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ABSTRACT Substantial research and monetary aids to healthcare establishments are provided by cloud
computing. A benign position to store and handle vast genome data is offered by cloud services. Labs
for gene sequencing send out raw and contingent data over the Internet to multiple sequence collections
under conservative flow of gene information. The use of cloud services also reduces the storage costs of
deoxyribonucleic acid (DNA) sequencing. Here, an efficient and new bio-informatics genomic system is
proposed by the use of cloud services from Amazon to access the stored gene data and process it. A key task in
bio-informatics is to locate protein-coding sections in a gene sequence based on three base periodicity (TBP)
is for disease diagnosis and design drugs. Here, a novel cloud-based adaptive exon predictor (AEP) using
Amazon cloud services is proposed to improve the accuracy in exon finding ability as well as aimed at
superior convergence. Noise in the input gene sequence given to the proposed AEPs is pre-processed using
normalized LMS filtering. Computational complexity can be reduced using proposed data normalized form
of least logarithmic absolute difference (NLLAD) algorithm and its error normalized variants. It was shown
that sign regressor NLLAD (SRNLLAD) dependent AEP is efficient in exon forecast applications using
different metrics for a performance like sensitivity 0.8037, precision 0.8052 along with specificity 0.8146 by
different gene sequences considered from the National Center for Biotechnology Information (NCBI)
databank. The proposed AEPs have shown upright performance than typical LMS and other AEPs in terms of
exon prediction accuracy, convergence, and computational complexity. Their less computational complexity
will be found attractive, and they are suitable to use in bio-informatics nano devices.

INDEX TERMS Amazon cloud services, bio-informatics, convergence, deoxyribonucleic acid, National
Center for Biotechnology Information, base three periodicity.

I. INTRODUCTION

Cloud Computing is referred as sharing the data, software
and resources thru Internet. Cloud provider manages and
controls the data on the physical servers for administration
of vast amounts of information. Within genomics research,
this offers a path for analyzers in order to increase their
ability of sharing in addition to storage of information which
saves time and cost [1]. This is an ascendable provision for
the DNA sequence data to store, process and manage using
data banks of larger scale that are available distantly using
multiple platforms over the Internet. The gene informatics
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is moving to the cloud as the DNA sequence analysis is
now becoming cost-effective, quicker compared to storing
of data and its computation. Ability of cloud computing
thru sequencing of subsequent generations which generates
unmatched volumes of information for simplifying results
will hasten to develop different tools for diagnosis and treat
diseases. A novel genome informatics model based on cloud
is presented in current work which is used by many estab-
lishments related to healthcare for storage and managing
of huge volumes of patient’s gene sequence data by using
cloud services-based Amazon platform. Genomics is the
study that comprises the analysis along with sequencing of
genomes. In genomics, the scalable service used to process
and store gene sequences using virtual and extensive data
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banks which are remotely accessible thru use of internet is
Cloud Computing [2]. In genomics, identifying the regions in
gene sequences which codes for proteins is an extensive scope
of research. A sequence of DNA is an arrangement of genes
along with non-protein coding sections [3]. Learning about
the principal structure of coding regions for proteins helps
their secondary and the tertiary structure. Once the arrange-
ment of exon segments is completely studied, probability of
perceiving whole anomalies helps in preparation of drugs and
treat ailments [4], [S]. Hence entire alive beings are classified
into prokaryotes as well as eukaryotes. Here, long sequences
of data can be processed by using adaptive algorithms in
multiple iterations which results in developing an Adaptive
Exon Predictor (AEP) for locating gene locations in a gene
sequence. Here, gene datasets are accessed by using a typical
bioinformatics cloud-oriented system proposed in this work.
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FIGURE 1. Structure of a gene.

To produce beneficial tools at Nano measure using bio-
logical blocks, bio-nanotechnology science is used [6], [7].
To treat or prevent diseases, gene therapy is used to directly
insert required gene into a specific cell after identifying the
gene of interest [8]. For locating the desired gene location
in an input genomic sequence, the proposed LLAD based
AEPs with low computational complexities can be used in
Nano devices. Figure 1 illustrates that exons are the segments
that codes for protein in eukaryotes and the segments which
codes for non-proteins are introns. In eukaryotes of human,
the coded regions are 3% of the progression whereas the
residual 97% are non-coded regions. Henceforth, the primary
task of DNA sequence is the determination of coding seg-
ments. Hence, precisely locating the coding regions is a vital
job in bio-informatics.

The property of base three periodicity (TBP) has been
exhibited by almost most sequences of DNA. In the PSD
plot, at a frequency equal to fl = 1/3, a sharp peak is
clearly depicted [9]. Numerous existing exon locating meth-
ods remain several signal processing techniques [10], [11] for
locating gene locations in DNA sequences.

In genomic signal processing, to process lengthy
sequences, adaptive techniques are used which could alter
weight coefficients based on input DNA sequences. A basic
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adaptive technique which is simple to implement is least
mean squares (LMS) technique. Also, the technique under-
goes glitches such as drift weight, amplification of gradient
noise, and deprived convergence. Hence, to increase the
AEP performance, data clipped, error clipped, and data error
clipped variants of LMS are used. Adaptive filters based on
higher order statistics will perform well in case of LMS algo-
rithm in noise scenarios. In order to examine this, different
AEPs are developed to improve exon locating ability and con-
vergence performance using Normalized LLAD (NLLAD)
algorithm. The technique which progressively adjusts the
conventional cost functions depending on the amount of error
is considered. These algorithms are extended by combining
with sign algorithms i.e. Sign, Sign Regressor, and Sign-Sign
variants are used to reduce the computational complexity.
Sign based algorithms needs just half as many multiply
operations compared to LMS counter parts which makes them
useful in real application point of view.

