMO OFDM [20]–[22], non-coherent

communication [23] and so on. A detailed review of
OFDM-IM and its variants is provided in [2] and [24].

Against this backdrop, we propose an improved
OFDM-IM scheme namely ‘Multilayer Index Modulation’
(MIM). The idea is to make a second level cluster selection
for conveying additional input bits. Hence, the information
is not only transmitted by the classic PSK/QAM symbols
and the activated subcarrier locations that carry the sym-
bols, but also by the set of information-dependent clusters
selected. The principle of multi layer modulation based on
OFDM is not entirely new in the literature [25]–[27]. Their
unifying principle is that additional PSK/QAM symbols are
incorporated into the multi layer structure for enhancing
its throughput. By contrast, our proposed scheme does not
introduce any extra PSK/QAM symbols into the multi layer
structure. Instead, the multi layer architecture itself acts as
an information bearing entity. Since no extra PSK/QAM
symbols are used by our MIM scheme, there will be no
additional transmit energy dissipation. The MIM scheme is
generic in the sense that most of the other index modulation
techniques can be combined with this scheme for exploiting
its advantages. The main contributions of the paper are the
following.

• The new MIM philosophy is proposed, which requires
less energy per bit than the conventional OFDM-IM sys-
tem, albeit at the cost of a potentially reduced through-
put. Therefore, in order to improve its throughput,
we propose two further variants of the proposed scheme.

– In the first variant, we extend the concept of dual
mode IM [7] to improve the throughput. The resul-
tant Dual ModeMIM (DMIM) uses symbols from a
different constellation to fill the unselected clusters.

– The second approach, compressive sampling aided
MIM (CSMIM) directly transforms the OFDM-IM
data to its sub-sampled time series using a par-
tial Fourier matrix and thereby improving the
throughput.

Furthermore, we derive low complexity detectors for
each of the proposed schemes and study their perfor-
mance by simulations.

• We also develop a non-coherent MIM scheme as an
extension of non-coherent index modulation [23]. Our
proposed non-coherent MIM system provides better
throughput and BER performance than its single layer
counterpart [23] at the cost of reduced energy efficiency.

• We derive the probability of error in the non-coherent
MIM scheme and evaluates its performance by simula-
tions.

The proposed MIM philosophy can be applied recursively,
which forms a multi layer architecture for our index modu-
lation scheme. The advantage of the multi layer architecture
is that as the number of layers increases more information
will be embedded into the clusters, rather than into indepen-
dent subcarriers, which improves the BER performance of
the systems as demonstrated later in Section V-A. Hence,
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FIGURE 1. Proposed multilayer OFDM-IM (MIM).

the multilayer framework strikes a trade off between the
energy efficiency, BER performance and throughput.

The rest of the paper is organized as follows. In Section II,
ourMIM scheme is detailed. Its variants, DMIM and CSMIM
are also introduced in this section. The detectors conceived
for the proposed schemes are discussed in Section III.
Section IV describes the non-coherent version of the con-
ceived MIM. Finally, our simulation results are discussed in
Section V and we conclude in Section VI.

II. THE PROPOSED MULTI LAYER INDEX
MODULATION (MIM) SCHEMES
In this section, we will demonstrate the benefits of our MIM
schemes. To elucidate the MIM concept, first a brief descrip-
tion of OFDM-IM is provided in the next subsection.

A. OFDM-IM
In the conventional OFDM-IM, the subcarriers in an OFDM
frame are partitioned into a number of clusters and in each
cluster only a section of subcarriers is used for transmitting
PSK/QAM symbols. The information is carried both by the
PSK/QAM symbols and by the pattern of subcarriers that
convey the PSK/QAM symbols.

Consider an OFDM-IM system bearing a total of N sub-
carriers, that are partitioned into B clusters with each con-
taining L subcarriers, where we have N = LB. Let x =[
xT0 , . . . , x

T
B−1

]T be an N × 1 vector representing an OFDM
frame. Here, xb = [x(bL), x(bL + 1), . . . , x((b+ 1)L − 1)]T

is the bth cluster, where b = 0, 1, . . . ,B− 1. In OFDM-
IM, only K out of L subcarriers are activated in a cluster for
carrying a non-zero PSK/QAM symbol. The OFDM frame x
is converted into the corresponding time series andNCP cyclic
prefix samples are concatenated. In the channel, the trans-
mitted signal is convolved with the channel response. At the
receiver, after removing the cyclic prefix, the received data is
converted back to the frequency domain (FD) yielding:

y(n) = x(n)h(n)+ wF (n), for n = 1, . . . ,N (1)

where h(n) ∼ CN (0, 1) represents the independent complex
channel fading coefficients, while wF (n) ∼ CN (0, σ 2) rep-
resents the noise samples in the FD. Let us assume thatm bits
are transmitted per OFDM frame. Then the throughput of the
system is m/(N +NCP) bits/s/Hz [6], assuming zero Nyquist
filtering excess bandwidth.

B. OFDM-MIM
In the proposed scheme, we introduce a second-level selec-
tion procedure. This is achieved by appropriately selecting the
clusters to transmit additional data, i.e., instead of modulating
K subcarriers of all the clusters, only Q of the B clusters
actually convey PSK/QAM symbols. This set of Q clusters
can be selected from the B clusters in

(B
Q

)
ways and the

specific selection of theseQ clusters is based on the incoming
bit sequence. Hence, in this scheme, the information is car-
ried by 1) the specifically selected pattern of clusters 2) the
information-dependent choice of K out L subcarriers in each
of the selected clusters and 3) the PSK/QAM symbols on the
activated subcarriers. Therefore, the incoming bit sequence
is split into three groups, where the first p0 =

⌊
log2

(B
Q

)⌋
bits determine the active or Type I clusters, while the second
p1 = Q

⌊
log2

(L
K

)⌋
bits choose the active subcarriers in

each of the active clusters and the final p2 = QK log2 M
bits decide PSK/QAM symbols. The total number of bits is
p = p0+p1+p2. The block diagram of the proposed scheme
is shown in Fig. 1

OurMIM principle can also be applied recursively. Explic-
itly, instead of activatingK subcarriers in a cluster, the cluster
itself can be split into different sub-clusters for a second layer
selection, which can be further repeated in the next level. This
forms a multi-layer architecture, in which selections can be
carried out at each layer depending on the input bit sequence.

To compare the energy efficiency of the MIM scheme, let
us assume that E is the energy required for transmitting a
message symbol in a single subcarrier. Then the energy per
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FIGURE 2. Proposed dual mode multilayer OFDM-IM (DMIM).

bit of a transmission is

Eb =
E

1
K blog2

(L
K

)
c + log2M +

1
KQblog2

(B
Q

)
c
, (2)

whereas the corresponding energy requirement in the case of
OFDM-IM is Eb = E

1
K blog2 (

L
K)c+log2 M

, which is bigger than

that of MIM, since the denominator of (2) has an additional
term.

However, the throughput becomes potentially lower
than that of OFDM-IM, since (B − Q) clusters are idle.
Explicitly, the throughput of the proposed scheme is
Qblog2 (

L
K)c+QK log2 M+blog2 (

B
Q)c

N+NCP
, whereas it is

Bblog2 (
L
K)c+BK log2 M
N+NCP

in the case of OFDM-IM. In order to
circumvent this loss, we propose the two techniques in the
next subsection

C. MIM VARIANTS
1) DUAL MODE MIM SCHEME (DMIM)
In this scheme, we further invoke the dual-mode concept
of [7]. More specifically, instead of keeping (B−Q) clusters
idle, they can be modulated using PSK/QAM symbols from
a second constellation. The block diagram of this scheme
is shown in Fig. 2. In this case, the throughput becomes
Bblog2 (

L
K)c+BK log2 M+blog2 (

B
Q)c

N+NCP
, which is higher than that of

OFDM-IM. Here, the total energy required is BKE , which is
the same as that of OFDM-IM. However, DMIM transmits an
additional

⌊
log2

(B
Q

)⌋
number of bits. Hence, the energy per

bit is reduced by this scheme and its throughput is increased.

