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ABSTRACT The unbalanced force on the active magnetic bearing (AMB) rotor system is the main reason of
system vibrations, which always have periodic repetitive characteristics. However, the closed-loop feedback
control system (CFCS) is difficult to achieve effective control of these repetitive problems. In this paper,
we firstly analyzed the synchronous vibration by taking AMB rotor mass imbalance as an example. Then,
we proposed a model-free control (MFC) method based on the Newton-type ILC algorithm, and the key of
this MFC is to use a partial derivative (P-D) of the output with respect to the input. The simplicity of this
algorithm lies in that and the P-D is calculated by only using the input and output (I/O) data of the system
and then used to adjust the ILC gain. Subsequently, we proposed a parallel plug-in control scheme based
on existing AMB control system to suppress synchronous vibration. Finally, we carried out the simulation
and experiment to research the control method mentioned in this paper. The results show that the MFC has
a good control effect on AMB synchronous vibration. Notably, this MFC for synchronous vibration has the
advantages of being without system model, simple design and good portability, and can provide theoretical
and experimental basis for the application of AMB in high precision and high speed fields.

INDEX TERMS Active magnetic bearing, synchronous vibration, model-free, iterative learning control

parallel control scheme.

I. INTRODUCTION

Many traditional mechanical bearings are difficult to meet
requirements of some occasions due to mechanical friction,
serious wear, and lubrication, etc. Fortunately, AMB has
many advantages, such as no mechanical contact, no wear,
and no lubrication, etc., can effectively avoid the problems
existing in traditional mechanical bearings [1]. Moreover,
AMB has been verified in the field of high speed, high
precision and high clean occasions, such as the primary
helium circulator and helium compressor used in primary
helium circulation system of high temperature gas-cooled
reactor [2], [3], and high speed motor [4]. But due to
limited precision of processing, manufacturing and defects
of materials, etc., which may lead the rotor mass imbalance.
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Meanwhile, imprecision of installation and debugging always
lead to misalignment of the geometric centers between the
stator and the rotor. Additionally, rotor distortion and residual
objects attached to the rotor that may occur during opera-
tion. All of these reasons would lead to complex unbalanced
problems of AMB rotor system eventually. From [5]-[8],
the unbalanced force on AMB rotor system is the main rea-
son of synchronous vibration and multi-frequency vibration
in rotating machinery equipped with AMB. Furthermore,
the unbalance problems would become more complex and
more serious as the rotating machinery is operating, and even
threaten the safety and reliability of the system.

In AMB control system, CFCS is necessary. There are
many research fruits in the field of unmolded dynamics
and actuator faults and unknown output of the control
system [9]-[11], iterative feedback tuning [12], [13]. Fur-
thermore, besides conventional PID controller, 2- degree of
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freedom (DOF) controller, nonlinear smooth feedback con-
trol method and linear parameter varying controller were
studied for AMB [14]-[16]. But these feedback control
methods were designed for the stability of the system, not for
periodic vibrations produced by rotor imbalance.

There are many unbalanced control methods for AMB
rotor system, such as the traditional mechanical balance com-
pensation method, which is commonly used before installa-
tion, but it may unsuitable to tackle unbalance found after
installation or occurred in the operation. Fortunately, due
to the active control characteristics of AMB [1], [17],the
vibrations can be suppressed by the control method when
the rotor is suspended by AMB. In [18], the unbalance
control technologies of AMB system are comprehensively
summarized, and divided into two categories, including force
freedom and force control respectively. From the literature
investigation, most of current AMB rotor unbalance control
algorithms rely heavily on the rotor system model [19]-[21],
and some control algorithms can only be effective at the fixed
speed. Furthermore, most of the control methods just verified
on the simulation platform, but not fully verified on the actual
AMB system [19]-[23].

More significantly, AMB is a multi-input and multi-output
nonlinear system with strong coupling, time-varying and
structural uncertainty. In the design of CFCS, Taylor lin-
earization is always carried out at the equilibrium point.
But the controller in CFCS (always PID controller) without
learning from previous system formation has little effect on
periodic vibration control [1], [17].