LMS technique undergoes the difficulty of gradient noise
amplification for larger input vector of data. To avoid this
problem, normalization of the AEPs can be used for predic-
tion of exons in DNA sequences [13]. With this, adjustment
used to the filter weight vector coefficient and its normaliza-
tion based on input vector squared norm. Here we consider
two types of normalizations, namely data normalization and
error normalization. They are Normalized LLAD (NLLAD)
and Error Normalized LLAD (ENLLAD) algorithms respec-
tively [14], [15]. Here also these algorithms are combined
with sign algorithms to ease computational complexity. Nor-
mally gene sequences are lengthier in practical applications
of bio-informatics and hence it needs lengthy adaptive fil-
ters. Thus, LMS technique becomes simple and costly to
implement in real case [16]. The computational complexity
is reduced largely by using block processing of samples of
data [17]. So, maximum variants of adaptive algorithms are
considered.

Especially for larger length sequences, the samples overlap
each other for larger computational complexities at the input
of AEP. This leads to inaccuracy and inter symbol interfer-
ence (ISI) in prediction. To increase the convergence and
stability performance of proposed AEP than LMS algorithm
and other AEPs presented in [18], the performance of conven-
tional AEP is improved by using a hybrid version of exon pre-
diction technique in [22]. But the techniques discussed in [22]
suffer from a drawback of more complexity in performing
the computations. Hence in the contest of development of
Nano bio-informatics devices, we intended to use normalized
logarithmic based adaptive algorithms.

Difficulties of AEP were prevailed over by the sign
depending algorithms and variable normalized adaptive algo-
rithms in practice [20]. Due to normalization, the higher tap
length could be minimized to one, by applying an approach
named as maximum variable normalization regardless of
tap length [21], [22]. In the normalized LMS variant, rela-
tion between error and input reference signal is normalized
by a value similar to squared norm [23]. The maximum
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along with normalized techniques converge quicker com-
pared to conventional LMS technique and also overcome
gradient noise application problem [24], [25]. Henceforward
error in steady state and rate of convergence of NLLAD
are superior compared with LMS [26]. Several AEPs using
NLLAD are developed and their performance is measured
with standard gene datasets available from National Center
for Biotechnology Information (NCBI) gene data base at
node 2 with the bio-informatics system based on cloud [27].
We consider sensitivity (Sn), precision (Pr), specificity (Sp),
computational complexities and characteristics of conver-
gence as performance metrics to assess the ability of dif-
ferent projected AEPs. Discussion related to performance
of several AEPs also theory of adaptive techniques and
results of different AEPs is explained in the subsequent
sections.

Il. TRADITIONAL GENOME BIO-INFORMATICS SYSTEM
Within standard flow of gene data, transmission of raw
sequence data thru internet is done by gene sequence labo-
ratories to sequence archives. Casual users either access this
data directly or through a website indirectly by value added
integrators. Larger sequence datasets are typically down-
loaded from these archives by power users. Own compute
and storage clusters are retained by value added integrators,
power users and sequencing archives also their local copies
of gene datasets are kept using traditional genomics bio-
informatics model shown in Figure 2.

Gene Sequencing Labs

‘--_.______—__.___..-'

NCBI Gene databank

' Archives of DNA .,
SEquUences ™,

UCsC and Ensembl

Power users

Genome integrators

Casual users

FIGURE 2. Traditional genome bioinformatics system.

From Figure 2, this is clear that the creation and usage
of gene information needs an effective and contended eco
system for over 25 years [2]. The gene sequencing test centers
sends their gene information to large pool of gene databanks
like NCBI, DDBJ and EMBL databank of European Bioin-
formatics Institute which preserves, manage and provides
gene data. In traditional genomic informatics system, gene
data is accessed by major users either one using value added
genome integrators, for instance the Gene Browser University
of California on Santa Cruz (UCSC), Ensemble gene data-
bank, casual and power users or through archival databases
wherein related websites are produced.
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IIl. PROPOSED GENOME BIO-INFORMATICS SYSTEM
Storage and compute resources of community present in
‘cloud’ are maintained by large service provider in proposed
novel genome bioinformatics system. Challenges of tradi-
tional genome informatics such as storing, managing and
accessing gene data also cost involved are overcome using the
proposed genome bio-informatics cloud-based system shown
in Figure 3. Also, the block diagram in Figure 3 presents
a detailed analysis of input gene sequences based on dimer
nucleotide densities using density plots depicted in Figure 9
followed by mapping of input DNA to binary mapping and
pre-processing of DNA sequences is considered. Then the
pre-processed sequence is given as input to the AEP for exon
prediction.