2) COMPRESSIVE SAMPLING AIDED MIM (CSMIM)
In our original MIM scheme, only Q of B clusters are
active and in each of these Q clusters, only K subcarriers
have non-zero symbols. Hence, only KQ of LB subcarriers

have non-zero symbols. For small values of K and Q, our
OFDM-MIM frame becomes sparse in the FD. Hence, com-
pressive sampling can be used for transmitting a sub-sampled
time series of the data. Explicitly, we use a partial Fourier
matrix for directly transforming the OFDM-IM data to its
sub-sampled time series. The partial Fourier matrix is con-
structed by retaining a set of random rows of the Fourier
matrix. In [28], a compressed sampling based technique has
been suggested for OFDM-IM, where a random matrix is
used to first compress the OFDM-IM data in the FD. The
compressed data is then transformed to the time domain (TD)
and transmitted as in conventional OFDM. However, in our
case, the compression and the transformation to the TD take
place in a single step. Therefore, the computational com-
plexity of the proposed scheme is reduced compared to that
of [28]. At the receiver, suitable compressed sensing tech-
niques can be adopted for recovering the actual data from the
sub-sampled time series.

The diagrammatic representation of the scheme is almost
the same as that of Fig. 1, except for the IFFT block that
transforms the FD data to time series. In this scheme, instead
of using the classic Fourier matrix to transform the data
to the TD, we propose to use a partial Fourier matrix.
The idea behind using a partial Fourier matrix is to reduce
the frame size to be transmitted. Finally, the usual cyclic
prefix is concatenated with the sub-sampled time series
and transmitted. In this case, the throughput will become
Bblog2 (

L
K)c+BK log2 M+blog2 (

B
Q)c

NR+NCP
, where NR < N is the number

of rows in the partial Fourier matrix used for generating the
time series. It is evident that the throughput of this variant is
better than that of the MIM, while requiring the same energy
for transmission.

The encoding schemes of conventional OFDM-IM are
directly applicable to the proposed schemes. However, in our
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case, the incoming bit sequence is split into three groups,
whereas only into two groups for conventional OFDM-IM.
Explicitly, p0 and p1 bits can be used to identify the active
clusters and active subcarriers, respectively. This can be
achieved using either a look up table based method or the
combinatoric approach of [6]. Finally, p2 bits are conveyed
using M -ary PSK/QAM symbols, which are mapped to the
activated subcarriers of the active clusters. The detectors
conceived for the proposed schemes are discussed in the next
section.

III. DETECTORS
In the proposed schemes, we have to detect the active or
Type I clusters, the active subcarriers of the active clusters
and the PSK/QAM symbols of the active subcarriers. Hence,
the optimal detector is a three dimensional joint ML detector.
This detector is however impractical owing to its high com-
putational complexity, which is on the order ofO(c0c1MQK ),
where c0 = 2p0 and c1 = 2p1 . Therefore, a Log Likelihood
Ratio (LLR) based detector is preferred. The LLR detectors
of the MIM and DMIM schemes are similar to each other,
whereas the CSMIM detector is different, hence it is dis-
cussed in Subsection III-C.

A. LLR DETECTOR FOR MIM
The LLR detection is carried out in three steps. The first step
is to detect the active clusters, followed by the detection of
active subcarriers. In the last step the PSK/QAM symbols
on the active subcarriers in each of the active clusters are
detected.

1) ACTIVE CLUSTER DETECTION:
The likelihood ratio of detecting an active cluster is

γb =

(b+1)L−1∑
n=bL

log

∑
si∈M

e−
‖sih‖

2
+2Re(sih(n)y(n))

2σ2 +
M (L − K )

K


+ log

(
QK

(B− Q)M

)
, (3)

where M is the set of PSK/QAM constellation symbols and
M = |M|. The derivation of (3) is given in Appendix (A).
Clearly, γb > 0 indicates that the bth cluster is active.
However, we know that there are exactly Q active clusters.
Therefore, we can calculate the γb values for all the clusters,
i.e., b = 0, . . . ,B − 1 and can select that particular set of
Q clusters, which has the maximum γb values, i.e, B̂Q =
{b(1) b(2) , . . . , b(Q)}, where γb(1) ≥ γb(2) ≥ . . . ≥

γb(Q) ≥ . . . ≥ γb(B). Observe that while deriving (3), it is
assumed that Q < B. When Q = B, no selection is possible
in the clusters, hence the scheme reduces to conventional
OFDM-IM. Subsequently, the active subcarrier and symbol
detection can be carried out in these active clusters, for which
the procedure is detailed below.

2) LLR FOR ACTIVE SUBCARRIER AND SYMBOL DETECTION
Both the active subcarrier detection and PSK/QAM symbol
detection can be carried out similarly to the OFDM-IM sys-
tem, except that it is applied to the active clusters only. The
LLRs of active subcarrier detection are

γn = log
(∑

si∈M Pr(x(n) = si|y(n))

Pr(x(n) = 0|y(n))

)
. (4)

Note that any of the PSK/QAM symbols can be mapped
to a subcarrier, this is why we have the summation in the
numerator of (4). This ratio will turn out to be [2, (12)]

γn = logK − log(L − K )+
‖y(n)‖2

σ 2

− log

(
M∑
i=1

(
−

1
σ 2 ‖y(n)− h(n)si‖

2
))
.

Similarly to the active cluster detection, we know that there
are exactly K active subcarriers. Therefore, we can calculate
the γn values for all subcarriers in an active cluster and select
that particular set of subcarriers, which has the largest γn
values, i.e, ÂK = {n(1) n(2) , . . . , n(K )}, where γn(1) ≥
γn(2) ≥ . . . ≥ γn(K ) ≥ . . . ≥ γn(L).

The set of active clusters and active subcarriers in each
of the active clusters is converted to the corresponding bit
sequence. This can be carried out by using the inverse logic of
converting the bit sequence to the selection of active clusters
and subcarriers. Finally, the modulating symbols in each of
the active subcarriers are directly estimated as

ŝ(n) = min
si∈M
‖y(n)− sih(n)‖. (5)

B. LLR DETECTOR FOR DMIM
The detection process is exactly same as that of MIM, except
that in DMIM, there are no idle clusters. In the non-active
(Type II) clusters, different PSK/QAM symbols are loaded.
In this case, the likelihood ratio for the active cluster detection
can be found in the same way as for MIM. Here, the active
cluster is the one in which PSK/QAM symbols are selected
from the first constellation, say M1. The Log Likelihood
Ratio is given by

γb =

(b+1)L−1∑
n=BL

log

∑
si∈M1

e−
‖sih‖

2
+2Re(sih(n)y(n))

2σ2 +
M1(L − K )

K


−

(b+1)L−1∑
n=bL

log

 ∑
si∈M2

e−
‖sih(n)‖

2
+2Re(sih(n)y(n))
2σ2

+
M2(L − K )

K

+ log
(

QM2

(B− Q)M1

)
, (6)

whereM2 is the second set of PSK/QAM constellation sym-
bols. The detection of Type I clusters can be carried out in the
same way as in the case of MIM. Since we know that there
are Q Type I clusters, we chose Q clusters having the largest
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γb values as the Type I (or active) clusters. In (6), we also
assume that Q < B.

After detecting the active clusters, the detection of active
subcarriers and modulating symbols can be done in the same
way as for MIM. However, in each of the clusters, the sym-
bols from the appropriate PSK/QAM constellation have to
be used. Explicitly, in the Type I clusters, the PSK/QAM
symbols from the first constellation are chosen, whereas in
the Type II clusters, that from the second PSK/QAM constel-
lation are used.

C. DETECTOR FOR CSMIM
The signal at the CSMIM receiver (after cyclic prefix
removal) can be written as

yT = hT ∗ FHp x+ wT

= HTFHp x+ wT , (7)

where hT , Fp, x, and wT are the channel coefficients in TD,
the partial Fourier matrix, the OFDM frame in FD and the
additive white Gaussian noise (AWGN) in the TD, respec-
tively. Furthermore ‘∗ ‘ represents the convolution operation,
while HT is an (M ×M )-element circulant matrix generated
from the channel vector hT . It may be noted that (7) is in the
TD, whereas (1) is in the FD. In (7), HTFHp is an (M × N )
matrix with M < N and hence the equation represents an
under-determined system of linear equations, which does not
give a unique solution for x. However, since x is sparse in
nature, compressed sensing [29] algorithms can be used for
recovering the sparse vector x.