Fortunately, as one of data-driven control method, ILC
can deal with repetitive problems as the periodic vibration
stated in this paper by using the previous system information,
and need little system model [24], which provides the foun-
dation for the MFC applied to suppress AMB synchronous
vibration researched in this paper. Recently, many applica-
tion problems have been solved, such as input constraint
[25], [26], data dropout and so on [27]-[29]. Furthermore,
ILC has been successfully used to suppress periodic distur-
bance of linear motor and microscale and nanoscale tracking
systems [30], [31].

To sum up, the purpose of this paper is mainly to put
forward and achieve a completely MFC method based on
Newton-type ILC for synchronous vibration of AMB rotor
system with the advantages of ILC over repetitive prob-
lems and needing little system model information. And
his paper is arranged as follows: Section II analyzes the
periodic vibration by taking AMB rotor mass imbalance
as an example. In Section III, the MFC method based
on Newton-type ILC is proposed and analyzed in detail.
In Section IV, the parallel plug-in control scheme is designed
to achieve the MFC method based on the existing AMB
CFCS. In Section V, simulations and experiments are car-
ried out to verify the effectiveness of the methods, and
the results are discussed here. Finally, some conclusions,
future directions and works have been summarized in
Section VL.
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FIGURE 1. The schematic diagram of rotor mass imbalance model in the
axial section.

Il. AMB ROTOR SYNCHRONOUS VIBRATION
MECHANISM ANALYSIS

There are many factors that can produce periodic vibrations
of rotating machinery, but the most important one is the syn-
chronous vibration caused by the rotor mass imbalance [32].
Here, we take it as an example to analyze the mathematical
mechanism. Certainly, other periodic vibrations caused by
corrosion, cracks or residues can be equivalent to the rotor
mass imbalance. In this paper, the synchronous vibration
generated by the rotor mass imbalance is analyzed by the
theory of mechanical system vibration [33]. The rotor mass
imbalanced model in the axial section is shown in Fig.1.
where O(0, 0) is the geometric center of the stator, and the
fixed rectangular coordinate system OXY is established with
this point as the origin of coordinates, and Oy is the geometric
center of the rotor. Here we assume that there is no geometric
eccentricity, that is, the rotor geometric center overlaps with
the stator geometric center. In addition, O,,(xy,, yn) is the
rotor mass center, OgO,, = a is the mass eccentricity, @
is the rotor rotational speed and 6 is the initial phase of
the mass center with respect to OXY. Thus, the geometrical
relationship can be expressed as

{xm = acost )

Ym = asin

When the rotor is running with speed w, the components
of the unbalanced centrifugal force in the X and Y directions
can be calculated as

@)

fx = ma*acos(wt + 6)
Jmy = mw2asin(wt + 0)

Since a rigid rotor used in the AMB experimental sys-
tem has typical second-order characteristics, the differential
equations for the radial vibration of the rotor system can be
written as

{mic' + ¢k + kx = mwacos(wt + 0) 3

my + ¢y + ky = mo2asin(wt + )

79255



IEEE Access

Y. Zheng et al.: A Model-Free Control Method for Synchronous Vibration of AMB Rotor System

where c is rotor damping and k is rotor stiffness. The solution
of the equations (3) can be expressed as

x (1) = C1pe™V! + Crre®! + Cppcos(wt + @y) @

y () = Ciye'" + Caye??' + Cppysin(wt + ¢y)
where x1, x2, y; and y, are the eigenvalues, Cix, Coyx, Cpy,
Ciy, Czy, Cuy, ¢x and @, are constants of the solution of
equations (3). Since the AMB rotor system is stable based
on CFCS, the eigenvalues are located in the left half complex
plane. This means the exponential terms (Cyye*! + Co ™!
and Ciye’!! + Caye*?") of equations (4) will decay over time,
and the rest components of the motion are the rotor vibrations
and can be expressed as

: (5)
y () = Cyysin(wt + ¢y)

{x () = Cuxcos(wt + ¢x)

As described in equations (5), the unbalanced centrifugal
force caused by rotor mass imbalance eventually leads to the
simple harmonic vibration with the same frequency as w in
the X and Y directions. Additionally, other multi-frequency
vibrations will occur due to misalignment of the stator and
the rotor [34], sensor runout, etc., which will not be analyzed
in detail here.

