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ABSTRACT The main focus of this paper is to present a new aggregation method of judgment matrices,
which is based on the optimal aggregation model and the efficient aggregation algorithm. The reciprocal
elements in the decision maker judgment matrices are mapped into the corresponding points on the two-
dimensional coordinates. We can express the differences between different decision makers’ preferences
by the Euclidean distance among these points. We use the plant growth simulation algorithm (PGSA) to
obtain the optimal aggregation points which can reflect the opinions of the entire decision makers group.
The aggregation matrix of decision maker preference is composed of these optimal aggregation points and
the consistency test has been passed. Compared with the weighted geometric mean method (WGMM) and
minimumdistancemethod (MDM), the sumof Euclidean distances from the aggregation points to other given
points in this paper is minimal. The validity and rationality of this method are also verified by the analysis and
comparison of examples, which provides a new idea to solve the group decision making (GDM) problems.

INDEX TERMS Group decision making, analytic hierarchy process, judgment matrices, aggregation, plant
growth simulation algorithm (PGSA).

I. INTRODUCTION
Analytic Hierarchy Process (AHP) is a hierarchical weight
decision analysis method, which was proposed by Saaty to
solve the GDMproblems [1]. In past decades, the aggregation
method of group AHP judgment matrix has been widely
concerned by researchers and practitioners. This method has
developed rapidly and has been widely used in many fields,
such as government, industry, management, education, and
engineering, etc. [2]–[6].

For the aggregation method of group AHP judgment matri-
ces, researchers have come up with numerous methods.
Harsanyi [7] provided in-depth analysis of the weighted aver-
age (WA). However, Dong and Cheng [8] indicated that the
WA operator relies on the constant weights given by the
decision maker. Yager [9] offered a new aggregation oper-
ator named ordered weighted average (OWA) to integrate
the experts’ preference, which drew researchers’ attention to
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further research on the aggregationmethod. Previous research
has indicated that the OWA operator adaptively selects the
weights of experts according to the preferences of decision
makers. Crawford and Williams [10] derived a comparable
estimate, the geometric mean (GM) vector that can be applied
to solve the hierarchical problems.

Compared with the WA and OWA operators, Saaty and
Kearns [11] argued that the WG operator is more suitable
for the assembly of the AHP judgment matrix. He discussed
several aggregation methods for group AHP opinions, one of
which was the weighted geometric mean method (WGMM).
Xu [12] pointed out that the weighted geometric mean com-
plex judgment matrix (WGMCJM) is of acceptable consis-
tency, which developed a theoretic basis for the WGMM.
Similarly, Krejčí and Stoklasa [13] showed that the weighted
arithmetic mean (WAM) did not reflect the preference infor-
mation of alternatives properly. In contrast, some researchers
showed that the weighted geometric mean (WGM) aggrega-
tion method can properly reflect the preference of alterna-
tives. They strongly discouraged the use of the WAM and
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advocated the use of the WGM for the aggregation in AHP.
Under row geometric mean prioritization method (RGMM),
Dong et al. [14] presented twoAHP consensusmodels, which
improved the consensus indexes of AHP judgment matrices.
Huang and Li [15] calculated the weight of the judgment
matrix by the geometric mean over a super-transitive approx-
imate method, which synthesized the opinions of various
experts to a certain extent.

However, some researchers did not consider the infor-
mation about the relationship between fusion values in the
aggregation process. Yager [16] provided more versatility
in the information aggregation, such as power average (PA)
and power OWA (POWA) operators, which can be seen in
MAGDM, information intelligence fusion, and data mining.

Based on the WG operator, Xu and Yager [17] proposed a
power-geometric (PG) operator, which introduced a similar-
ity between the assembly elements into the assembly process.
However, the PG operator did not consider the consistency
between the elements of the individual judgment matrix, and
the inconsistent individual matrix may not be able to obtain
the aggregated result with satisfactory consistency [18].
On the basis of the similarity and consistency index of the
assembly elements, Huang et al. [18] used the DS evidence
theory to calculate the rationality index of the contrast value
of different attributes in the assembly matrix. Yu [19], Cook
and Kress [20] proposed the distance concept to aggregate
group judgments. Based on the basic principles and methods
of AHP, Zhou and Kocaoglu [21] designed a new aggregation
method namedminimum distance method(MDM), which can
help the decisionmakers achieve consensus. It is effective that
they evaluated the performance of aggregation methods by
using accuracy and group disagreement criteria.