The sufficient condition for the successful recon-
struction of a sparse high dimensional vector from an
under-determined system of linear equations is that the pro-
jection matrix, namely the coefficient matrix of the system,
should satisfy the Restricted Isometric Property (RIP) of [29].
In such cases, the sparse vector can be reconstructed at a low
computational complexity from an under-determined system
of equations. Hence, in order to recover x from (7), the matrix
HTFHp should satisfy the Restricted Isometric Property (RIP),
where Fp is the partial Fourier Matrix. It has been shown
in [30][Theorem 3.3] that if the partial Fourier matrix (Fp)
is constructed from the random choice of the columns of the
DFT matrix, then FHp satisfies the RIP with a high prob-
ability. However, there exist also deterministic approaches
capable of generating a partial Fourier matrix satisfying
the RIP [31], [32]. Hence, for the present discussion, it is
assumed that the appropriate selection of rows was executed
so that FHp satisfies the RIP. However, the product HTFHp
may not satisfy the RIP. This problem can be circumvented
by exploiting Lemma 1.
Lemma 1: If a random M × 1 vector h obeys a contin-

uous distribution, then the rank of the circulant matrix H
constructed from h is M .

Proof: Let f (z) be the associated polynomial of the
circulant matrix H . Then f (z) = h0+h1z+ . . .+hM−1zM−1,
with the coefficients hi being the elements of the first column

of H or the elements of the vector h itself. The rank of an
(M ×M ) circulant matrix H isM − d , where d is the degree
of gcd

[
f (z), zM − 1

]
[33], where gcd represents the greatest

common divisor. Note that there are only two factors for zM−
1, i.e., f1(z) = (z−1) and f2(z) = zM−1+ zM−2+ . . .+ z+1.
Therefore, we have to find gcd [f (z), f1(z)f2(z)], where neither
f1(z) nor f2(z) are factorizable. Hence, d > 0 if and only if f (z)
has either of the terms f1(z) or f2(z) as its factors. For f2(z) to be
a factor of f (z), this requires that all the elements of h should
be either unity or a constant. Similarly, for f1(z) to be factor of
f (z), the elements of h should be of the form {1 −1 0 0 0 . . .}
or {1 − 1 k1− k1 k2 − k2, . . . .}, where the coefficients ki are
some constants. However, the probability that the elements of
h assume these specific discrete values becomes zero, when
it is generated by sampling from a continuous distribution.
Hence, it can be concluded that we have gcd

[
f (z), zM − 1

]
=

1 with probability 1. Therefore, the rank of the circulant
matrix H will be M with probability 1, when h follows a
continuous distribution.
Lemma 2: If FHp satisfies the RIP of order k , then the

product HTFHp also satisfies the RIP of the same order with
probability 1.

Proof: From Lemma 1, it is clear that the circulant
matrix HT , constructed from the channel vector hT is a full
rank matrix with probability 1. This is because hT follows
a continuous distribution (Complex Normal). Hence, HT is
invertible with probability 1. By corollary 3.3 of [34], if a
matrix A satisfies the RIP of order k , then for any invertible
matrix B, the product BA also satisfies the RIP of the same
order. Therefore, the product HTFHp satisfies the RIP of the
order k with probability 1.
From Lemma 2, it is evident that the compressive sensing

techniques can be directly applied to recover x from yT .
Hence, the procedure for the detection of CSMIM is sum-
marized below.

• Apply a compressed sensing algorithm [35]–[37] to
recover x from yT using yT = HTFHp x + wT . This
reconstruction is possible, sinceHTFHp satisfies the RIP
with probability 1.

• Identify the non-zero locations of x. These locations
can be used to decode the cluster indices and subcarrier
indices in each of the clusters.

• Approximate each non-zero component of x to the near-
est PSK/QAM modulating symbols.

All these three schemes i.e., MIM, DMIM and CSMIM
are coherent modulation schemes, which requires accurate
CSI for detecting the transmitted signal. The next section
describes a non-coherent MIM scheme that does not require
the knowledge of the channel to recover the symbols.

IV. NON-COHERENT MULTI LAYER INDEX MODULATION
For non-coherent schemes, no pilot based channel state infor-
mation (CSI) is used and therefore no pilot overhead is
required for estimating the channel. Hence, these schemes
are eminently suitable for rapidly fading channels, where
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frequent channel estimation would be required, leading to
significant pilot overhead. Hence, a non-coherent OFDM-IM
scheme was proposed in [23], in which the information is
conveyed only through the position of active subcarriers.
In this case, a 1 (or equivalently a constant ‘θ ’) is placed in the
active subcarriers, but no PSK/QAM symbols are used. Let
us assume that there are N subcarriers, which are split into B
clusters, each having L subcarriers. In each cluster,K out of L
subcarriers are loaded with θs (active subcarriers) and the rest
are filled with zeros. The set of active subcarriers is chosen
according to the incoming bit sequence. The total number of
bits transmitted using this procedure is Bblog2

((L
K

))
c. The

proposed MIM scheme can also be extended to non-coherent
detection as follows.

The incoming bit sequence is partitioned into two sets.
The first set is used for selecting Q out of B clusters, which
are termed as type I clusters. This requires blog2

((B
Q

))
c

bits. Within each of the Q Type I clusters, the second bit
sequence is used for selecting the active subcarriers, i.e.
the subcarriers loaded with θs. In the rest of the (B − Q)
clusters, which are termed as Type II clusters, the second
bit sequence is used for selecting the passive subcarriers,
i.e. the subcarriers which are loaded with zeros. Hence,
there will be K non-zero entries in Type I clusters and
(L − K ) non-zero entries in Type II clusters. The selection
of active subcarriers in both Type I and Type II clusters
requires blog2

((L
K

))
c bits. Hence, the throughput of this case

is
blog2

(
(BQ)

)
c+Bblog2

(
(LK)

)
c

N+NCP
bits, whereas it is

Bblog2
(
(LK)

)
c

N+NCP
in

the case of non-coherent Index Modulation. This shows that
for non-coherent MIM, there is a throughput advantage over
non-coherent IM. However, the energy per bit of a transmis-
sion in this case is Eb =

(KQ+(L−K )(B−Q))E⌊
log2

(
(BQ)

)⌋
+B

⌊
log2

(
(LK)

)⌋ , which will
be lower or higher or same as that of the non-coherent IM
scheme, depending on the values of K and Q. Observe that
Eb can be readily reducedwithout changing the throughput by
choosing K<L/2 and K>L/2, when Q>B/2 and Q<B/2,
respectively. The basic requirement for MIM to work is that
we should have K 6= L

2 , i.e. the number of active and passive
subcarriers should be different. In the scenarios, when they
are the same, i.e. K = L − K , all blocks are identical, hence
it will not be possible to identify Q out of B Type I clusters.
This is proved mathematically in Theorem 1. Note that here
we used Type I and Type II to distinguish two types of clusters
instead of active and passive ones, since all the clusters are
active in this case. The detector conceived for the proposed
scheme is detailed below.

A. DETECTOR
Mathematically, this system can also be represented using (1)
except that in this case x(n) will be either θ or 0. A two-stage
ML detector can be employed. In the first stage, the Type I
clusters are detected and in the second stage, the activation
patterns (subcarriers with non-zero values) in each of the
clusters are identified. Let the channel coefficient for all of

the subcarriers be independent and identically distributed as
h(n) ∼ CN (0, σ 2

h ). Hence, the distributions of the received
data at the nth subcarrier are

Pr(y(n)|x(n) = 0)

= CN (0, σ 2), (8)

Pr(y(n)|x(n) = θ )

=

∫
∞

−∞

Pr (y(n)|x(n) = θ, h(n))Pr (h(n)) dh

=

∫
∞

−∞

CN
(
θh(n), σ 2

)
CN (0, σ 2

h )dh

= CN (0, σ 2
+ θ2σ 2

h ). (9)

Now, if a particular cluster is Type I, then it will have K
θs and (L − K ) zeros, while if it is Type II, there will be K
zeros and (L − K ) θs. Hence, in order to identify whether a
particular cluster is Type I or Type II, we have to count the
number of θs in that cluster. We now want to differentiate
between two cluster, i.e. the cluster with K θs and (L − K )
zeros as well as that having K zeros and (L − K ) θs. Hence,
what we need is the distribution of the number of θs in a clus-
ter given the observations, which is formulated as Pr (Ib|yb),
where Ib is the number of θs in a cluster b ∈ {0, 2 . . . ,B−1}
and yb = {y(bL), y(bL + 1), . . . , y((b+ 1)L − 1)} represents
the received vector in that cluster. This probability can be
obtained as follows. Note that it is only the number of θs
which is important to us, not the specific positions of θs.
Therefore, all possible locations of θs (with the total number
of θs being the same) has to be considered. Hence, we have
to evaluate