A new genome bioinformatics cloud-based system with
its block diagram is shown in Figure 3. The first step in
proposed AEP using bio-informatics cloud-based system
in Figure 4 is to get access for cloud services by Researchers
also healthcare establishments like hospitals [2]. Secondly
the accessed gene sequence from NCBI gene databank from
node 2 in the cloud is analyzed based on nucleotide den-
sities and analyzed sequence is converted into digital form.
The analyzed sequence is then transformed into binary form
and resulting sequence is pre-processed using NLMS algo-
rithm and the output signal after pre-processing is given
as AEP input as described in [21]. Here, binary mapping
stands as a significant job which is required for denoting
alphabetic gene sequence as 4 numeric sequences. The exis-
tence of nucleotide is specified as ‘1’ and nonexistence as
‘0’ using conversion process. Accuracy in forecast of genic
segments is increased by decreasing noise which is a key in
pre-processing [5].

Consider an AEP by new bioinformatics cloud-based sys-
tem presented using adaptive methods. Consider B(n) as
numeric mapped sequence, R(n) be obeyed TBP sequence,
K(n) as gene sequence, F(n) signifies a signal for updat-
ing the coefficients of weight, O(n) denotes output attained
by application of adaptive technique also‘’ is length of
LMS.Succeeding coefficient of weight is anticipated using
step size parameter ‘Z’, the present weight coefficient as v(n),
feedback signal F(n) and input gene sequence K(n) at the
instance. Analysis along with expression of LMS technique
is explained in [14].

The mass update expression of adaptive LMS technique is
stated as

v(n+ 1) =v(n) + ZK (n) F (n) (1)

In exon identification applications, adaptive algorithms have
to possess minimum computational complexity so that they
can be attractive for Nano applications. Such reduced value
is possible by applying clipping to gene data input otherwise
signal of feedback else for both. Techniques for this purpose
are demonstrated in [20]. These techniques include three
signed variants.
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FIGURE 3. Novel cloud-based genome bioinformatics system for exon prediction.

The signum representation is given below: -
1:K(m) >0

0:K(m)=0 2)
—1:KMm) <0

Q{Km)} =

These signed variants are preferred to lessen the computa-
tional complexity of LMS. LMS algorithm has higher com-
putational complexity compared to these algorithms. Data
Clipped LMS (DCLMS) algorithm is derived as recursion of
LMS through change of tap input vector.

K(n) is replaced thru means of the vector Q[K(n)], whereas
the sign function Q is entered to K(n) upon the element by
element basis. Hence, it is referred also as Clipped LMS
(CLMS).

The mass update relation of DCLMS algorithm is
represented as

v(n+1) =vn) + ZQ{K (n)}F (n) 3

The mass renovate expression of ECLMS algorithm is
achieved thru replacing F(n) using signed notation as

v(n+1) =v(n)+ZK 1) Q{F (n)} “)

Likewise, mass revise equation of DECLMS is derived via
substituting K(n), F(n) using their signed notations as

v(n+ 1) =v(n) +ZQ{K ()} QfF (n)} o)

Normalized LMS filter creates a own, namely a small vector
of tap input K(n) to overcome the gradient noise amplification
of LMS. Numerical problems might arise and hence need to
partition little amount of squared norm. In order to overcome
this problem, the recursion mentioned above is to be changed
by inducing a positive small constant ¢. This parameter ¢ is
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set to elude divisor as very less also large parameter for step
size.
Thus, step size parameter can be expressed as,

Z(n) (6)

KM
Alternating Z in the expression for LMS with Z(n) tends to
Data Normalized LMS (DNLMS) relation expressed as

v(n+ 1) = v (n) + Z(n).K(n).F(n) )

where Z (n) is a normalized step size.

DNLMS gives minimized error, however in the divisor the
squared term increases the MAC operations. Also, complex-
ity along with time for convergence increases. For scaling
back amount of calculations, logarithmic based AEPs based
on relative logarithmic cost are proposed. A Normalized
LLAD algorithm that progressively adjusts the conservative
cost functions depending on error amount in its optimization
is deliberated for increasing the AEP performance than LMS.

The bound of the step size for mean square convergence of
LMS algorithm is:

1
S KTmK @)

Limitations of LMS are overcome by NLLAD also improves
convergence speed and exon predicting ability. In order to
overcome the weight drift problem connected with LMS,
the NLLAD based AEP is presented. The flow chart for
NLLAD algorithm used for development of different AEPs
is illustrated in Figure 4. Here, B(n) is the desired signal
with signal S1 and noise nl components, reference signal is
R(n), filter length as L and weight co-efficient vector w(n)
is initialized to O, I is the iteration parameter and O(i) is

0<Z (8)
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FIGURE 4. Flow chart for proposed NLLAD algorithm.

the Output from the adaptive algorithm. By using the math-
ematical modeling illustrated in Figure 5, the NLLAD based
algorithm was developed for predicting the exon locations in
DNA sequence.

The weight update expression of the LLAD technique
becomes

F
vin+1) = v(n) +Z.K(n) [%} ©

Normalized logarithmic variant of LLAD based on relative
logarithmic cost is termed as Normalized LLAD algorithm.

Thus, the mass renovate relation of the NLLAD algorithm
is given as

o (F(n))

vin+1)=v(n)+Zn).K(). [m} 4o
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Replacing Z(n) = m in the LLAD weight vector

update equation with Z(n) leads to the NLLAD as

(41 =v) + — 2 K. [ —2E
v (n =v(n)+ — n.|———=—
e+ ||K(n)|| 1+ o (D M)
(11)
where Z (n) = m2 is a normalized step size with 0

<Z <2.