A number of studies had been focused on fuzzy AHP,
Öztaysi et al. [22] developed a hesitant fuzzy AHP method
aggregated by OWA operator, which was applied in a multi-
criteria supplier selection problem. Meng and Chen [23]
proposed a method of incomplete fuzzy information for
group decision making. Krejci and Ishizaka [24] presented
a fuzzy extension of the AHPSort method, which was suit-
able for the aggregation method of decision-making prob-
lems. Büyüközkan and Çifçi [25] proposed the methodology
containing fuzzy AHP and fuzzy TOPSIS. For an efficient
selection, Kahraman et al. [26] developed a hesitant fuzzy lin-
guistic AHP method. Zhang and Guo [27] mainly discussed
the intuitionistic multiplicative preference relation (IMPR)
for GDM problems. In order to improve the additive consis-
tency and make up for the missing elements in incomplete
HFPR, Zhang et al. [28], [29] proposed the new approach and
models to solve these problems.

However, most of these methods are extended or mixed by
using WA,OWA,WG,PG operators, etc. The methods men-
tioned above only can obtain approximate aggregation points,
yet not suitable to solve the optimal aggregation points, which
caused big deviation. Thus it is indispensable to improve the
performance of the aggregation method.

Therefore, the aggregation problem of the decision maker
judgment matrix requires further research. The major objec-
tive of this paper is to present a new aggregation method
of decision maker judgment matrices, which is based on
the optimal aggregation model and the efficient aggregation
algorithm. The research idea of this paper can be divided into
three parts. First, the evaluation values of attributes by experts
are mapped into points on the plane. Second, the ‘‘Steiner
point’’ is introduced into the construction of the optimal
aggregation model. Third, the PGSA is used to solve the
optimal aggregation points. Because this method determines
the direction through the morphological concentration on
the branches and its operation speed is fast. It avoids the
construction of new computational target functions with low
dependency on parameter settings. In order to achieve the
goals, we map the reciprocal elements of each decision maker
judgment matrix in the AHP into the corresponding points
on the two-dimensional coordinates. These two-dimensional
points are the individual preference points of decisionmakers.
Then, PGSA is used to find the aggregation points, whose
weighted Euclidean distance to other given points is minimal.
The optimal aggregation matrix obtained by this method can
reflect the consensus of all decision maker preferences in the
group.

In order to do this, we organize the rest of the paper in four
sections. Section 2 introduces the preliminary knowledge,
including the mapping relationship of the expert judgment
matrices, the optimal aggregation model, the principle of
PGSA and the probabilistic model of PGSA. Section 3 elab-
orates the aggregation idea and core process for searching
the optimal aggregation points based on PGSA. In section
4, two numerical examples are given to illustrate the validity
and rationality of the proposed method in this paper. Section5
summarizes conclusions and some suggestions for further
research.

II. PRELIMINARY KNOWLEDGE
A. THE MAPPING OF EXPERT JUDGMENT MATRICES
IN TWO-DIMENSIONAL PLANE
In order to facilitate the expression of the expert judgment
matrices, it is advisable to set the comparison judgmentmatri-
ces of m indicators by p experts as follows:

A(1) =

 1 · · · a11m
... 1

...

a1m1 · · · 1


A(2) =

 1 · · · a21m
... 1

...

a2m1 · · · 1


...

A(p) =

 1 · · · ap1m
... 1

...

apm1 · · · 1

 (1)
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The corresponding points in formula (1) are mapped to the
two-dimensional coordinates: A(i) ⊆ R2(i = 1, 2, · · · , p;
p ≥ 2), which can obtain the following set of plane points.(
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)
,
(
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)
, · · · ,

(
a11m, a

1
m1

)
(
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2
21

)
,
(
a213, a

2
31

)
, · · · ,

(
a21m, a

2
m1

)
...(

ap12, a
p
21

)
,
(
ap13, a

p
31

)
, · · · ,

(
ap1m, a

p
m1

)
(2)

The expert judgment matrices of (1) are mapped to the set
of plane points of (2), which signifies that the aggregation of
the expert judgment matrices is transformed into the aggre-
gation of the two-dimensional coordinates points.