Pr (Ib|yb) = Pr (yb|Ib)
Pr(Ib)
Pr (yb)

, (10)

where Ib = K or Ib = L − K . Note that we have Pr(Ib =
K ) = Q

B and Pr(Ib = L −K ) = B−Q
B , since there are Q Type

I clusters. Let�K and�L−K be the sets of xb with exactly K
and (L−K ) non-zero elements, respectively. Hence, we have

Pr (yb|Ib = K ) =
∑
si∈�K

Pr (yb|Ib = K , si)Pr (si|Ib = K )

=

|�K |∑
i=1

1
|�K |

1
v0
e

(
−
∑

j∈0i
‖y(j)‖2

2(θ2σ2h+σ
2)
−
∑

j∈0ci

‖y(j)‖2

2σ2

)
, (11)

where v0 = (2π )L/2(σ 2)K/2(θ2σ 2
h+σ

2)
L−K
2 and0i represents

the locations of the non-zero elements of si, while 0ci is its
complementary set. Note that we have Pr (si|Ib = K ) = 1

|�K |
for si ∈ �K , since each element of the set �K is equally
likely. Clearly, we have |�K | =

(L
K

)
, since that many choices

are available for exactly K non-zero elements out of L pos-
sible locations. It can be seen that the RHS of (11) is in the
form of

∑|�K |
i=1 νiCN (0, 6i), where ∀ i, νi = 1

|�K |
and 6i is a

diagonal matrix with K entries being θ2σ 2
h + σ

2 (i.e., for the
locations {j} ∈ 0i), while the remaining of (L − K ) entries
being σ 2. Hence, Pr (yb|Ib = K ) is a mixture of multivariate
Gaussian distributions (L-dimensional) with all components
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having the same weight. We will approximate this mixture
distribution by a single multivariate Gaussian one having the
same first-order and second-order moments similar to [38]
for computational tractability as follows.

The elements in each of the multivariate Gaussian distribu-
tion in the RHS of (11) are independent (since6i is diagonal)
with different variances, in which θ2σ 2

h + σ
2 is the variance

of the K elements, i.e. when j ∈ 0i and σ 2 is the variance of
the rest of the (L − K ) elements. Without loss of generality,
we let j = 1 ∈ 0i and then we have var [y(bL)|j = 1 ∈ 0i] =
θ2σ 2

h + σ
2. Note that y(bL) is the first element of yb. Now,

given j = 1 ∈ 0i, one of the non-zero locations is fixed (i.e.,
j = 1) and there are exactly

(L−1
K−1

)
possible locations for the

other K−1 non-zero elements, i.e. we have |si|j = 1 ∈ 0i| =(L−1
K−1

)
. Therefore, in the mixture distribution of (11), there

are
(L−1
K−1

)
components all with var [y(bL)|j = 1 ∈ 0i] =

θ2σ 2
h + σ 2. Similarly, when j = 1 ∈ 0ci , we have

var [y(bL)] = σ 2. In this case, there are
(L−1
K

)
locations

available for the K non-zero locations such that y(bL) = 0.
Hence, in (11), there are

(L−1
K

)
mixture components with

var
[
y(bL)|j = 1 ∈ J ci

]
= σ 2. Hence, the unconditional vari-

ance of y(bL) is (
L−1
K−1)(θ

2σ 2h+σ
2)+(L−1K )σ

2

(LK)
=
(K
L θ

2σ 2
h + σ

2
)
.

Here we exploited the fact that the variance of a mixture
Gaussian distribution is the weighted sum of the variance of
each of the component, i.e., var

[∑
i νiN (0, σ 2

i )
]
=
∑

i νiσ
2
i .

Note that the other components of yb, i.e, j 6= 1, have the same
variances as that of j = 1, since our interests are not in the
specific positions of non-zero elements, but in their number
only. Furthermore, the mean of the approximated Gaussian
mixture is 0, since that of each component in the mixture is 0.
Hence, now the approximated Gaussian distribution with the
same moments as the original distribution is

Pr (yb|Ib = K ) = CN
(
0,
(
K
L
θ2σ 2

h + σ
2
)
I
)
. (12)

Similarly, we can show that

Pr (yb|Ib = L-K) = CN
(
0,
(
L − K
L

θ2σ 2
h + σ

2
)
I
)
.

(13)

Hence, from (10), 12) and (13), we have:

Pr (Ib = K |yb) =
Q
B
CN

(
0,
(
K
L
θ2σ 2

h + σ
2
)
I
)

(14)

and

Pr (Ib = L − K |yb)

=
B− Q
B

CN
(
0,
(
L − K
L

θ2σ 2
h + σ

2
)
I
)
. (15)

The log likelihood ratio using (14) and (15) is

γb =
Pr (Ib = K |yb)

Pr (Ib = L − K |yb)

= log

((
(L − K )β + L

Lβ + L

) L
2 Q
B− Q

)

+

β

2Lσ 2(
(L−K )
n β + 1

) (K
L β + 1

) (2K − L)‖yb‖2, (16)

where β =
θ2σ 2h
σ 2

is the SNR of the system. Similar to the case
of (3), for deriving (16), we assume that Q < B. In order to
identify whether a cluster is Type I or not, we have to check
whether γb > 0. However, we know that there are exactly
Q Type I clusters. Therefore, rather than testing whether a
particular cluster is of Type I, it is proposed to identify Q
clusters having the largest γb values. The following theorem
will formulate our decision rule for cluster identification.
Theorem 1: Recall that the LLR for Type I cluster detec-

tion is given by (16). Then, the following holds,
1) If K > L

2 , then choosing the clusters having the Q
largest γb values is equivalent to selecting the clusters
with theQ highest ‖yb‖2 values. In other words, γb(1) ≥
. . . ≥ γb(Q) ⇐⇒ ‖yb(1)‖2 ≥ . . . ≥ ‖yb(Q)‖2 where
b(i) ∈ {0, 1, . . . ,B− 1}.

2) If K < L
2 , then choosing the clusters having the

Q largest γb values is equivalent to selecting clusters
having Q lowest ‖yb‖2 values. In other words, γb(1) ≥
. . . ≥ γb(Q) ⇐⇒ ‖yb(1)‖2 ≤ . . . ≤ ‖yb(Q)‖2.

3) Finally, when we have K = L
2 , cluster identification

fails.
Proof: Consider the first and second terms of the RHS

in (16). The first term is a constant and does not affect the
maximization operation. All terms of the second term except
(2K − L) are positive for all values of K . Now, if K > L/2,
then 2K − L > 0. Hence in that case, if γl > γj for some
l, j ∈ {1, . . . ,B}, then ‖yl‖2 > ‖yj‖2. This proves the first
part. Similarly, if K < L/2, then 2K −L < 0. Hence, γl > γj
implies ‖yl‖2 < ‖yj‖2, which proves the second part of the
theorem. Finally, if K = L/2, the LLR becomes independent
of ‖yb‖2 and γb will be the same for all b and hence the
clusters cannot be identified.
Finally, the detection scheme is summarized as follows.
• First detect the Type I clusters. Depending on the value
of K , this can be done by selecting theQ clusters having
the largest (or smallest) value of ‖yb‖2;

• In the Q Type I clusters, the non-zero subcarriers can be
identified by selecting the specific K subcarriers with
the largest energy (same procedure as in non-coherent
index modulation [23]);

• In the remainingB−Q clusters, the Type I subcarriers are
identified by choosing the (L−K ) subcarriers having the
highest energy or equivalently the K subcarriers having
the lowest energy;

• Finally, the transmitted bits are decoded from the set of
Type I clusters and subcarriers.

B. THEORETICAL ANALYSIS
The probability of error in non-coherent MIM is analysed
in this section. An error will occur either because a clus-
ter or a subcarrier is wrongly detected. The probability of
error for each of the cases is given below. Throughout the
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analysis, we assume thatK > L/2. The analysis is similar for
K < L/2.