The term « will be either zero or one, based on the
value of ¢. In case the value of ¢ is higher compared to
the threshold value, then the o will be set to one otherwise
it is set to zero, thus reducing the entire numerator to zero
and number of calculations reduces. Signed algorithms have
minimal convergence speed than DNLMS, but produce a little
more error with less complexity in computations. Hence,
we combine NLLAD algorithm with sign-based algorithms
to lessen complexity involved in computations. The hybrid
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versions obtained includes SRNLLAD, SNLLAD and SSNL-
LAD techniques.

The mass renovate expressions of SRNLLAD, SNLLAD
and SSNLLAD algorithms are numerically expressed as,

Z
1) = -Q[K
T PTTT
[ o (F () ] )
[+ a(Fm)
v+ 1) = vn) + K (n)

& + max(||[K (m)|)>
o« (F) ]

. _— 13
UiraFon (13

vin+1) =v(n)+

o+ max( K2 2K ™!

aof; o (F (n)) (14
L1+ o (Fm) ]

From expressions (11)-(14), divisor requires ‘“T” multipli-
cations in normalization. With larger filter length, it requires
more amount of multiply operations.

The Error Normalized version of LLAD is called as Error
Normalized LLAD (ENLLAD) technique. Here, instead via
data instantaneous vector, the normalized error vector with its
squared norm is considered. ENLLAD technique performs
well in comparison to LMS based on less inaccuracy in its
steady state and its rate of convergence.

The mass update expression of ENLLAD algorithm
becomes

vin+1) =v(n)+

G
e+ max(F@E ™

. [ o () } s,
T+ a (Fm)

where |[F (n)|? = ZE;()I [F(n — k)|? denotes squared norm
of the error F(n), estimated over its complete updated length.

As in (11), ¢ is added in (15) to prevent instability of
the algorithm if IEm)||? is too small. For reducing the
excess multiplications, normalization of step size is done in
regards to error amount in ENLLAD. Using the sign regressor
based error normalized approach only four multiplications
are needed instead of ‘T’ multiplications. This version is
called as error normalized LLAD (ENLLAD) algorithm.
The hybrid variants of ENLLAD using sign versions give
SRENLLAD, SENLLAD also SSENLLAD techniques.

The mass renovate relations of signed variants of ENLLAD
algorithm are given as,

+1) = + K
v(n+1) =v(n) 8+max(”F(n)”)2Q[ (m)]

. [ o (F () } 6
[+a (Fm)

D =y e F e
VD = F

o (F(n))
Q| ——————— 17
Q[1~I—a(|F(n)|)} (an
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vin+1) =v(n)+

K
e+ max(F @2 2™

o (F(n)
Q| —— 18
Q[1+a(|F(H)I)} (19

There are certain factors of which the error normalized
algorithms for continuing with minimum complexity. They
are algorithm’s sign capability of good filtering due to the
presence of normalized term. Finally, the proposed NLLAD
based techniques are successfully applied to actual gene
datasets derived as of NCBI databank and shown that they
are more precise for gene prediction.

IV. COMPUTATIONAL COMPLEXITIES AND
CONVERGENCE ISSUES

For estimating and comparison of complexity of algorithm
in general, the number of multiplications required is chosen
as a measure. Most DSPs uses hardware to perform MAC
computations. Typically, this operation is performed in one
instruction cycle besides subtraction or addition. Here, focus
is on assessment of several adaptive techniques, rather using
exact analysis for complexity to perform computations. Fur-
ther, these sign dependent techniques are without multiplica-
tions, which are required for exon identification applications.
In lieu of example, LMS algorithm requires T 4+ 1 MACs
for computing the mass update equation. Only one MAC
operation is needed for computation of ‘S. F(n)’ for signed
regressor algorithm.

Whereas multiply operations are not needed, in case of
other two signed algorithms. NLLAD technique is more
difficult with respect to complexity in computations; as it
needs T + 4 multiplication operations to implement the mass
renovation equation for NLLAD. In case of the SRNLLAD,
less complexity in performing computations is presented
with 4 multiplications compared to other normalized tech-
niques. Nevertheless, with implementation of maximum nor-
malized techniques, multiplications in divisor are minimized
beginning ‘T” to ‘1’. The Computational complexities of
the NLLAD algorithm and its error normalized variants are
shown in Table 1.

TABLE 1. Multiplication operations required for implementation of
various logarithmic AEPs.

S.No. Algorithm Multiplications
1 LMS T+1

2 NLLAD T+4

3 SRNLLAD 4

4 SNLLAD T+3

5 SSNLLAD 3

6 ENLLAD T+4

7 SRENLLAD 4

8 SENLLAD T+3

9 SSENLLAD 3

When comparing to the remaining normalized algo-
rithms, SRNLLAD algorithm needs minimum number
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of computations. In order to manage mutually with the issues
like computational complexity and convergence without any
restrictive trade-off, the resultant error and sign based nor-
malized logarithmic variants includes Normalized LLAD
(NLLAD), Sign Regressor Normalized LLAD (SRNLLAD),
Sign Normalized LLAD (SNLLAD), Sign-Sign Normalized
LLAD (SSNLLAD), Error Normalized LLAD (ENLLAD),
Sign Regressor Error Normalized LLAD (SRENLLAD),
Sign Error Normalized LLAD, (SENLLAD), and Sign-
Sign Error Normalized LLAD (SSENLLAD) algorithms.
The computational complexities of the data normalized
LLAD algorithm and its error normalized variants are shown
in Table 1.