B. THE OPTIMAL AGGREGATION MODEL
Definition1: Let P1,P2, . . . ,Pn(n ≥ 2) be the n decision
preference points on the two-dimensional plane. These points
with the corresponding positive weights are µi ∈ [0, 1](1 ≤

i ≤ n), and
n∑
i=1
µi = 1. Suppose there is a point P∗ on the

plane, and the sum of weighted Euclidean distance from this
point to other given points satisfies the following condition:

D = min
n∑
i=1
µi |P∗Pi|

min(µ1

√
(x∗ − x1)2 + (y∗ − y1)2

+ . . .+ µn

√
(x∗ − xn)2 + (y∗ − yn)2) (3)

Then P∗ can be referred to as the optimal aggregation point,
as shown in Figure 1.

FIGURE 1. A schematic diagram of aggregation point P∗.

Comparing the plane point set (2) with definition 1, we can
provide the following theorem:
Theorem 1: After mapping the judgment matrices (1) of P

experts to the set of two-dimensional points (2), the point P∗

is the optimal aggregation point of P experts. The mapping

relationship satisfies the following condition:

A(i) ⊆ R2, i = 1, 2, . . . , p; p ≥ 2 (4)

It can be observed that the coordinate value of the opti-
mal aggregation point P∗ is the value of the reciprocal ele-
ment corresponding to the optimal aggregation matrix A∗.
The point P∗ represents the decision-making willingness of
the group and it is also the optimal aggregation point of the
decision makers. However, with the increase of the points on
the plane, it is difficult to solve this problem. Solving the
optimal aggregation point becomes anNP-hard problem. This
paper uses the optimal aggregation model and the efficient
aggregation algorithm to solve this problem.

C. PLANT GROWTH SIMULATION ALGORITHM
The PGSA is an intelligent optimization algorithm based
on the heuristic principle of plant phototropism, which was
proposed in 2005 by Li et al. [30]. Durmus et al. [31]
founded that PGSA compared with modern heuristic algo-
rithms has the following two major advantages. First, PGSA
determines the direction through the morphological con-
centration on the branches, and its operation speed is fast.
Second, PGSA avoids the construction of new computational
target functions with low dependency on parameter settings.
In 2014, Li et al. [32] attempted to combine PGSA with
group decision making to solve the optimal aggregation point
problem. Since the establishment of PGSA, many scholars at
home and abroad have paid great attention to it and applied it
to their respective research fields [33]–[39].Compared with
other intelligent algorithms such as MTACO, BA, and GA,
PGSA has achieved better results [40]–[43].

The principle of PGSA is based on the plant phototropism
theory as the heuristic criterion. It takes the solution space
of the optimization problem as the growth environment of
plants, takes the optimal solution as the light source, sim-
ulates the phototropic mechanism of real plants, and estab-
lishes the deductionmode of the rapid growth of branches and
leaves under the environment of different light intensities.

The core of PGSA is established on the basis of plant
system deduction based on the growth rules and probabilistic
growth model based in the plant phototropism theory. The
optimization model formed by the combination of the above
two methods is to realize the process of artificial plants from
the initial state to the complete formfinal state (no new branch
growth) in the solution space of optimization problem. The
diagram of the optimal path is shown in Figure 2.

In the probabilistic model of PGSA, the entire growth
space of plants is considered as a viable domain. Let M
be the length of the branch. There are T growing points
named SM = (SM1, SM2, · · · SMT ) on the trunk, and
the morphological concentration of each growing point is
PM = (PM1,PM2, · · ·PMT ).