1) PROBABILITY OF CLUSTER ERROR (Pce)
First the probability of cluster error is found. From Theo-
rem 1, we have two cases for cluster identification. For the
case K > L/2, we select Q clusters having the highest ‖yb‖2

values. Let3 be the set of correctQ clusters and3c represent
its complementary set. There will be no cluster errors, if

min
b∈3
‖yb‖2 > max

b∈3c
‖yb‖2. (17)

Note that 3 ⊂ {0, 1, . . . ,B− 1} and 3c
⊂ {0, 1, . . . ,B− 1}

with |3| = Q and |3c
| = B − Q, are the set of clus-

ters ({b}) with Ib = K and Ib = L−K , respectively.
Hence, the distribution of yb, when b ∈ 3 is Pr [yb|Ib = K ]
which is given by (12), while the distribution of yb when
b ∈ 3c is Pr [yb|Ib = L-K] which is given by (13).
We have to determine the distributions Pr

[
‖yb‖2|Ib = K

]
and Pr

[
‖yb‖2|Ib = L-K

]
to estimate the probability of clus-

ter error, which is accomplished as follows.
Note that ‖yb‖2 = yHb yb = ‖y(bL)‖

2
+ ‖y(bL + 1)‖2 +

. . . + ‖y((b + 1)L − 1)‖2, in which the distribution of
each of the terms y(bL), y(bL + 1), . . . , y ((b+ 1)L − 1) for
Ib = K is CN (0, kL θ

2σ 2
h + σ

2). Hence, the correspond-
ing norm squares, i.e., ‖y(bL)‖2, ‖y(bL + 1)‖2, . . . , ‖y((b +
1)L − 1)‖2 for Ib = K are distributed as exp (λ1), which
is the exponential distribution, where 1

λ1
=

K
L θ

2σ 2
h + σ

2

and ‖yb‖2 is the sum of L identically distributed exponen-
tial random variables, which follows the Erlang distribution,
i.e. we have Pr

(
‖yb‖2|Ib = K

)
∼ Erlang(L, λ1). Simi-

larly, Pr
(
‖yb‖2|Ib = L-K

)
∼ Erlang(L, λ2) with 1

λ2
=

L−K
L θ2σ 2

h + σ
2.

Let U = {u1, u2, . . . , uQ} be the set of ‖yb‖2 for b ∈ 3
and V = {v1, v2, . . . , vB−Q} be the set of ‖yb‖2 for b ∈ 3c.
Now there will be no errors, if ui > vj, ∀ i ∈ {1, . . . ,Q}, j ∈
{1, . . . ,B − Q}. Hence, the probability that there will be no
cluster error (Pcc) is given by

Pcc =
B−Q⋂
j=1

Q⋂
i=1

Pr(vj < ui),

= pQ(B−Q), (18)

where p = Pr(vj < ui) and (18) holds due to the independence
of the uis and vjs. Note that the probability of (17) becoming
true is the same as that of (18). Lemma 3 will give the value
of p.
Lemma 3: When ui ∼ Erlang(L, λ1) and vj ∼

Erlang(L, λ1), the probability Pr(vj < ui) is

p = I λ
1+λ

(L,L) (19)

with the regularized Incomplete Beta function defined as [39]

Iz(u, v) =
B(z; u, v)
B(u, v)

=
1

B(u, v)

∫ z

0
tu−1(1− t)v−1dt, (20)

where B(u, v) = B(1; u, v) is the complete Beta function.

In (19), we have λ = λ2
λ1
=

K
L β+1

L−K
L β+1

, with β =
θ2σ 2h
σ 2

Proof: See Appendix B for proof.
Theorem 2: The probability of cluster error (Pce) for

non-coherent MIM is

Pce = 1− I λ
1+λ

(L,L)Q(B−Q). (21)

Proof: The probability of cluster error is

Pce = 1− Pcc
= 1− pQ(B−Q). (22)

When p in (19) is substituted into (22), we arrive at (21).
Lemma 4: The probability of cluster error in (21) can be

upper bounded as

Pce ≤ 1−
(
1−

λL

LB(L,L)(λ− 1) (λ+ 1)2L−1

)Q(B−Q)
.

(23)

Proof: See Appendix C for proof.
It may be noted that (21) and (23) are derived for the case

of K > L/2. It can be shown in a similar way that both the
equations remain valid for the case of K < L/2, except that
in this case λ = λ1

λ2
.

2) PROBABILITY OF INDEX ERROR (Pie)
In this section, we will analyse the probability of subcarrier
index error. An index error may occur either in a correctly
or in a wrongly detected cluster. Firstly, the index error in a
correctly detected cluster is found as follows.

In non-coherent MIM, there are two types of clusters.
In the first type of clusters, there are K non-zero subcarriers,
while in the second type of clusters, the number of non-zero
subcarriers is (L − K ). It has been shown in [23, (13)] that
the probability of index error for the case of non-coherent
OFDM-IM modulation is

P(1)ie = 1−
K

σ 2
1

∫
∞

0

(
1− e

−
x
σ20

)L−K
e
−
Kx
σ21 dx, (24)

where σ=1 θ
2σ 2

h + σ 2 and σ 2
0 = σ 2 in our case. In [23],

(24) has been simplified in terms of a binomial expression.
By contrast, we evaluate (24) using the Beta function as
follows.
Lemma 5: The probability of index error in (24) is

P(1)ie = 1−
K

β + 1
B
(
L − K + 1,

K
β + 1

)
, (25)

where β =
θ2σ 2h
σ 2

and B(x, y) is the Beta function.
Proof: See Appendix D for proof.

The same expression can be used in Q Type I clusters. In the
remaining (B − Q) Type II clusters, the expression can be

VOLUME 7, 2019 79685



S. Gopi et al.: Coherent and Non-Coherent MIM

obtained by replacing K in (25) with L−K , since the number
of non-zero elements is L − K , leading to

P(2)ie = 1−
L − K
β + 1

B
(
K + 1,

L − K
β + 1

)
. (26)

Now,we can find the probability of index error, when a cluster
is wrongly selected or missed. Let us assume that K > L/2.
Hence, if a Type I cluster is erroneously identified as a Type II
cluster, i.e. when a Type I cluster ismissed, only (L−K ) active
subcarriers will be identified instead of the total of K active
subcarriers. Similarly, when we have K < L/2, (2K − L)
subcarriers will be additionally identified and hence they will
be in error. Therefore the index error probability in both these
cases is 1. Hence, the unconditional probability of index error
is

Pie = Pr(Index Error|Cluster Error)Pce
+ Pr(Index Error|No Cluster Error) (1− Pce)

= Pce + (1− Pce)
(
P(1)ie Pr (Type I Cluster)

+P(2)ie Pr (Type II Cluster)
)

= Pce + (1− Pce)
(
Q
B
P(1)ie +

B− Q
B

P(2)ie

)
. (27)

C. EFFECT OF PARAMETERS ON THE PERFORMANCE
The pair of parameters to be determined for non-coherent
MIM schemes are the number of Type I clusters, i.e. Q and
the number of active subcarriers K . Both these parameters
have an effect on the throughput and on the error probability,
as detailed below.

1) NUMBER OF TYPE I CLUSTERS (Q)
The number of Type I clusters affects the probability of
cluster error in (21). Differentiating (21) with respect to Q,
we will get,

∂Pce
∂Q
= −I λ

1+λ
(L,L)Q(B−Q) log

(
I λ

1+λ
(L,L)

)
(B− 2Q).

(28)

Note that in (28), log
(
I λ

1+λ
(L,L)

)
≤ 0. Hence, the deriva-

tive in (28) is positive for Q < B/2 and negative otherwise.
Therefore, the probability of cluster error is maximum at
Q = B/2 and it decreases on both side. On the other hand,
the contribution of the number of Type I clusters towards the
throughput is

⌊
log2

(B
Q

)⌋
, which is maximum for Q = B/2.