The simple harmonic vibration of the rotor described in
equations (5) is essentially the AMB rotor synchronous vibra-
tion, which is one of the most difficult problems to be solved
for rotating machinery equipped with AMB. In severe cases,
it will lead to deterioration of system performance, shortening
of service life, and even threatening of system safety.

More seriously, if the vibration amplitude is too large in
AMB, the rotor and the catcher bearing would be initially
rubbed, which would cause irreparable damage to the system
structure. Fortunately, AMB can provide the active control
ability for the rotor, and the traditional bearings cannot be
comparable in this aspect [17].

From the description above, due to the complex and vari-
able operating conditions of the AMB system, structural
uncertainties, the system vibration mechanism is complex.
So the traditional control methods based on model are dif-
ficult to apply to the AMB rotor system vibration control.

Ill. MODEL-FREE CONTROL METHOD
A. INTRODUCTION TO THE BASIC AGORITHM
The MFC method proposed in this paper is based on the itera-
tive learning algorithm, which can achieve effective control of
repetitive problems with little system model information. And
it was used to control repetitive tasks of robots and established
under a strong engineering application background [35].
Since most of the controlled plants in the industry have
nonlinear characteristics, and for the sake of coinciding with
the AMB with single DOF, iterative learning algorithm is
described by taking a discrete time-varying single input
single output (SISO) system as an example. The system
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is described as
X (4 1) =f (g (2), ug (1))

0) = 6
{yk (1) = g (e (1) =0 ©

where t = [0,1,2,---,N — 1], N is the iterative learning
step size, ke{0, 1,2, - - -} is the iterative index, x; (f) € R"
(n is the system state dimension), yx (#) € R and uy (t) € R
are the state vector, the output and the input, respectively. f (.)
and g(.) are the state vector function with n dimensional and
the smooth output function. Meanwhile, we assume the sys-
tem has identical initial conditions for each iteration. The goal
of ILC is to find the target control sequence uy (¢) through
repetitive iterations, so that the actual output sequence yy (¢)
can track the target output sequence y, (¢). The general con-
trol output can be expressed as

vep (1), epq1 (1)

N

Uk+1 (I)Z.F(Mo(l),"' 1uk(t)’e()(t)v"'

where e; (1) = yq (t) — yi (¢). According to equation (7),
the current control output is a linear or non-linear combina-
tion of past control outputs, past control errors and current
control error. So it is a control method with memory function
and belongs to intelligent control [36].

B. ITERAIVE LEARNING CONTROL BASED
ON NEWTON METHOD
If the controlled plant is a linear time-invariant system, and
the system model is known or can be easily identified, the ILC
algorithm design is very simple, such as P-ILC, PD-ILC,
PID-ILC, and other compound control methods based on
ILC [36]-[41]. However, due to the nonlinearity and strong
coupling, and the complex unbalance problems of the AMB
rotor system, accurate model is almost impossible obtained.
Therefore, the classical ILC algorithms are difficult to apply
to suppress the synchronous vibration of AMB rotor system.
Here, this paper proposes the MFC method with P-D cal-
culated by using the system I/O data in the basis of Newton-
type ILC scheme, which is based on the Newton method
[42], [43] or the Quasi-Newton method [44], [45]. For further
analysis of the algorithm, the difference equation of the plant
described in equations (6) are rewrote as algebraic equa-
tions. Firstly, the sequences of uy (¢), yi (f) and e (f) are
defined as

e (1) = [ug (0), ug (1), -+, ue (N — D]”
Yi () =D (D v ),y DT

e (1) =1lya (1) =y (1), ya 2) =y (2),
s ya (N) =y (WN)TF

®

According to the difference equations (6), the input con-
trol sequence uy (¢) and the output sequence yi (¢) satisfy
the following relations as expressed in equations (9) and
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equation (10).

vk (1) = g{xe (D} = g{f (xx (0), ux (0))}

= Hi {xx (0), ug (0)}

ye () =gl D} =g{f (o (), uge (1))}

= Ho {xk (0), ux (0), xic (1), ug (1)} ©)

yie (N) = g{a (N} = g{f Gx (N — 1), ug (N — 1))}
=Hn (X (0), ug (0), -+ x4 (N — 1), ux (N — D}

Furthermore, the differential equations (9) can be
described as the algebraic equation.