Let m(m < M ) be the unit length of the branch trunk,
on which there are r growing points named sm = (sm1,
sm2, · · · smr ). The morphological concentration of each grow-
ing point is pm = (pm1, pm2, · · · pmr ). The morphological
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FIGURE 2. Optimal path diagram of PGSA.

concentrations of these growing points on the branches are
calculated as follows:

pMi =
f (x0)− f (SMi)

T∑
i=1
(f (x0)− f (SMi))+

r∑
j=1

(
f (x0)− f

(
Smj
)) (5)

pmj =
f (x0)− f (Smi)

T∑
i=1
(f (x0)− f (SMi))+

r∑
j=1

(
f (x0)− f

(
Smj
)) (6)

where x0 is the initial growing point, and f (x) is the back-
light function of these growing points. As the illumination
intensity increases, the function value will decrease. We can

derive
K∑
i=1

pMi +
q∑
j=1

pmj = 1. The phototropism mechanism

of plants can then be established. The algorithm is described
as assuming that there are K + 1 growing points on the
branches, and the corresponding morphological concentra-
tion is p1, p2, . . . , pK+1. According to the randomness of
the algorithm, a value in the interval of [0, 1] is randomly
generated, which will be used as the new growing points next
time. The values of T and r will change with the growth of
plants, and the new growing points can be added to the set of
original growing points until no new branches are generated.

III. KEY METHODS
A. THE AGGREGATION IDEA
In this research, the judgment matrix of each decision maker
can be mapped to two-dimensional plane coordinates. Thus,
the points on the plane coordinates are made to correspond
one-to-one with the decision information of each decision
maker. For the group decision problem of e decision maker
judgment matrices with n attributes, it can be considered
as a set of points consisting of plane points. We can use
A(i) ⊆ R2, i = 1, 2, . . . , p; p ≥ 2 to express the mapping

relationship between decision maker judgment matrices and
plane points.

The key step of decisionmaking is to aggregate all decision
maker preference matrices into a single aggregation matrix.
The decision maker preference is projected onto the two-
dimensional coordinate, and the decision maker preference
aggregation matrix is constructed by calculating the optimal
aggregation point. The aggregation idea of this paper is sum-
marized as follows. Firstly, all expert preference matrices are
projected onto the two-dimensional coordinates. Secondly,
we can express the difference between preferences of the
two decision makers by the Euclidean distance between two
points. Thirdly, the closer the distance is, the nearer the
optimal aggregation point is. Conversely, the farther it is, the
greater the differences are between the experts’ opinions.

B. CORE PROCESS FOR SEARCHING OPTIMAL
AGGREGATION POINT BASED ON PGSA
The similar growing structures are defined in accordance
with the four directions of east, west, north, and south, and
they continuously produce new branches. The new branch
is rotated at a 90◦ angle, that is, α = 90◦. The length of
branches can set to be l/1000(l is the length of the bounded
closed box). Assuming that there are n known vector groups
x = (x1, x2, · · · xn) ∈ X , where X is the bounded closed box
in Rn. To obtain the optimal aggregation point x, the core
process of PGSA is as follows:

Step 1: Set the initial growing point x0 ∈ X and the step
length λ (it can be set to be l/1000). Set Xmin = x0, Fmin =

f (x0) where f (x0) is the backlight function of x0.
Step 2: Take x0 as the thought center. Through this point,

we can make a line segment parallel to the x-axis and y-axis,
extending a1 ≤ x01 ≤ b1, a2 ≤ x02 ≤ b2, . . . at ≤ x0t ≤ bt as
the new branches. Search for the germination point S0i1,j1 (1 ≤
i1 ≤ t, 1 ≤ j1 ≤ k1) from the generated branches in λ, where
S0i1,j1 denotes the coordinate of the j1 germination point on the
i1 branches.

Step 3: Compare the values of f (S0i1,j1 ) with Fmin.
If f (S0i1,j1 ) < Fmin, then Xmin = S0g1,j1 ,Fmin = f (S0i1,j1 ).