2) NUMBER OF ACTIVE SUBCARRIERS (K)
The value of K affects both the probability of cluster errors
and the probability of index errors. It can be deduced
from (14) and (15) that when K = L/2, the probability
distributions of Type I (i.e. cluster with K active subcarriers)
and Type II (i.e., clusters with L − K active subcarriers) will
become identical. Hence, it becomes impossible to distin-
guish the Type I and Type II clusters. As a result, the proba-
bility of cluster error will be maximum at K = L/2. When K

moves away from L/2 on both side, the two distributions will
become separate and therefore, the probability of cluster error
will be reduced. This can also be seen by differentiating (21)
as,
∂Pce
∂K
= −Q(B− Q)I λ

1+λ
(L,L)Q(B−Q)−1

∂

∂K
I λ

1+λ
(L,L)

= −Q(B− Q)LI λ
1+λ

(L,L)Q(B−Q)−1
(

K
L β + 1

β + 1

)L
≤ 0. (29)

Since (29) is derived for K > L/2, the probability of
cluster error decreases, asK increases to L. Similarly, forK <

L/2, it can be shown that Pce decreases, as K decreases to 0.
Let us now consider the probability of index error. Recall

that there are K and (L − K ) active subcarriers in Type I and
Type II clusters. Hence, if a Type I cluster is identified as a
Type II cluster or vice-versa, at least |(L − 2K )| subcarriers
will be in error. Hence, it can be concluded that index error
probability is also maximum at K = L/2 and it decreases,
when K tends to zero or L. This is evident in Fig. 10 of
Section V.

Therefore, it can be concluded that the probability of both
types of error will be at its minimum, if K tends to zero or L.
However, the number of bits transmitted by subcarrier index
selection is B

⌊
log2

(L
K

)⌋
, which is maximum for K = L/2.

Therefore, similar to the case of Q, we have to strike a
BER vs. throughput trade-off by appropriately choosing K .
Hence, it is recommended to keep the value of K between
L/4 and L/2.

V. SIMULATION RESULTS
First we demonstrate the advantages of our MIM philosophy.
Subsequently, the comparative study of our coherent and
non-coherent schemes is provided and the simulation results
are compared to the analytical results.

A. ADVANTAGES OF THE MULTI LAYER FRAMEWORK
To demonstrate the benefits of the multilayer framework,
consider an OFDM-IM system having N = 512 subcarriers.
These subcarriers can be distributed in many different ways
to construct the clusters. Let us consider two such configura-
tions; the first configuration uses B = 16 clusters each having
L = 32 subcarriers and the second one B = 64 clusters
having L = 8 subcarriers. Let us assume that half of the
subcarriers are used for transmitting QAM/PSK symbols, i.e.
K = L/2. The throughputs of an OFDM-IM system having
these configurations for 16QAM schemes are 2.74 bits/s/Hz
and 2.59 bits/s/Hz, respectively. Hence, it can be seen that
for better throughput, clusters with more subcarriers are
preferred. Let us now consider the following schemes.

1) S1 - OFDM-IM with L = 32, B = 16 and K = 16.
2) S2 - MIM associated with L = 32, B = 16, K = 16

and Q = 8.
3) S3 - DMIM with the same configuration as that of S2.

We used 16QAM with 00 and 450 phase rotations as the
two modulations.
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TABLE 1. Comparison of various schemes.

4) S4 - MIM with two layers. In this scheme, 512 sub-
carriers are split into 8 clusters each having 64 subcar-
riers. These 8 clusters as super-clusters. Each of these
super-clusters are further divided into 8 clusters, each
having 8 subcarriers. In this scheme, the incoming bit
sequences are split into four sets. The first set is used
to select 4 out of 8 super-clusters and in the resultant 4
super-clusters, we used 16QAM with 00 phase rotation,
while in the other 4 clusters, we used 16QAM with
450 phase rotation. In each of the super-clusters, MIM
associated with B = 8, K = 4 and Q = 4 is used.

5) S5 - DMIM version of S4. Note that in this scheme,
we have used four different modulations schemes, i.e.
16QAM with 00, 300, 600 and 900 phase rotations.

The above schemes were investigated in a dispersive
Rayleigh fading channel having 10 channel taps, which were
generated by sampling from CN (0, 1/10). This represents a
dispersive channel, where the energy is distributed across all
10 taps equally. It is assumed that perfect knowledge of the
CSI is available at the receiver. The Bit Error Rate (BER) is
plotted against Eb/N0 in Fig. 3. Here, we have Eb/N0 =

mAE
mσ 2

,
where mA is the actual number of active subcarriers in an
OFDM frame, E is the average symbol energy, which is unity,
m is the number of bits transmitted in an OFDM frame and
σ 2 is the noise variance, which is varied to simulate different
SNRs. The BER performance is better for schemes having
more layers (i.e. S4 and S5), compared to the other schemes.
TABLE 1 compares the various schemes in terms of TP,
Eb and SNR2, which is the SNR in dB required to achieve
a BER close to 0.002. It can be seen from TABLE 1 that
there is not much change in the throughput or Eb for the
multilayer structure, when compared to the corresponding
single layer version. For example, for the DMIM schemes (S3
and S5), there is amarginal reduction in throughput for S5 and
consequently a slight increase in the energy per bit compared
to S3. However, there is more than 4 dB SNR gain for S5
over S3 at all BERs. The reduction in BER for a multilayer
architecture can be explained as follows.

For an OFDM-IM system, the information is embedded
also in the selection of message-bearing subcarriers. In this
case, the misidentification of a subcarrier contributes to the
BER. If we opt for a multilayer architecture, additional infor-
mation is mapped to the selection of clusters. The probability
of cluster error is lower than the index error probability, since
more than one subcarrier indices have to be selected erro-
neously for a cluster to be in error. As the number of layers
increases, the information carried by the cluster selection
increases and the number of information-bearing subcarrier

FIGURE 3. BER vs. Eb/N0 performance of systems S1, S2, S3, S4 and S5.

indices reduces. For example, in the current simulation set
up, there are 32 subcarriers in a cluster for schemes S2 and
S3, which reduces to 8 when we introduce an additional layer
(schemes S4 and S5). Hence, the number of possible index
selection combinations reduces from

(32
16

)
≈ 6 × 108 to(8

4

)
= 70 in the case of S4 and S5. This also reduces the prob-

ability of index error. Hence, the overall BER performance
is improved, when the multilayer framework is introduced.
On the other hand, if the number of subcarriers in a cluster is
reduced in OFDM-IM, the throughput is reduced.

A second advantage of the multi layer framework is the
reduction of complexity of encoding and decoding of index
modulation. For example, for the simulation problem, for a
cluster selecting 16 out of 32 active subcarriers, we have
to select a subcarrier activation pattern from

(32
16

)
≈ 6 ×

108 possible combinations. In this case, using a look up
table based method becomes infeasible, and we have to opt
for the combinatoric approach of [6]. On the other hand,
there are only 64 combinations for schemes S4 and S5,
which can be readily implemented using the look up table
approach. However, it may be noted that when the number of
layers increases, we have to carry out the detection in each
of the additional layer, which calls for computing the LLR
values in those layers. This will result in a modest increase in
the computational complexity.

Therefore, in our multilayer framework, we have 1) Better
BER performance without sacrificing the throughput and
2) Reduced encoding and decoding complexity. The next
subsections provide the performance comparisons of various
schemes. We restrict our simulations of the multilayer frame-
work to a single additional layer.

B. PERFORMANCE EVALUATION OF COHERENT SYSTEMS
An OFDM-IM system with the parameters in TABLE 2
is considered for our simulations. We have used 16QAM
for (MIM and CSMIM) and a combination of 16QAM
with 00 and 450 phase rotated scheme for DMIM.
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TABLE 2. Simulation parameters.

TABLE 3. Comparison of various coherent schemes (with perfect CSI).

FIGURE 4. BER vs. Eb/N0 - Coherent systems (with perfect CSI).

The channel used is the same as that of Section V-A. It is
assumed that perfect knowledge of the CSI is available at the
receiver. The results are shown for 1) OFDM system having
similar data rate (with 32 subcarriers), 2) OFDM-IM, 3)MIM
4)DMIM and 5) CSMIMwith half the number of TD samples
(i.e 64 TD samples). We have also simulated the perfor-
mance in the face of channel estimation errors. This was
emulated by adding noise having a variance of σ 2 (variance of
AWGNnoise) to the true channel coefficients. This is because
typically channel estimation is carried out using the classic
least square approach and this leads to channel estimates
that are near-Gaussian distributed with ĥT ∼ CN (hT , σ 2

hT ),
where σ 2

hT depends on the variance of the underlying noise in
the system and on the number of observations available for
channel estimation [40].