Vi (1) = H(ux (1)) (10)

where H(.) is a compound function of f(.) and g(.). Now
we assume that the system can be reachable, that is, there
exists a unique target input sequence uy () for the tar-
get output sequence y, (). Therefore, the execution of the
ILC algorithm is transformed into the solution of the alge-
braic equation (10). According to Newton method [42], the
Newton-type ILC algorithm can be written as

3 -1
et 0= w0+ 1D iy
uy, (1)

Mathematically, % is a dynamic linearization

method for the controlled plant described as equations (6).
Moreover, the ILC algorithm described in equation (11) based
on Newton method has quadratic convergence characteristics.
Namely,

g1 () —ua O <y lue ) —uag O, y€©, 1) (12)

Therefore, the key of the ILC algorithm based on Newton
method becomes how to calculate [%’Ey))]_l. Some the-
oretical methods are researched in [42]-[45], but they are
very complicated, and difficult to avoid the analysis of the
controlled plant model and complex operation of the matrix
inversion. Moreover, singular Jacobian matrix problems may
occur here. So this paper proposes a simple and approximate
calculation method to avoid the problems stated above. And
this method does not need the system model information and

is equivalent with matrix inversion in SISO system.

C. ITERAIVE LEARNING GAIN ESTIMATION

As the MFC for synchronous vibration proposed in this paper
is based on the existing AMB CFCS, the system has already
worked near the equilibrium point. That is to say, the system
has well certain linearization basis. Therefore, calculating the
system P-D in each iteration, is essentially equivalent to solve
the parameter @i () of the following linear equation.

Ay (1 + 1) = () Au (1) (13)

where Ay, (t+1) = ye (t+1) — yx (¢) and Auy (t) =
ug (t) — ug (t — 1). Combining with equations (11) and (13),

it can be seen that ¢ (1) = %’Et()t)) In other words, through
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the transformation of the algorithm, the nonlinear problem
has been transformed into a serious of dynamic linearization
problems. In order to estimate ¢ (¢), we first establish the
following criterion function as expressed in equation (14)
with reference to affine projection algorithm [46], dynamic
linearization methods [46] and other MFC theory [48].

T (0) = | Ay (1) — By O] + 2 lgr (1) — g (¢ — D
(14)

where K)Tk (t) = @r—1(t)Aug_1 (¢). Substituting equation
(13) into equation (14), we can get

J(gr (1))
= [y (1) — yi (t = 1) — @) g (2 — 1) — ug. (1 — 2))I?
+A gk (1) — g (£ — DI (15)

where [y (1) — yi (t = 1) — @ (D (g (¢ — 1) — g (¢ — 2))?
is used to restrict the system control error, and
Aok (1) — ok (t—)l2 is used to limit the change rate of
ok (). Here ¢ (¢) would not have great change because it is
determined by the current system equilibrium point. A > 0,
is just a control factor, and does not affect the optimum
solution. Then we solve the optimal solution of the criterion
function as expressed in equation (15), and ¢ (¢) can be
calculated as

o (1)
wp (t — 1) — ug (t — 2)
= —1
i )+x+wur—n—wa—mf
X (Vk (1) =y (t—=1)— @ (t—1) (ug (t—1) =g (t—2)))
(16)

Equation (16) is an equivalent calculation of the system
P-D, and ¢ (¢) is a sign-invariant and bounded variable in the
actual system. The P-D of AMB system is always a positive
bounded variable, so it can be described as

@ (1) € [a, B] (17)

where @« = min{yy (t)} and B = max{ey (¢)}. In order to
ensure the convergence of the system control error, combin-
ing with equations (11) and (17), the range of ILC algorithm
gain can be express as
-1
M] € [0, l] (18)
duy (1) p
Therefore, ¢ (f) with the same dimension as the iter-
ative learning step N in each iteration can be calculated,
and then used to set ILC algorithm gain with reference to
equations (17) and (18).

D. MODEL-FREE CONTROL METHOD SYNNTHESIS

Through the above analysis, the iterative learning algorithm
based on Newton method designed in this paper does not need
any system model information. It only needs the system I/O
data to calculate the P-D, which provides the parameter self-
learning function for the Newton-type ILC. Of course, this
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FIGURE 2. The AMB experimental system.
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FIGURE 3. The AMB CFCS with single DOF.