Otherwise, keep Xmin and Fmin unchanged.
Step 4: If Fmin ≤ f (S0i1,j1 ), then the growth hormone

concentration at this growing point is PS0i1,j1
= 0; otherwise,

use Eq. (7) to calculate PS0i1,j1
:

PS0i1,j1
=

f (x0)− f (S0i1,j1 )
t∑

i1=1

k1∑
j1=1

[f (x0)− f (S0i1,j1 )]

(7)

Step 5: The growth hormone concentration of all growing
points is established as an interval [0, 1]. Suppose that δ0 is a
random number in this interval, then

r1∑
i1=1

t1−1∑
j1=1

PS0i1,j1
< δ0 ≤

r1∑
i1=1

t1∑
j1=1

PS0i1,j1
(8)
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Select S0r1,t1 as the new growing point, and x1 = S0r1,t1Xmin =

x1, Fmin = f (x1).
Step 6: Take x1 as the thought center, through this point

we can make a line segment parallel to the x-axis and y-axis,
extending a1 ≤ x11 ≤ b1, a2 ≤ x12 ≤ b2, . . . at ≤ x1t ≤ bt as
the new branches. Search for the germination point S1i1,j1 (1 ≤
i2 ≤ t, 1 ≤ j2 ≤ k1) from the generated branches in λ.
Step 7: Compare the values of f (S1i2,j2 ) with Fmin.

If f (S1i2,j2 ) < Fmin, then Xmin = S1i2,j2 ,Fmin = f (S1i2,j2 ).
Otherwise, keep Xmin and Fmin unchanged.
Step 8: Calculate PS0i1,j1

and PS1i2,j2
. If f (x0 ) ≤ f (S1i1,j1 ),

then PS0i1,j1
= 0; otherwise, use Eq. (9) to calculate PS0i1,j1

:

PS0i1,j1
=

f (x0)−f (S0i1,j1 )
t∑

i1=1

k1∑
j1=1

[f (x0)−f (S0i1,j1 )]+
t∑

i1=1

k2∑
j1=1

[f (x0)−f (S1i2,j2 )]

(9)

If f (x0 ) ≤ f (S1i2,j2 ), then PS1i2,j2
= 0; otherwise, use Eq. (10)

to calculate PS1i2,j2
:

PS1i2,j2
=

f (x0)−f (S1i2,j2 )
t∑

i1=1

k1∑
j1=1

[f (x0)−f (S0i1,j1 )]+
t∑

i1=1

k2∑
j1=1

[f (x0)−f (S1i2,j2 )]

(10)

Step 9: The growth hormone concentration of the growing
points is established as an interval [0, 1]. Suppose that δ1 is a
random number in this interval, if

r2∑
i1=1

t2−1∑
j1=1

PS0i1,j1
< δ1 ≤

r2∑
i1=1

t2∑
j1=1

PS0i1,j1
(11)

Then select S0r1,t1 as the new growing point, set x2 = S0r1,t1 ,
Xmin = x2, Fmin = f (x2). Otherwise, if

t∑
i1=1

k1∑
j1=1

PS0i1,j1
+

r2∑
i1=1

t2−1∑
j1=1

PS1i2,j2
< δ1 ≤

t∑
i1=1

k1∑
j1=1

PS0i1,j1

+

r2∑
i1=1

t2∑
j1=1

PS1i2,j2
(12)

Then select S1r2,t2 as the new growing point, set x2 = S1r1,t1 ,
Xmin = x2, Fmin = f (x2).
Step 10:Repeat steps 6 to 9 until the value of Fmin remains

unchanged. Then x∗ = Xmin is the global optimal solution
and the process of iteration has stopped.

C. THE IMPROVEMENT OF PGSA
In the previous research of the PGSA method,the search step
size always needed to be determined manually. However,for
many problems in the actual research process, the space of
feasible domain is quite different. When the space of the
feasible domain is relatively small, the algorithm calculation

FIGURE 3. The Sierpinski carpet map.

process is simple, fast and the result is accurate. As the fea-
sible domain space becomes large, the determination of the
search step size will become difficult. Therefore, the Sierpin-
ski carpet is introduced here to improve the PGSA (as shown
in Figure 3).

The principle of the method is to remove the inner points
by using the four vertices of the square as the initial growing
points. The initial growing point is then established according
to the fractal principle.

Key steps of the improved PGSA algorithm are as follows:
Step 1: Determine et ∈ X is the initial growing point, X is

the bounded closed box in Rn and these initial growing points
et are randomly uniform points in the bounded closed box.

Step 2: Calculate the growth probability of each growing
point (t is the number of growing points).

Pt =

n∑
i=1
(1/ |etEi|)

v∑
t=1

n∑
i=1
(1/ |etEi|)

(t = 1, 2, . . . v) (13)

Step 3:Establish the probability of each growing point within
the interval of 0-1 and select the growing points et of this
iteration by random numbers.