All these proposed algorithms provide minimum amount of
computational complexity owing to use of sign in algorithms
with superior capacity of filtering due to the normalized
factor. These data normalized LLAD algorithm and its error
normalized variants provides upright filtering capability also
less complex compared with LMS. These leads to its applica-
tion at Nano scale such as architecture which is streamlined
and aimed at system on chip (SOC) otherwise lab on a chip
(LOC). For fabrication of tools required at the Nano scale,
Bio nanotechnology can be used to determine the structural
elements of cell [7]. Gene therapy has grown colossal interest
for researchers due to its ability to replace a gene of interest
with a healthy gene and can be very useful for surgery and
treating drugs. For locating the desired gene location in an
input genomic sequence, the proposed LLAD based AEPs
with low computational complexities can be used in Nano
devices [8].

The convergence characteristics of proposed data and error
normalized LLAD based variants are shown in Figure 5 and
Figure 6 respectively. Thus, is evident that all proposed data
normalized LLAD adaptive algorithms have a faster conver-
gence rate than LMS and other AEPs.

0 T
NLLAD
SRNLLAD
5 SNLLAD | |
- SSNLLAD

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

FIGURE 5. Characteristics of convergence for NLLAD with its signed
versions.

Hence, among the algorithms considered for the imple-
mentation of AEPs, the SRNLLAD adaptive algorithm is
considered to be the better, based on the convergence
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characteristics and computation complexity compared to
other normalized algorithms. From convergence characteris-
tics, it was evident that SRNLLAD convergences faster when
compared to SNLLAD, and SSNLLAD based AEPs.

V. RESULTS AND DISCUSSION

A. PLATFORM AND INPUT DATA

The proposed model with use of cloud adopts three nodes for
computing. Every node needs to be equipped using three core
CPU’s along with 64 GB of RAM using Xeon X-5550 by
Intel of frequency 2.67GHz. The above-mentioned nodes
include the gene databases taken from Ensemble, these
contains the elucidated genome of homo sapiens also
50 alternative species (annotations of 150 gigabytes added
to 100 gigabytes of gene sequence) considered as node 1,
virtual machine images along with a comprehensive imprint
of NCBI data pairs (100 gigabytes) in the act of node 2,
and data sets obtained as of the 1000 Genomes assignment
(500 gigabytes) designed as node 3. The genome data from
various gene databases are represented at different nodes is
as presented in [22]. Every node is associated along with
1 Gigabit Ethernet.

In our proposed work, node 2 generates the input genomic
sequence with the help of Amazon cloud services in FASTA
(fast A) file pattern. In our work, a list of ten gene sequences
obtained from National Centre for Biotechnology Informa-
tion is considered in [21]. Due to space constraint the exper-
imental results for the sequence AF009962 are shown in this

paper.

B. TASK DISTRIBUTION AND PERFORMANCE

In current work, gene data input datasets from gene databank
of NCBI at node 2 are used. The distribution of task is
done depending on location of gene sequence input at one of
three presented nodes. Whole three nodes can be accessed as
virtual machine images. Hence, an account needs to setup by
use of web services by Amazon, then unveil an occurrence
from existing three images focused on bio-informatics also
one image among the available three is to be attached for
genomic data processing. Distribution of tasks is done from
the node where data input sequence is to be chosen. The NCBI
databank as of node 2 is considered and access the input
genomic sequence using Amazon cloud services consuming
minimum time when compared to the original method of data
access. The location of exon is predicted by giving the pre-
processed genomic sequence as an input to AEPs.

C. PRE-PROCESSING OF GENOMIC SEQUENCE

Because of period-3 behavior exhibited by exon segments and
distinct behavior of DNA made it suitable to use signal pro-
cessing techniques for analysis. The output gene signal after
the mapping consists of noise as presented in [6]. This signal
has been pre-processed using NLMS and the pre-processed
output is given as input to the proposed AEPs.
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FIGURE 6. Characteristics of convergence for ENLLAD with its signed
versions.
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FIGURE 7. Pre-processing of digital genomic sequence using NLMS. a)
Pattern of genomic sequence with noise. b) Enhanced genomic sequence
using NLMS based adaptive noise canceller.

Figure 7 shows the pre-processing of digital gene sequence
using NLMS algorithm. We have used the frame work of the
adaptive noise cancellation presented in [24]. The experimen-
tal results of the gene sequence with Accession AF009962 are
shown in this paper. To evaluate the performance of the
enhancement process we have considered three basic per-
formance measures, namely signal to noise ratio improve-
ment (SNRI), mis-adjustment (MSD) and excess mean square
error (EMSE) were shown in Table 2.