MFC method is only suitable for discrete SISO control sys-
tems. Fortunately, AMB is always controlled by a distributed
scheme in the digital control system, so MFC proposed in
this paper can be used to suppress synchronous vibration of
AMB rotor system. Here, the basic process of the MFC is
summarized as follows:

Step 1: The control factor A and the initial P-D (¢q (¢))
should be determined firstly. In order to avoid the non-
convergence of the system control error, it can be obtained
from equations (11), (17) and (18) that the initial learning gain
cannot be too large, so the ¢ (¢) cannot be set too small.

Step 2: The system begins to learn, calculate and store
ur(t), yr(t), ex(t) and @ (t). When current iteration ends,
it needs to check whether e;(f) meets the requirement or
not. If the requirement is met, it means that u (¢) of the cur-
rent iteration is the target control sequence uy (¢), otherwise,
it proceeds to Step 3.

Step 3: According to the u (), ex(t) and ¢y () obtained
in Step 2, the control input sequence u,1(¢) should be cal-
culated according to equation (11). Then the variables would
be renewed as the uy1(¢) inputted the system. This control
process is executed repetitively until the system output y ()
completely tracks y ().

IV. CONTROL SCHEME ANALYSIS
Equations (11), (16), (17) and (18) show that the control
algorithm designed in this paper is a model-free open-loop
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proportional variable gain ILC algorithm. And it is used to
suppress the AMB rotor synchronous vibration produced by
unbalanced force mentioned in Section II.

A. CONTROL PLANT DESCRIPTION

The AMB system used in this paper is vertically arranged,
as shown in Fig.2. And the CFCS is implemented based on
PID controller.

As shown in Fig.2, the gravity of the AMB rotor is balanced
by the axial thrust bearing. The upper and lower radial AMBs
are used to achieve the stability control for four radial DOFs.

From the analysis of Section II, the unbalanced force
mainly exists in the radial directions of the AMB rotor sys-
tem. In order to facilitate the design of the control system,
a distributed control scheme is adopted for the synchronous
vibration in four radial directions. And the AMB CFCS with
single DOF is shown in Fig.3.
where k; and k, are the current coefficient and displacement
coefficient of the AMB system respectively, which are two
constants related to the structure and equilibrium point after
linearization. Therefore, the transfer function of the AMB
with single DOF can be expressed as

Gplant (s) = (19)

ms? — k,

Obviously, it is an open-loop unstable system, so the CFCS
is necessarily used to achieve stability control for the AMB
system [1].
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FIGURE 4. The parallel control scheme for AMB rotor synchronous vibration.

B. CONTROL SCHEME DESIGN

The synchronous vibration of AMB rotor system in this paper
adopts a “on demand” strategy, which means it is used in
plug-in mode. For example, mechanical balance for a new
AMB rotor system may meet the operating requirements,
it does not require to suppress synchronous vibration in the
early stage. But due to corrosion, cracks or residues, etc.,
which may lead to the rotor mass imbalance become serious.
In this case, it is necessary to active the vibration control
to avoid system performance degradation, loss reduction and
safety risks.

In order to meet the requirements stated above, this paper
proposed a parallel control scheme to realize the plug-in
mode in the basis of the existing AMB control system. This
control scheme can provide convenient control means for the
AMB system, as shown in Fig.4.

Here, several main reasons for the parallel plug-in control
scheme design are explained below:

Firstly, the existing AMB control system can be used to
maintain the stability of the system, and can suppress the
non-periodic vibrations. So the parallel control scheme can
make up for the deficiency of ILC on non-periodic distur-
bance control.

Secondly, the structure shown in Fig.4 facilitates to process
and analyze the system control error e (t). Because the syn-
chronous vibration signal ¢ (¢) is need to be extracted and
calculated at the end of each iteration, and then stored and
used as the control error for ILC loop in the next iteration.

Thirdly, the parallel plug-in control scheme can reduce the
cost of controller redesign as there is no need to change the
existing AMB control system, and can be used to optimize the
performance of the AMB system. From another point of view,
the parallel control scheme shown in Fig.4 has important
practical significance in the application.