The BER is plotted againstEb/N0 in Fig. 4 for the scenario,
when perfect CSI is available, while TABLE 3 shows the
comparison of various coherent schemes in terms of TP, Eb
and SNR2. OFDM gives the best performance in terms of
both BER and throughput. The BER of MIM is better than
OFDM-IM, while that of DMIM and CSMIM is high as
expected. The throughput of DMIM is higher than that of
OFDM-IM and lower than than that of OFDM, while that
of CSMIM is lower than that of OFDM-IM. However, when

FIGURE 5. BER vs. Eb/N0 - Coherent systems (with CSI error).

Eb is compared, it is best for CSMIM and worse for OFDM.
This means that the best BER of OFDM is attained at the
cost of its high energy requirement. The poor performance
of CSMIM is due to the active subcarriers sparsity of our
example. The number of non-zero subcarriers in the system
is 16 out of 128, which have to be recovered from 64 TD
samples. All the three proposed schemes outperform both
OFDM and OFDM-IM in terms of their energy efficiency.
Fig. 5 shows the BER performance of these schemes in the
face of CSI errors. It can be seen that in the presence of
CSI errors, the performance of OFDM is degraded. In this
case, OFDM-IM and MIM give the best performance. This
is because, in conventional OFDM, the information is only
contained in the classic modulated symbols (e.g. QAM16),
which have higher probability of getting corrupted in the
face of CSI errors, since there are 16 legitimate symbols.
By contrast, in OFDM-IM and MIM, part of the information
bits are embedded in the selection of sub-carriers, where
there are only two options (either the sub-carrier is loaded
with a classic symbol or not) and hence there is a lower
probability of erroneous decisions, for example owing to
CSI errors.

C. PERFORMANCE EVALUATION OF NON-COHERENT
SYSTEMS
The performance of our non-coherent IM system has been
studied in the following three channel models.
• C1 - A highly frequency selective channel, in which
the FD channel coefficients are uncorrelated and have
unit variance, i.e. h ∼ (0, I). This channel is selected
for comparing our theoretical analysis to the simulation
results.

• C2 - 10-tap dispersive Rayleigh fading channel, where
the taps were generated by sampling from CN (0, 1/10).
This will make the variance of the channel coefficient in
FD unity, i.e. σ 2

h = 1. This channel is exactly the same
as that used in our coherent system simulations.

• C3 - A flat fading channel.
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FIGURE 6. BER vs. Eb/N0 - Non-coherent systems.

TABLE 4. Comparison of the non-coherent schemes.

Similar to coherent system simulations, we used an OFDM
system of 128 subcarriers, which are split into 8 clusters each
having 16 subcarriers. In this case, no PSK/QAM scheme is
used and no CSI is required for detection. We kept K = 3,
Q = 2 and θ = 1 for our simulations. Fig. 6 shows the
BER plotted against Eb/N0 for both the channel models,

where Eb =
(KQ+(L−K )(B−Q))σ 2h

blog2
(
(BQ)

)
c+Bblog2

(
(LK)

)
c

is the energy per bit.

The comparison of the two non-coherent schemes in terms
of TP, Eb and SNR2 (for channel C2) is given in TABLE 4.
It can be seen that the proposed MIM-NC scheme provides
better throughput and BER than IM-NC, albeit at the cost of
a high Eb.
The performance of our proposed scheme improves sub-

stantially when the channel changes from a highly frequency
selective channel (C1) to a flat fading channel (C3). This is
because in MIM part of the message bits are embedded into
clusters by dividing them into two groups, viz. Type I and
Type II. The cluster error probability (Pce) increases, when
the channel changes from flat to frequency selective. The
increase in Pce can be explained as follows. In an OFDM
frame, the Type I clusters are identified by selecting Q clus-
ters having either maximum or minimum energy (Refer The-
orem 1) and this maximum or minimum remains the same for
a flat fading channel, since the FD channel coefficients (h(n))
remain the same across all sub-carriers. When the channel
starts behaving as frequency selective, h(n) starts changing
slowly and this can affect the maximum or minimum. Hence,
for a channel like C1, there is a high probability that the
clusters having maximum or minimum energy are wrongly
identified. The error in cluster identification will cause the

FIGURE 7. IER/CLER vs. Eb/N0.

FIGURE 8. Pce vs. Eb/N0. The upper bound is based on (23), while the
theory on (21).

message bits embedded in the clusters and in the sub-carriers
of the wrongly selected clusters become erroneous and will
result in high BER. For OFDM IM, there are no bits embed-
ded in the clusters and its performance is almost the same
across all channels. Therefore, the advantage of MIM over
OFDM IM will decrease, as the channel variation increases.

Fig. 7 shows the Index Error Rate (IER) and Cluster Error
Rate (CLER), which are defined as the number of indices
in error normalized by the total number of indices and the
number of clusters in error to the total number of clusters,
respectively. It can be seen that the CLER is much lower than
the IER. This essentially brings about the advantage of the
multi layer architecture detailed in Section V-A. Explicitly,
if the bits are mapped in a cluster, rather than to a subcarrier,
the BER will be improved.

Fig. 8 shows the cluster error probability, i.e. probability
that there is at least a cluster is in error in a OFDM frame.
Note that this is different from the CLER. Fig. 8 shows Pce
obtained through simulations, theoretical analysis (21) and
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FIGURE 9. Pie vs. Eb/N0.

FIGURE 10. Effect of the number of active subcarriers and clusters.

its upper bound (23). The figure shows close match between
the simulation results and the theoretical values of Pce at low
SNRs. At high SNRs, a gap can be seen between the simu-
lation results and the theoretical values. However, it should
be noted that at these SNR values, the probability of cluster
error is lower than 10−3, where the disparity is due to the
approximation of a Gaussian mixture by a single Gaussian
distribution. However, it should be noted that the upper bound
derived for Pce is tight. Note that the theoretical cluster
probability error flattens out as the SNR increases. This is

because the parameter λ =
K
L β+1

L−K
L β+1

in the expression of Pce

(21) approaches K
L−K , when the SNR increases. Similarly,

Fig. 9 shows the probability of index error (Pie), i.e. the
probability that at least one subcarrier index is in error in
an OFDM frame. In this case, the theoretical value closely
follows the simulation results.

Fig. 10 shows effect of parameters on the performance,
which is discussed in Section IV-C. Explicitly, the fig-
ure shows the cluster error probability and index error proba-
bility vs. the number of active subcarriers (K ) and the number

of Type I clusters (Q). It can be seen that Pce reaches its
maximum forK = L/2 and hence naturally decreases on both
sides. Similarly, Pie is also maximum for the same value of
K . Fig. 10 also shows the dependence of Pce on Q, where
Pce is maximum at Q = B/2 and it decreases on both sides.
Since Pie does not directly depend on Q, it is not shown.
The results of Fig. 10 are congruent with the discussions of
Section IV-C.

It can be seen from TABLE 3 that MIM offers better
Eb and BER performance than OFDM-IM, however at a
lower throughput. By contrast, DMIM has a better throughput
and Eb. CSMIM is highly energy efficient and its perfor-
mance will be improved if the number of active subcar-
riers is low, which will effectively reduce the throughput.
Finally, observe from TABLE 1 that if the number of layers is
increased, the BER performance is improved, but there will
be a marginal reduction in the throughput and Eb. Hence,
it can be concluded from TABLE 1, 3 and 4 that the proposed
multilayer architecture is capable of flexibly controlling the
throughput, Eb and BER.

VI. CONCLUSION
We proposed a multilayer framework of coherent OFDM-IM
to convert a long OFDM frame into multilevel clusters. This
multilayer index modulation provides an additional set of
parameters, i.e. the number of active clusters in each layer,
which can be controlled to strike a trade off between the
BER performance, throughput and energy efficiency. As the
number of layers increases, more bits are embedded in the
clusters and hence we achieve a lower BER, albeit at the
cost of some minor reduction in the throughput and energy
efficiency. The multilayer framework is generic in nature,
hence it may be applied to many of the IM schemes available
in the literature.

We also proposed two variants for the MIM, viz. DMIM
and CSMIM to improve the throughput of coherent IM.
We established the advantages of the proposed architecture
through simulations. The idea has also been successfully
extended to the case of non-coherent IM, which provides
an improved BER and throughput, although at the cost of
high Eb. The advantage of MIM-NC over non-coherent IM
schemes increases, when the frequency selectivity of the
channel reduces. The detectors of the proposed schemes have
also been derived and studied by simulations. Furthermore,
the probability of error was quantified for our non-coherent
system and validated by simulations.