Step 4: Determine step length λ (it is set to be l/1000 in
this paper).The growing points et grow with the L-system of
α = 90◦ and new growing points will replace et .

Step 5: If the new growth point is no longer generated and
the preset number of iterations is reached, the calculation will
stop. The optimal aggregation point is obtained. Otherwise,
return to Step 2.

IV. NUMERICAL ANALYSIS
In the above sections, we have discussed the optimal aggre-
gation model and the efficient method (PGSA) in detail. Now
let us look at two numerical examples.

A. EXAMPLE 1
In this example, Xu [12] developed a theoretic basis for the
application of WGMM. Let us assume the following four
judgment matrices for a decision problem that are given by
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TABLE 1. Expert preference coordinates and aggregation point coordinates.

TABLE 2. Aggregation weight and consistency test.

four experts. The four judgment matrices are shown below:

A1 =


1 4 6 7
1/4 1 3 4
1/6 1/3 1 2
1/7 1/4 1/2 1



A2 =


1 5 7 9
1/5 1 4 6
1/7 1/4 1 2
1/9 1/6 1/2 1



A3 =


1 3 5 8
1/3 1 4 5
1/5 1/4 1 2
1/8 1/5 1/2 1



A4 =


1 4 5 6
1/4 1 3 3
1/5 1/3 1 2
1/6 1/3 1/2 1


The points on the symmetrical position of the main

diagonal of the judgment matrix are mapped to the two-
dimensional coordinate points. Let us assume that the four
experts have equal weights. We employ our method to cal-
culate the coordinates of the two-dimensional decision pref-
erence points of each expert, that is, the aggregation point
coordinates of the group decision, as shown in Table 1.
No.1-4 represents the preference point coordinates of each
of the four experts, respectively. No. 5 is the aggregation

point coordinates of literature [12]; No. 6 is the aggregation
coordinates of this paper.

From Table 1, we can obtain the aggregation matrix A∗

of this paper and the aggregation matrix A of the litera-
ture [12]. The aggregation weight and consistency test are
shown in Table 2.

A∗ =


1 4 5 8
1/4 1 3 5
1/5 1/3 1 2
1/8 1/5 1/2 1



A =


1 3.936 5.692 7.417

0.254 1 3.464 4.356
0.176 0.289 1 2
0.135 0.230 1/2 1


In order to intuitively represent the expert preference

points and aggregation points, the aggregation process can
be expressed in the two-dimensional coordinate system by
the MATLAB simulation, as shown in Fig. 4 to Fig. 9. The
‘‘hexagonal point’’ in the figure represents the aggregation
point obtained in this paper, and the ‘‘square point’’ repre-
sents the aggregation point obtained in reference [12]. When
the hexagonal point appears, this signifies that the aggre-
gation points obtained in this paper coincide with the point
obtained in literature [12].

Assuming that S1 is the weighted sum of Euclidean dis-
tances from the aggregation point in literature [12] to each
expert preference points, S2 is the sum of weighted Euclidean
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FIGURE 4. (a12, a21) Expert preference points and aggregation points.

FIGURE 5. (a13, a31) Expert preference points and aggregation points.

FIGURE 6. (a14, a41) Expert preference points and aggregation points.

distances from the aggregation point in this paper to each
expert preference points, while 1S is the difference between
S1 and S2. The results obtained from the correlational anal-
ysis regarding the sum of Euclidean distances from the
aggregation points to other given points can be compared
in Table 3 and Table 4.

It is apparent from Table 3 and Table 4 that S2 is less than
S1, except for the overlap between the aggregation points
obtained in literature [12] and that obtained in this paper
which is plotted in Fig. 9. This shows that the aggregation

FIGURE 7. (a23, a32) Expert preference points and aggregation points.

FIGURE 8. (a24, a42) Expert preference points and aggregation points.

FIGURE 9. (a34, a43) Expert preference points and aggregation points.

points obtained in this paper are better than the aggregation
points obtained in [12].