C. ALGORITHM CONTROL ANALYSIS

As the analysis of Section II, the reasons why ILC can be used
for the AMB rotor synchronous vibration is that, the vibration
generated by unbalance force has the same or multi-frequency
with w.
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FIGURE 5. Control flow of the algorithm.

Therefore, in order to achieve repeatability and periodicity
of the vibration produced by unbalance force, the period of
one spin should be used as the iterative learning period 7.
So the information of the rotor rotational speed is detected
real-time, and used to trigger each iteration of ILC. This
function can be achieved by the speed sensor mounted on
the side of the rotor (as shown in Fig.2). Meanwhile, the ILC
controller is developed on the basis of TMS320F28335 and its
embedded platform. The main control flow of the algorithm
is shown in Fig.5.

There are several key processes described as follows:

(i) Parameters initialization. The ILC parameters are ini-
tialized according to Section III.

(i) The system control error signal analysis. The syn-
chronous vibration signal should be extracted and
stored at the end of each iteration. The extraction
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algorithm can be performed according to the principle
of the discrete Fourier transform (DFT) [49]. Here,
the extraction processes of the synchronous vibration
are described as follows:

The first step is to calculate the coefficients of the
synchronous component according to equation (20).

N-1

ay = Z ek[i]cos(%)

Nl . (20)
biu= Y exlilsin )

i=0 N

The second step is to synthesize synchronous
vibrationsey [i] by using the inverse discrete Fourier
transform (IDFT) [49]. The process can be
expressed as

Vo2 2
e l =—\|a COS| —
K=o v % N

L 21
+b1y sin (7» 21

1YL — Ao —e) @)
1 = COS(—— —
AN
2
T
by (23)
tan = —
aik

where N is the number of sampling numbers in each
spin, and here the iterative learning length meets

T =N, <T = ?) (24)

where f; is sampling frequency. Obviously, this is con-
sistent with the ILC algorithm described in Section III.
(iii) Trigger ILC loop. As the strategy of “on demand” is
used in the AMB rotor synchronous vibration. Here we
specify that, the ILC loop is active when the vibration
amplitude exceeds a certain threshold, and the trigger
threshold Ay, is set to 1/5 of the catcher bearing radius.

V. EXPERIMENTAL RESEARCH

A. SIMULATION RESEARCH

In order to provide a better experimental reference before
the experiments, it is necessary to carry out the simulation
researches.

In this paper, simulation researches are carried out by
using the parameters of the AMB experimental system shown
in Fig.2, which are listed in Table 1.

In the simulations, a sinusoidal disturbance with period
T = 10s and a random white noise are added into the loop
in front of power amplifier. Here the sinusoidal disturbance
is used to simulate the synchronous vibration caused by the
rotor mass imbalance, and the random white noise is used
to simulate the random noise in the field. Then, we set k =
10, x¢ (0) = 0 and A;;, = O as the iterations is set to 10,
which means that the strategy of “on demand” is not used
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TABLE 1. Parameters of the AMB experimental system.

Parameter Value

m 62kg

k; 145N/A

ky 62500N/m

fs 1% 10*Hz

TABLE 2. Parameters of simulations.
Simulation O (wy (1)), _, Simulation

Groups 4 Po(®) du () ] Results
Group 1 1 1 1 Fig.6
Group 2 1 10 0.1 Fig.7
Group 3 10 10 0.1 Fig.8
Group 4 1 0.1 10 Fig.9

in simulations. Four groups of simulations are carried out
with the parameters initialed as shown in Table 2. Further-
more, we select the curves of the vibration signal both in the
iterative domain and time domain, the maximum vibration
amplitude and the10th P-D as references for the comparative
analysis in four simulations.

The results of four simulations are analyzed as follows:

Firstly, the results of Group 1, Group 2 and Group 3 reveal
that the MFC method can effectively suppress synchronous
vibration.

Secondary, comparing Group 1 and Group 2, in the case
with the same value of A, but different values of ¢q (),
it reveals that ¢ (f) can affect the system control error con-
vergence speed Meanwhile, the larger the ¢ (¢), the smaller

the [‘97;;:’%(; ))] , which means that the iterative learning gain

is smaller, and the system control error convergence speed is
slower.