D. EXON PREDICTION RESULTS AND DISCUSSION

The discussion is regarding the comparison of performances
of variety of AEPs. Figure 4 shows the outline of AEP.
The maximum data normalized LMS algorithms along with
sign variants are used to derive several AEPs. In order to
compare, we have also developed an LMS depending AEP.
For the purpose of evaluation, ten DNA sequence datasets
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from the database of NCBI are obtained [25]. It is carried out
in order to provide a consistency in results and increase the
output of variety of algorithms under consideration as shown
in Table 3. The output performance is calculated by consid-
ering parameters such as Specificity (Sp), Sensitivity (Sn)
and Precision (Pr) in [18], [24] demonstrates the expressions
and the theory of the above-mentioned parameters. Part of
locating the exon segments with use of DSP methods, few
measures are definite based on change of level of threshold
in output spectrum which are used for comparison in this
paper. Number of nucleotides appropriately located as introns
in exon identification step is defined as true negative (TN),
while those properly identified as exons is indicated as true
positive (TP). Likewise, a total of exon segments located as
intron nucleotides is defined as false negative (FN), whereas
those quantity of introns truly predicted as exon nucleotide is
measured as false positive (FP). Thus, expressions for perfor-
mance measures such as the specificity, sensitivity, as well as
precision were written as: -

Sn = TP/(TP + FN)
Sp = TP/(TP + FP)
Pr = (TP + TN)/(TP 4+ FP + TN + FN)

Quantity of exons located which are actually present in exon
sections is known as Specificity (Sp), whereas the amount of
exon regions those are appropriately forecasted as exons is
measured as Sensitivity (Sn). The results of exon prediction
of sequence 5 using data normalized LLAD algorithms are
shown in Figure 10, whereas for error normalized LLAD
algorithms are in Figure 11.

The Threshold values are taken between 0.4 and 0.9 at
an interval of 0.05. By using these values, the performance
of Pr, Sn, and Sp are measured. The prediction of exon is
precise at the threshold value of 0.8. Therefore, Table 3 illus-
trates the performance measures at the value of threshold 0.8.
Sections of a DNA sequence with a high percent of A + T
nucleotides usually indicate intergenic parts of the sequence,
while low A 4 T and higher G + C nucleotide percentages
indicate possible genes. Many times, high CG dinucleotide
content is located before a gene.

The sequence statistics functions are useful to deter-
mine if input gene sequence has the characteristics of a
protein-coding region. For instance, Figure 9 depicts the
typical plot for dimer nucleotide densities for the nucleotide
sequence with accession AF009962.The dimers distribution
in a gene sequence with accession AF009962 is depicted in
the form of bar illustration using MATLAB software. From
Figure 3, it was shown that dimers using T-T base pairs
are more when compared with all other dimers in the gene
sequence with accession AF009962. There are 680 dimers of
T-T base pairs in the considered gene sequence. In this gene
sequence, there are 527 A-T dimers and 70 G-C dimers. In the
considered gene sequence, G + C content is less compared to
A + T dimers indicates that it has a smaller number of genes.
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FIGURE 8. Flow diagram for adaptive exon prediction in an input DNA
sequence using the proposed model.

The flow diagram with steps in adaptive exon prediction
shown in Figure 8 is explained below:

a) Novel method of cloud dependent genome bio-
informatics is used to pick an input DNA sequence
obtained from Node 2 in database of NCBI and to
load the virtual image present in Node. We have ana-
lyzed the input DNA based on nucleotide densities of
A + T and G + C base pairs using density plots shown
in Figure 6 to determine the presence of gene loca-
tions. This sequence after analysis is then transformed
to binary form using binary mapping methodology.
Where the AEP input is the binary data obtained as
illustrated in Figure 5.

b) The resulting signal is now pre-processed by applying
Data Normalized LMS (NLMS) algorithm to remove
the noise before giving it as input to the proposed AEPs
as shown in Figure 3. Three base periodicity (TBP)
obeyed biological sequence is given as reference signal
to the proposed NLLAD based AEPs.

¢) From Figure 3, a signal for feedback signal F(n) derived
was used for updating coefficients of filter.

d) When this signal becomes minimum, genic regions are
accurately located from the DNA sequence using PSD
plot.

e) The plots for predicted coding regions remain shown
with help of PSD. Also, measures Sn, Pr as well as Sp
are derived and plotted.
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FIGURE 10. PSD with the exon position (3934-4581) predicted for gene
sequence with accession AF009962 with several AEPs, (a). AEP with LMS,
(b). AEP with NLLAD, (c). AEP with SRNLLAD, (d). AEP with SNLLAD,

(e). AEP with SSNLLAD.

Figure 10 and Figure 11 show the predicted exon loca-
tions of sequence 5 by applying various adaptive algorithms.
Table 2 deliberates the dataset of genome taken from the
database of NCBI gene database [28]. It is clear from the
table that there is no accurate prediction of coded regions
by the LMS dependent AEP. Here, some non-coded regions
are also predicted which leads to uncertainty in exon location
prediction.

In Figure 10 (a) have certain undesirable peaks were
recognized at 1200th, 2300th and 3200th sample values
with LMS. On the identical occasion, the exact exon loca-
tion 3934-4581 is not identified. In case of data normal-
ized LLAD versions, it was observed that the NLLAD,
SRNLLAD, SNLLAD and SSNLLAD algorithms precisely
identified the location of exon at 3934-4581 with higher
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TABLE 2. Performance measures obtained in Pre-processing using NLMS.