Assuming that the weights of four experts are not equal,
they are λ1 = 1/10, λ2 = 2/10, λ3 = 3/10, λ4 =
4/10. We employ our method to calculate the aggregation
point coordinates of the group decision, as shown in Table 5.
No.1-4 represents the preference point coordinates of each of
the four experts, respectively. No. 5 is the aggregation point
coordinates of the literature [12]. No. 6 is the aggregation
coordinates of this paper.
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TABLE 3. The comparison 1 between this paper and literature [12].

TABLE 4. The comparison 2 between this paper and literature [12].

TABLE 5. Expert preference coordinates and aggregation point coordinates.

From Table 5, we can obtain the aggregation matrix A∗

of this paper and the aggregation matrix A of the litera-
ture [12]. The aggregation weight and consistency test are
shown in Table 6.

A∗ =


1 4 5 7.185
1/4 1 3 4.443
1/5 1/3 1 2
0.142 0.238 1/2 1



A =


1 3.837 5.446 7.204

0.261 1 3.464 4.134
0.184 0.287 1 2
0.139 0.242 1/2 1


As above, expert preference points and aggregation points

are shown in Fig. 10 to Fig. 15. The ‘‘hexagonal point’’ in
the figure represents the aggregation point obtained in this
paper, and the ‘‘square point’’ represents the aggregation
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TABLE 6. Aggregation weight and consistency test.

FIGURE 10. (a12, a21) Expert preference points and aggregation points.

FIGURE 11. (a13, a31) Expert preference points and aggregation points.

point obtained in reference [12]. When the hexagonal point
appears, this signifies that the aggregation points obtained in
this paper coincide with the point obtained in literature [12].

Assuming that S3 is the sum of weighted Euclidean dis-
tances from the aggregation point in literature [12] to each
expert preference points, S4 is the sum of weighted Euclidean
distances from the aggregation point in this paper to each
expert preference points, while 1S is the difference between
S3 and S4. The results obtained from the correlational anal-
ysis regarding the sum of Euclidean distances from the
aggregation points to other given points can be compared
in Table 7 and Table 8.

It is apparent from Table 7 and Table 8 that S4 is less than
S3, except for the overlap between the aggregation points
obtained in literature [12] and that obtained in this paper

FIGURE 12. (a14, a41) Expert preference points and aggregation points.

FIGURE 13. (a23, a32) Expert preference points and aggregation points.

which is plotted in Fig. 15. This shows that the aggregation
point obtained in this paper is better than the aggregation
point obtained in [12].

B. EXAMPLE 2
This section refers to the numerical analysis given by
Zhou and Kocaoglu [21] under the framework of AHP. He
proposed the MDM method to support the group decision-
making process which can help decision makers reach con-
sensus. Suppose that there are four evaluators A, B, C, D, they
have equal weights. The four comparison judgment matrices
are as follows:

A =


1 1/2 1/3 1/4
2 1 2/3 1/2
3 3/2 1 3/4
4 2 4/3 1


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TABLE 7. The comparison 1 between this paper and literature [12].

TABLE 8. The comparison 2 between this paper and literature [12].

FIGURE 14. (a24, a42) Expert preference points and aggregation points.

B =


1 2 2/3 1/2
1/2 1 1/3 1/4
3/2 3 1 3/4
2 4 4/3 1



C =


1 1/3 1/2 1/4
3 1 3/2 3/4
2 2/3 1 1/2
4 4/3 2 1



FIGURE 15. (a34, a43) Expert preference points and aggregation points.

D =


1 4/3 2 4
3/4 1 3/2 3
1/2 2/3 1 2
1/4 1/3 1/2 1


The points on the symmetrical position of the main diag-

onal of the judgment matrix are mapped to the coordinate
points on the plane. We employ our method to calculate the
aggregation point coordinates of the group decision, as shown
in Table 9. No.1-4 represents the preference point coordinates
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TABLE 9. Expert preference coordinates and aggregation point coordinates.

TABLE 10. Aggregation weight and consistency test.

FIGURE 16. (a12, a21) Expert preference points and aggregation points.

of each of the four experts, respectively. No. 5 is the aggre-
gation point coordinates of the literature [21]. No. 6 is the
aggregation coordinates of this paper.