Third, comparing Group 2 and Group 3, in the case with the
same value of ¢ (¢), but different values o fA, it reveals that A
hardly affect the system control error convergence speed. This
experimental result is consistent with that A does not affect the
optimal value of equation (15).

Finally, from the calculation results of @9 (¢) in Group 1,

Group2 and Group 3, all ¢19 (r) > 0.1 and % 1 < 10. But in
Group 4, we set ¢ (t) = 0.1, this means [”;,E“",(’))] =10,

where the iterative learning gain exceeds the system control
error convergence range, and eventually leads to the system
control error divergence. So ¢ (¢) is a sensitive parameter in
the MFC for the AMB rotor synchronous vibration.

B. EXPERIMENTAL RESEARCH
The simulation results can provide references for the exper-
imental researches. For example, we know how to select A
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FIGURE 6. Simulation results of Group 1 (A =1, ¢ (¢) = 1).

and ¢q (t), and the influence of A on the control effect is
almost negligible. So here we set . = 1 in all experiments.
Considering that the identical initial conditions cannot be
fully met in the AMB experimental system for synchronous
vibration with ILC, which means the initial states of the
system described in equation (6) would varied in each cycle
(iteration), or more direct to say that x; (0) = xp would not
be satisfied. Therefore, here we apply a forgetting factor to
realize the robustness of the ILC with reference to [36], [37].
Finally, the algorithm used in the experiments is revised as

OH -1
up+1 (1) = §puy, (1) + [M] ey (1)

duy (1) 2

where £7€[0, 1), the role of & is to gradually weaken the use
of the previous system information as the iteration progresses.

And it is an engineering experience parameter, so & =
0.95 is set in the experiments. Here, the experiments are
carried out at the f = 25Hz (the speed of rotor is 1500 1/m),
because synchronous vibration is very serious as the converter
operates in this frequency.

Four groups of experiments are carried out with the param-
eters shown in Table 3. And we select the time-domain
vibration signal of one direction and its P-D calculated in the
20th iteration. Meanwhile, we draw the rotor’s axis loci of
the places where is installed displacement sensors with and
without the ILC.

The first 20 iterations are selected for comparative analysis
of four experiments. Now the results are analyzed as follows:
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TABLE 3. Parameters of experiments.

Experimental OH (u (1)), | Ay | Experimental
2| e® | 5,0 ]
Groups u, (t) (mm) Results
Group 5 1 1 1 0.03 Fig.10
Group 6 1 10 0.1 0.03 Fig.11
Group 7 1 1 1 0 Fig.12
Group 8 1 10 0.1 0 Fig.13

Note 1. The safety space between the surface of rotor and catcher bearing
is 0.15mm in the AMB experimental system

Firstly, the experimental results (shown in Fig.10, Fig.11,
Fig.12 and Fig.13) reveal that the MFC method can effec-
tively suppress AMB rotor vibration.

Secondary, from the results of Group 5 and Group 6 with
the threshold control strategy, we can see that ¢g (¢) can affect
the system control error convergence speed. The control
requirement is met after the 12th iteration in Group 5 and after
the 14th iteration in Group 6. Of course the system control
error convergence speed can also be revealed in Group 7 and
Group 8 without the threshold control strategy.

Third, the 20th P-D calculation results of four experiments
are basically consistent and coincided with the simulation
results, which indicate that the P-D calculated in the AMB
experimental system are accurate and reliable. So it is rea-
sonable and feasible to be used as a reference to adjust the
ILC gain.
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FIGURE 7. Simulation results of Group 2 (A = 1, ¢g (t) = 10).
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FIGURE 8. Simulation results of Group 3 (A = 10, ¢ () = 10).