S.No. Seq. No. ?(Tbl:)l FZZ:E)E MSD
1 E15270.1 10.1864 | -23.2863 | 0.284
2 X77471.1 10.2932 | -24.5825 | 0.279
3 AB035346.2 | 10.2857 | -23.3862 | 0.268
4 AJ225085.1 | 10.2786 | -23.4623 | 0.273
5 AF009962 | 10.2875 | -24.5254 | 0.272
6 X59065.1 10.3864 | -22.9437 | 0.284
7 AJ223321.1 | 10.2972 | -24.2561 | 0.277
8 X92412.1 10.2881 | -22.9235 | 0.287
9 U01317.1 10.3154 | -23.1353 | 0.279
10 X51502.1 10.2968 | -24.4618 | 0.27

intensity as depicted in the Power Spectral Density (PSD).
Figures 10 (b), (c), (d) and (e) show their PSD plots. Simi-
larly, in case of error normalized LLAD versions, it was
observed that the ENLLAD, SRENLLAD, SENLLAD and
SSENLLAD algorithms precisely identified the location of
exon at 3934-4581 with higher intensity as depicted in the
PSD. Figures 11 (b), (c), (d) and (e) show their PSD plots.
The plot for performance measures like Sensitivity, Speci-
ficity and Precision use data and error normalized LLAD
algorithms is shown in Figure 12. It was shown that data
and error normalized LLAD versions are far superior to
existing LMS method in terms of performance measures
shown in Figure 12. Prediction measurements like specificity,
precision and sensitivity of NLLAD, SRNLLAD, SNLLAD
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AF009962 using proposed AEPs (i). AEP built on LMS, (ii). AEP built on
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built on SSNLLAD, (vi). AEP built on ENLLAD, (vii). AEP built on SRENLLAD,
(viii). AEP built on SENLLAD, (ix). AEP built on SSENLLAD.

and SSNLLAD techniques viewed better compared to LMS
whereas much superior in SRNLLAD algorithm.

The tracking abilities of proposed normalized techniques
are higher in comparison with LMS algorithm and also better
compared with signed regressor form of VNLMS algorithm
in [22] which performed better among normalized VSLMS
variants. In Table 3, the results obtained using VNSRLMS
are compared with all the proposed AEPs including LMS
based AEP. Higher the values of Sn, Sp and Pr, the better
the accuracy in prediction of exon locations in an input
DNA sequence. However, it also depends on the computa-
tional complexity and convergence performance of adaptive
algorithm.

It’s always better to choose an AEP developed using adap-
tive algorithm which offers low computational complexity
and better convergence, so that they can be used in real
applications. For instance, in table 3, consider values of per-
formance measures Sn, Sp and Pr for results analysis and
discussion. Here, the values obtained using VNSRLMS are
Sn as 0.7884 (78.84%), Sp as 0.7812 (78.12%) and Pr as
0.7936 (79.36%), which are less accurate in prediction accu-
racy when compared to the proposed SRNLLAD based AEP.
Using SRNLLAD based AEP, the measures obtained are Sn
as 0.8037 (80.37%), Sp as 0.8146 (81.46%) and Pr as 0.8052
(80.52%). These values are just inferior to the values obtained
using NLLAD based AEP. But, due to a smaller number
of computations required for SRNLLAD based AEP, it is a
better candidate for exon prediction applications. Also, the
values obtained using SNLLAD and SSNLLAD based AEPs
are inferior in comparison with NLLAD and SRNLLAD
based variants. Similarly, the values of ENLLAD variants
are derived and analyzed for their performance are presented
in Table 3.

From these, the values obtained using SRENLLAD are
Sn as 0.7734 (77.34%), Sp as 0.7825 (78.25%) and Pr as
0.7783 (77.83%), which are less accurate in prediction accu-
racy when compared to the proposed SRNLLAD based AEP.
These values are just inferior compared to ENLLAD based
AEP, whereas the values for SENLLAD and SSENLLAD
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TABLE 3. Metrics for performance of various adaptive exon prediction techniques in terms of sensitivity, specificity and precision.