From Table 9, we can obtain the aggregation matrix A∗ of
this paper and the aggregation matrix A of the literature [21].
The aggregation weight and consistency test are as shown
in Table 10.

A∗ =


1 0.670 0.5 0.25

1.887 1 1.5 0.643
2 0.667 1 0.75
4 1.905 1.333 1



FIGURE 17. (a13, a31) Expert preference points and aggregation points.

A =


1 0.5 0.5 0.375
2 1 1 0.75
2 1 1 0.75

2.667 1.333 1.333 1


As above, expert preference points and aggregation points

are shown in Fig. 16 to Fig. 21.The ‘‘hexagonal point’’ in
the figure represents the aggregation point obtained in this
paper, and the ‘‘square point’’ represents the aggregation
point obtained in reference [21]. When the hexagonal point
appears, this signifies that the aggregation points obtained in
this paper coincide with the point obtained in literature [21].
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TABLE 11. The comparison 1 between this paper and literature [21].

TABLE 12. The comparison 2 between this paper and literature [21].

FIGURE 18. (a14, a41) Expert preference points and aggregation points.

Assuming that D1 is the sum of weighted Euclidean dis-
tances from the aggregation point in literature [21] to each
expert preference points,D2 is the sum of weighted Euclidean
distances from the aggregation point in this paper to each
expert preference points, while1D is the difference between
D1 and D2. The results obtained from the correlational

FIGURE 19. (a23, a32) Expert preference points and aggregation points.

analysis regarding the sum of Euclidean distances from the
aggregation points to other given points can be compared
in Table 11 and Table 12.

It is apparent fromTable 11 and Table 12 thatD2 is less than
D1, except for the overlap between the aggregation points
obtained in literature [21] and that obtained in this paper
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FIGURE 20. (a24, a42) Expert preference points and aggregation points.

FIGURE 21. (a34, a43) Expert preference points and aggregation points.

which is plotted in Fig. 17 and Fig. 21. This shows that the
aggregation point obtained in this paper is better than the
aggregation point obtained in [21].

V. CONCLUSION AND SUGGESTIONS
FOR FUTURE RESEARCH
In this paper, a new aggregation method of judgment matri-
ces is proposed, which is an optimal aggregation method in
theory. The optimal aggregation points can be obtained by
the optimal aggregation model and the efficient algorithm
(we adopt the improved PGSA method in this paper).

The decision maker preference is projected onto the
two-dimensional coordinates, and the aggregation matrix of
decision maker preference is constructed by calculating the
optimal aggregation points. Compared with Xu’ method [12]
and Zhou’ method [21],the sum of Euclidean distances from
the aggregation points to other given points in this paper
is minimal. In addition, the method proposed in this paper
can provide a new method to aggregate all decision maker
preference matrices into a single aggregation matrix in AHP.
The aggregation matrix is made up of the optimal aggregation
points which are obtained by the proposed method in this
paper. It is obtained by the iterative algorithm rather than
calculated by the aggregation operator. The global optimal
solutions are obtained by the PGSA since every iteration

scans the points in the whole growth space. Therefore, it is
reasonable that we establish the aggregation matrix by the
proposed method in this paper.

It is apparent from this study that the method in this
paper can solve the multi-points aggregation problems in the
two-dimensional coordinates system. The validity and ratio-
nality of this method is also verified by the analysis and
comparison of examples, which provides a new idea to solve
the MAGDM problems.

However, there are some limitations of this method. When
the expert preference points are increasing (more than fifty
points), we cannot effectively calculate the distance by the
proposed method.

In future research, we will focus on the following aspects.
Firstly, we proposed a new aggregation method of judg-
ment matrices in AHP. But in the real world, the MAGDM
problems are very complicated. We will attempt to map
the expert preference information into the spatial multi-
dimensional coordinate points. Secondly, when the expert
preference points are increasing (more than fifty points),
we cannot effectively calculate the distance by the proposed
method. We will try to adopt clustering algorithms such as
spectral clustering, kernel clustering and quantum clustering
to cluster expert preferences. In this way, the number of
expert preference points can be reduced. Thirdly, we will
develop a new approach for large-scale MAGDM problems
with linguistic information combining the proposed method
in this paper and the linguistic computational model [44].
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