Finally, we can see the amplitude and the rotor’s axis loci
have changed with and without ILC. From the results of
Group 5 and Group 6 with the threshold control strategy,
when the control requirements are met, the remaining
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vibration signals still have certain periodic characteristics,
because the rotor’s axis loci are small circulars or ovals
(shown in Fig.10 and Fig.11). However, from the results of
Group 7 and Group 8 without the threshold control strategy,
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FIGURE 9. Simulation results of Group 4 (A = 1, ¢g (t) = 0.1).
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FIGURE 10. Experimental results of Group 5 (A =1, 9o (¢#) = 1,44 = 0.03).

the control requirement is met after the 15th iteration in
Group 7 and after the 17th iteration in Group 8, and there
are almost no periodic components in the remaining vibration
signals, because the rotor’s axis loci converge into small
clusters (shown in Fig.12 and Fig.13).
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C. RESULTS DICUSSION

From the results of simulations and experiments, the MFC
method designed in this paper has a good control effect
on the AMB rotor synchronous vibration. The key of the
algorithm is to set the initial values of two parameters
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FIGURE 12. Experimental results of Group 7 (A =1, ¢q (1) = 1,44 =0).
A and ¢ (t). Firstly, the control factor X is insensitive to the is very critical. From the experimental results, it is better to set

control effect, so a reasonable positive number is only needed the value of ¢ (¢) to be large, which means the expected P-D
to be selected appropriately. Secondary, the selection of g (¢) is large. Thus, the initial iteration learning gain is small, so it
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FIGURE 13. Experimental results of Group 8 (A =1, ¢ (tf) = 10,4, =0).

does not affect the system convergence, but would sacrifice
convergence speed of the system control error. Of course,
this is allowed in vibration control. On the contrary, if the
expected P-D is small, the initial iterative learning gain will
be large, which would lead to the system instability.

From the above analysis, four parameters (¢ o A, A and
@o (1)) are needed to set before experiments, and the model
of AMB is unknown in the ILC loop. Of course, if the system
model is known, the parameters will be set more direct and
effective, and the synchronous vibration will be suppressed
rapidly. But if the system model is unknown, or the model is
dynamically changed, the parameters can be conservatively
initialized and the ILC loop can learn by using the previ-
ous system information until the control requirements are
met. However, an accurate mathematical model of plant is
difficult to be obtained, especially for the AMB with strong
nonlinear and strong coupling stated in this paper. In reality,
the vibration index meets the requirements of many AMB
system, but the vibration performance would be deteriorated
as the system structures are varied in the operation process.
It can be seen that it is not realistic to build the model of a
dynamic AMB system. So the MFC studied in this paper is
very attractive to suppress synchronous vibration of the AMB
system.

In summary, the MFC method based on Newton-type ILC
proposed in this paper and its application in AMB syn-
chronous vibration have many characteristics described as
follows:
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(1) The P-D introduced in this paper is used to solve the
shortcomings of the traditional SISO ILC algorithms
based on Newton method. The experimental results
prove the MFC is suitable for the AMB rotor syn-
chronous vibration control.

(2) The MFC proposed in this paper is simple in principle,
and can fully achieved the online self-learning function.
Meanwhile, this algorithm reduces the burden of online
computation, which can meet the real-time requirement
for the AMB control system.

(3) The control scheme proposed in this paper is practical,
and the algorithm does not need any plant model, and
the control method can be used as an effective means
to optimize and upgrade the AMB system.

VI. CONCLUSION

As one of the most promising bearing, AMB has many
incomparable advantages that traditional bearings cannot
match. However, complicated unbalance problems block the
future application and development of AMB. In this paper,
the MFC method designed can effectively achieve the AMB
rotor synchronous vibration control, without using the com-
plex and varied system model.

At the same time, with the help of variable length in ILC
algorithm, it is easy to realize the rotor unbalance control
at variable speed, which is not involved in the paper, but
it has been implemented in the AMB experimental system.
Furthermore, we will continue to research the multivariable
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MFC method based on Newton-type ILC algorithm because
there exists five DOFs in AMB, and the impact of abnormal
data in ILC loop because the vibration control would be
applied in the digital control system. And our future woks
are focused on, but not limited in, the following aspects:

(1) How to achieve the AMB rotor synchronous vibration
control under the strong coupling of four DOFs in the
radial directions.

(2) How to suppress the multi-frequency vibrations caused
by the sensor runout and the unbalance magnetic pull
produced by the misalignment of the geometric center
between the stator and the rotor, or the circuit imbal-
ance in the motor converter, AMB power amplifier or
pole winding, etc.

(3) How to apply the synchronous vibration control
method proposed in this paper to primary helium cir-
culator in high temperature gas cooled reactor.
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