APPENDIX A
DERIVATION OF THE LLR FOR ACTIVE CLUSTER
DETECTION
Let M be the set of PSK/QAM constellation symbols and
yb denote the received data vector in the bth cluster, i.e., yb =
[y(bL), y(bL + 1), . . . , y((b+ 1)L − 1)]T . Let b = 1 and b =
0 indicate whether the bth cluster is active or not, respectively.
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The likelihood ratio is

γb = log
(
Pr (b = 1|yb)
Pr (b = 0|yb)

)
= log

(∏(b+1)L−1
n=bL Pr (y(n)|b = 1)∏(b+1)L−1
n=bL Pr (y(n)|b = 0)

Pr(b = 1)
Pr(b = 0)

)
(30)

We can assume that all the clusters are equally likely to be
active, since no prior knowledge is available. Hence, we have
Pr(b = 1) = Q

B and Pr(b = 0) = B−Q
B . Let 0 be the set

of active subcarriers in a cluster. We have Pr (y(n)|b = 0) =
CN (0, σ 2) and

Pr (y(n)|b = 1)

=

∑
si∈M

Pr (y(n)|b = 1, x(n) = si)Pr (x(n) = si|b = 1)

+ Pr (y(n)|b=1, x(n)=0)Pr (x(n)=0|b=1) , (31)

where Pr (x(n) = si|b = 1) = Pr (x(n) = si|b = 1, n ∈ 0)
Pr(n ∈ 0|b = 1) = 1

M
K
L and Pr (x(n) = 0|b = 1) =

L−K
L (Note that there are K subcarriers conveying PSK/QAM

symbols). Hence, we arrive at:

Pr (y(n)|b = 1) =
K
ML

∑
si∈M

CN (sih(n), σ 2)

+
L − K
L

CN (0, σ 2). (32)

Finally, (30) becomes

γb = log
(

Q
B− Q

)
+

(b+1)L−1∑
n=bL

log
(
Pr (y(n)|b = 1)
Pr (y(n)|b = 0)

)

= log
(

Q
B− Q

)
+

(b+1)L−1∑
n=bL

log (η(n))

= log
(

Q
B− Q

)
+

(b+1)L−1∑
n=bL

log

×

L − K
L
+

K
ML

∑
si∈M

e−
(‖y(n)−sih(n)‖2−‖y(n)‖2)

2σ2

. (33)

where

η(n) =

K
ML

∑
si∈M

e−
‖y(n)−sih(n)‖

2

2σ2 +
L−k
L e−

‖y(n)‖2

2σ2

e−
‖y(n)‖2

2σ2

Rearranging (33) will give (3).

APPENDIX B
PROOF OF LEMMA 3
Let fu(u) be the density function of u ∈ U and Fv(v) be the
distribution function of v ∈ V . Now, we can estimate p as

p = Pr(vj < ui)

=

∫
∞

0
Pr(vj < ui|ui = u)fui (u)du

=

∫
∞

0
Fv(u)fU (u)du

=

∫
∞

0

(
1−

L−1∑
l=0

1
l!
e−λ2u (λ2u)l

)
fu(u)du

= 1−
∫
∞

0

L−1∑
l=0

1
l!
e−λ2u (λ2u)l fu(u)du

= 1−
∫
∞

0

L−1∑
l=0

1
l!
e−λ2u (λ2u)l

λL1

(L − 1)!
e−λ1uuL−1du

(a)
= 1−

L−1∑
l=0

λL1λ
l
2

l!(L − 1)!

∫
∞

0
e−(λ1+λ2)uul+L−1du

(b)
= 1−

L−1∑
j=0

λL1λ
l
2

l!(L − 1)!
(l + L − 1)!

(λ1 + λ2)
l+L

= 1−
L−1∑
l=0

(l + L − 1)!
l!(L − 1)!

λL1λ
l
2

λl+L1

(
1+ λ2

λ1

)l+L
= 1−

L−1∑
l=0

(l + L − 1)!
l!(L − 1)!

λl

(1+ λ)l+L
,

= 1−
n−1∑
l=0

(l + L − 1)!
l!(L − 1)!

(
λ

1+ λ

)l ( 1
1+ λ

)L
, (34)

where λ = λ2
λ1
. In (34), (a) is arrived at by changing the order

of integration and summation, while (b) is due to the identity∫
∞

0 e−axxmdx = m!
am+1

. Now, note that the term inside the
sum in the RHS of (34) is the probability mass function of a
random variable obeying the negative binomial distribution.

Explicitly
(

λ
1+λ

)l (
1

1+λ

)L
= Pr(X = l), where X follows the

negative binomial distribution associated with the parameters
λ

1+λ and L. Therefore the sum is the cumulative mass function
of X . Hence, we can express p as

p = 1− Pr (X ≤ L − 1)

= 1−
(
1− I λ

1+λ
(L,L)

)
, (35)

where
(
1− I λ

1+λ
(L,L)

)
is the cumulative mass function of

X upto L − 1 terms. Lemma 3 directly follows from (35).

APPENDIX C
PROOF OF LEMMA 4
Consider the expression for p in (19). Note that in (19),
we have 0.5 ≤ λ

1+λ ≤ 1, since λ ≥ 1. Therefore, from
Lemma 6 of Appendix E, a lower bound for p is,

p ≥ 1−

(
λ

(1+λ)2

)L
B(L,L)

(
λ−1
λ+1

)
L

= 1−
λL

LB(L,L)(λ− 1) (λ+ 1)2L−1
. (36)
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Note that the bound is always true, since λ
1+λ ≥

L
2L =

0.5. Finally, substituting the lower bound for p from (36)
into (22) will give the upper bound for the probability of
cluster error (23), which proves the Lemma.

APPENDIX D
PROOF OF LEMMA 5

We let z = 1− e
−

x
σ20 . Then we have,

e
−
Kx
σ21 =

(
e
−

x
σ20

) Kσ20
σ21
= (1− z)

K
σ20
σ21 . (37)

Now, let us apply a change of variables z = 1 − e
−

x
σ20 in the

integral of (24) so that dz = 1
σ 20
e
−

x
σ20 dx. Now we can express

the probability of index error as

P(1)ie = 1− K
σ 2
0

σ 2
1

∫ 1

0
zL−K (1− z)

K
σ20
σ21
−1
dz,

= 1−
K

β + 1

∫ 1

0
zL−K (1− z)

K
β+1−1 dz, (38)

where
σ 20
σ 21
=

1
θ2σ2h
σ2
+1

. Finally we have,
∫ 1
0 z

L−K (1− z)
K
β+1−1

dz = B
(
L − K + 1, K

β+1

)
is the Beta function. This proves

the Lemma.

APPENDIX E
BOUND OF INCOMPLETE BETA FUNCTION
Lemma 6: The incomplete Beta function Iz(a, b) is lower

bounded as

Iz(a, b) ≥ 1−
za(1− z)b

B(a, b) (a− (a+ b)(1− z))
, z >

b
a+ b

(39)

Proof: We have the following integral representation of
the incomplete Beta function.

Iz(a, b) =
1

B(a, b)

∫ z

t=0
ta−1(1− t)b−1dt

=
1

B(a, b)

(∫ 1

t=0
ta−1(1− t)b−1dt

−

∫ 1

t=z
ta−1(1− t)b−1dt

)
=

1
B(a, b)

(
B(a, b)−

∫ 1

t=z
ta−1(1− t)b−1dt

)
= 1−

1
B(a, b)

∫ 1

t=z
ta−1(1− t)b−1dt

= 1−
1

B(a, b)

∫ 1−z

t=0
(1− u)a−1ub−1dt

(a)
= 1−

1
B(b, a)

∫ 1−z

t=0
(1− u)a−1ub−1dt

= 1− I1−z(b, a), (40)

where (a) is due to the symmetric property of beta function.
The last equality is due to the change of variable u = 1 − t .
Now, we have the following upper bound for the incomplete
Beta function [41, (27)]

Iy(a, b) ≤
ya(1− y)b

B(a, b) (a− (a+ b)y)
, y <

a
a+ b

. (41)

Applying (41) to I1−z(b, a), we have,

I1−z(b, a) ≤
za(1− z)b

B(a, b) (a− (a+ b)(1− z))
, z >

b
a+ b

.

(42)

Finally, substituting (42) into (40) proves the Lemma.
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