;?)' Metric LMS VNSRLMS NLLAD SRNLLAD SNLLAD SSNLLAD ENLLAD SRENLLAD SENLLAD SSENLLAD
Sn 0.6292 0.7972 0.8523 0.8012 0.7862 0.7694 0.8296 0.7732 0.7654 0.7503
1 Sp 0.6467 0.7836 0.8424 0.8124 0.7902 0.7586 0.8235 0.7811 0.7695 0.7538
Pr 0.5984 0.7783 0.8506 0.8096 0.7896 0.7612 0.8311 0.7796 0.7705 0.7592
Sn 0.6373 0.7835 0.8553 0.8102 0.7911 0.7708 0.8292 0.7724 0.7642 0.7552
2 Sp 0.6586 0.7841 0.8462 0.8164 0.7895 0.7611 0.8273 0.7863 0.7645 0.7567
Pr 0.5912 0.7924 0.8531 0.8196 0.7934 0.7586 0.8328 0.7785 0.7783 0.7525
Sn 0.6494 0.7882 0.8534 0.8079 0.7891 0.7686 0.8285 0.7795 0.7688 0.7595
3 Sp 0.6608 0.7936 0.8464 0.8114 0.7936 0.7592 0.8274 0.7835 0.7644 0.7576
Pr 0.5985 0.7823 0.8561 0.8097 0.7892 0.7618 0.8335 0.7737 0.7736 0.7593
Sn 0.6315 0.7936 0.8618 0.8094 0.7868 0.7697 0.8238 0.7736 0.7685 0.7545
4 Sp 0.6428 0.7835 0.8514 0.8138 0.7995 0.7535 0.8297 0.7876 0.7697 0.7564
Pr 0.5793 0.7941 0.8538 0.8068 0.7894 0.7697 0.8378 0.7778 0.7736 0.7582
Sn 0.6487 0.7884 0.8537 0.8037 0.7878 0.7705 0.8282 0.7734 0.7651 0.7522
5 Sp 0.6546 0.7812 0.8468 0.8146 0.7931 0.7587 0.8246 0.7825 0.7685 0.7554
Pr 0.5932 0.7936 0.8578 0.8052 0.7892 0.7612 0.8311 0.7783 0.7718 0.7608
Sn 0.6186 0.7974 0.8445 0.8125 0.7954 0.7596 0.8263 0.7846 0.7658 0.7582
6 Sp 0.6378 0.7872 0.8575 0.8086 0.7878 0.7632 0.8323 0.7752 0.7746 0.7598
Pr 0.5821 0.7793 0.8643 0.8102 0.7872 0.7704 0.8245 0.7765 0.7682 0.7562
Sn 0.6216 0.7892 0.8532 0.8142 0.7988 0.7546 0.8288 0.7882 0.7702 0.7572
7 Sp 0.6575 0.7894 0.8542 0.8074 0.7874 0.7632 0.8365 0.7792 0.7754 0.7602
Pr 0.5911 0.7966 0.8531 0.8029 0.7868 0.7714 0.8302 0.7746 0.7696 0.7714
Sn 0.6305 0.7845 0.8582 0.8054 0.7882 0.7732 0.8265 0.7751 0.7672 0.7528
8 Sp 0.6296 0.7902 0.8476 0.8106 0.7976 0.7594 0.8252 0.7848 0.7696 0.7562
Pr 0.5902 0.7864 0.8586 0.8124 0.7862 0.7676 0.8347 0.7783 0.7724 0.7624
Sn 0.6294 0.7982 0.8548 0.8075 0.7882 0.7715 0.8294 0.7756 0.7656 0.7542
9 Sp 0.6485 0.7876 0.8472 0.8154 0.7954 0.7592 0.8262 0.7875 0.7684 0.7584
Pr 0.5692 0.7838 0.8565 0.8086 0.7895 0.7635 0.8378 0.7792 0.7735 0.7627
Sn 0.6251 0.7947 0.8572 0.8054 0.7892 0.7718 0.8294 0.7758 0.7698 0.7545
10 Sp 0.6493 0.7836 0.8486 0.8187 0.7964 0.7592 0.8265 0.7864 0.7686 0.7568
Pr 0.5822 0.7978 0.8593 0.8076 0.7914 0.7684 0.8342 0.7808 0.7712 0.7674

**Sq. No.” is the Gene Sequence Serial Number

based variants are inferior than both the ENLLAD and
SRENLLAD based AEPs. The simulated values of perfor-
mance measures using data and error normalized LLAD
based AEPs are tabulated in Table 3. Among ENLLAD based
variants, SRENLLAD based AEP is a better AEP in terms of
exon locating ability due to its low computational complexity
and convergence performance compared to other ENLLAD
based AEPs. Overall, among these eight proposed NLLAD
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based AEPs, SRNLLAD possess higher convergence capa-
bilities and low computational complexity. This SRNLLAD
based AEP requires less amount of multiply operations inde-
pendent of its length of the tap vector. The characteristics
of convergence for SRNLLAD is significant compared to its
other variants, however metrics considered are a little inferior
than NLLAD, SNLLAD, also SSNLLAD algorithms. The
simulated values of performance measures using data and
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error normalized LLAD algorithms are tabulated in Table 3.
The exon prediction output is greater when compared to
LMS along with remaining standard signed versions. Hence,
with respect to complexity in computations, rate of conver-
gence, exon plots, calculation of Sp, Sn, and Pr measures,
SRNLLAD based AEP was shown to be superior in practice
for locating exon segments in an input gene sequence. Finally,
the entire AEPs in proposed methodology are more efficient
compared to the existing LMS technique to find the regions
of exons in genomic sequences.

VI. CONCLUSION

In proposed paper, the problem based on exon location
identification in a gene sequence is demonstrated. Here,
a new adaptive exon identification methodology is proposed.
In order to fulfill the above-mentioned problem, “Virtual
Machines” with use of cloud services by Amazon with
Virtual Hard Disks that are custom designed are proposed.
In order to store and access the information of genome
database from NCBI node using windows platform, logarith-
mic based normalized adaptive algorithms are taken into con-
sideration to process various DNA sequences. This is clear
from metrics in Table 3 and PSD plots for exon positions as
shown in Figure 10 and Figure 11. The presented AEPs pre-
cisely predicted the position of exon at 3934-4581 thru great
intensity from plot for PSD. Overall SRNLLAD delivers
greater performance pertaining to computational complexity
and the measures obtained are Sn as 0.8037 (80.37%), Sp as
0.8146 (81.46%) and Pr as 0.8052 (80.52%) attained using
gene sequence 5 with accession as AF009962 with a value of
threshold equal to 0.8. These values are just inferior to values
obtained using NLLAD based AEP. But, due to its less com-
putational complexity and better convergence performance,
it is a better candidate for exon prediction applications. There-
fore, the AEP based on SRNLLAD seems to be better than the
other counter algorithms in this family. Hence, AEPs based
on SRNLLAD could be used in the development of Nano
bioinformatics devices in SOC and LOC applications.
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