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ABSTRACT Hyperspectral image (HSI) denoising is a fundamental task in a plethora of HSI applications.
Global low-rank property is widely adopted to exploit the spectral-spatial information of HSIs, providing
satisfactory denoising results. In this paper, instead of adopting the global low-rank property, we propose
to adopt a local low rankness for HSI denoising. We develop an HSI denoising method via local low-rank
and sparse representation, under an alternative minimization framework. In addition, the weighted nuclear
norm is used to enhance the sparsity on singular values. The experiments on widely used hyperspectral
datasets demonstrate that the proposed method outperforms several state-of-the-art methods visually and
quantitatively.

INDEX TERMS Hyperspectral image denoising, local low rankness, sparse representation, weighted nuclear
norm.

I. INTRODUCTION
Hyperspectral images (HSIs) contain abundant spectral infor-
mation of scenes, as they involve plenty of spectral bands.
They have extensive applications in remote sensing, e.g, mil-
itary, agriculture, medicine, and astrophysics [1]–[3]. From
another perspective, they play an important role in target
detection [4], hyperspectral unmixing [5]–[7], and image
classification [8]–[10]. In a real scene, due to the limitation
factors such as dark current, fluctuations in the power supply,
and transmission errors, HSIs are unavoidably contaminated
by noise during the acquisition process [11]. The contamina-
tion hinders the effectiveness of subsequent processing appli-
cations and analysis. Hence, HSI denoising is an essential
issue and the denoising performance affects the accuracy of
subsequent process.

In the past few years, many HSI denoising methods have
been proposed [12]–[27]. One intuitive way is to utilize tra-
ditional 2-D denoising methods, such as K-SVD [28] and
BM3D [29], to denoise HSIs band by band separately. Notice
that an HSI contains lots of spectral bands and each band
of the HSI can be presented as a 2-D gray image. How-
ever, the correlations between different spectral bands are
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neglected in these methods, which causes spectral distor-
tion [13].

To apply spectral and spatial correlations simultaneously,
a serious of methods have been proposed. BM4D, an exten-
sion of BM3D, is based on nonlocal similarity and Wiener
filtering [12]. Instead of utilizing a total variation (TV) term
band by band, a spectral-spatial adaptive TV term is applied
in [14] and [15]. Also, the TV regularization is utilized with
the group sparsity constraint in [23] to effectively remove
stripe noise in HSIs. Despite the good performance in HSI
denoising, the TV regularization negatively affects the pix-
els which are not impulse corrupted [30]. To address this
drawback of the TV regularization, a two-phase method is
proposed in [24]. The first phase is identifying the impulse
noise positions and the second phase is denoising by the
patch-based model using noise position information.

Besides the TV term, the low-rank property of noise-free
HSIs has been recently used in HSI denoising [20]. As a way
to utilize the low-rank property, principal component analy-
sis (PCA) is firstly applied to HSI denoising in [16]. In addi-
tion, an HSI denoising method based on superpixel-based
subspace low-rank representation is proposed in [25]. In [21],
a spectral difference-induced TV and low-rank approxima-
tion (SDTVLA) method is proposed for HSI denoising.
Recently, the low-rank representation is utilized on spectral
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difference space (LRRSDS) for HSI denoising [19]. Also,
the low-rank matrix factorization is integrated with the TV
regularization (LRTV) to further improve the denoising accu-
racy [17]. In LRTV, the low-rank model is applied to capture
the spectral correlations and the TV regularization is used to
capture the spatial piecewise smooth structure of HSIs. It is
also worth noting that in the past few years, sparse representa-
tion has been successfully used in image denoising [22], [26].
One reason is that the statistical structure of noise-free HSIs
allows for their efficient representation as a sparse linear
combination of elementary features, but noisy HSIs lose the
statistical structure [31]. In [18], a sparse representation and
low-rank constraint (SRLR) method is proposed to remove
HSI noise. It utilizes the local and the global redundancy and
correlation of HSIs and effectively removes noise. We note
that LRRSDS, LRTV, and SRLR all assume that noise-free
HSIs lie in a low-rank subspace. Latterly, deep learning has
been applied to HSI denoising. In [27], the authors propose a
method by learning a nonlinear end-to-end mapping between
noisy and noise-free HSIs with a combined spatial-spectral
deep convolutional neural network (HSID-CNN). It simulta-
neously assigns both the spatial and the spectral information
and gets good denoising performance.

Clearly, many of the above-mentioned methods utilize
the low-rank property in a global way [17]–[21]. However,
in many local patches of a noise-free HSI, neighboring
pixels have high correlations in both spectral and spatial
domains [32], [33]. Therefore, it is reasonable to assume that
local patches of noise-free HSIs are low-rank [34], [35]. Thus,
instead of adopting the global low-rank property, we propose
to use the local low-rank representation to utilize the local
spectral-spatial information and obtain a local low-rank and
sparse representation model for HSI denoising. This model
simultaneously captures the statistical structure and local
spectral-spatial information of HSIs. Particularly, we use
the statistical structure of HSIs in the framework of sparse
representation. And the local spectral-spatial information is
utilized by local low-rank representation. In addition, we use
the weighted nuclear norm to enhance the low-rank prop-
erty [36]. It is shown in [37] that compared to the standard
nuclear norm, the weighted nuclear norm preserves major
data components better during the denoising process. Thus,
details of the HSI can be preserved better. We use the alterna-
tive minimization algorithm to solve the proposed model and
obtain the local low-rank and sparse representation (LLRSR)
method.

The main idea and contributions of this paper are summa-
rized as follows:

1) A local low-rank and sparse representation model is
proposed for HSI denoising. Instead of the global low-
rank property of HSIs, the local low-rank property is
adopted to utilize the local spectral-spatial information.

2) We adopt the weighted nuclear norm to enhance the
sparsity on singular values.

3) The alternative minimization framework is designed to
solve the proposed model, and we obtain the LLRSR

method. We numerically show the convergence stabil-
ity of LLRSR. Also, our experiments demonstrate that
LLRSR outperforms several popular methods for HSI
denoising.

The rest of the paper is organized as follows. Section II
introduces the sparse representation and the weighted nuclear
norm as preliminary work. In section III, we describe the
LLRSR method which is based on alternative minimiza-
tion framework. Experiments in Section IV demonstrate the
effectiveness of LLRSR, compared with other HSI denoising
methods. Finally, section V gives concluding remarks.

II. PRELIMINARY WORK
A. SPARSE REPRESENTATION
Suppose that a noisy image Y ∈ Rm×a holds

Y = X + N , (1)

where X ∈ Rm×a is a noise-free image, N ∈ Rm×a is a
zero-mean Gaussian noise with a standard variance σ , and
m and a are the numbers of rows and columns of the image,
respectively. We note that in Section III, Y is a 2-D image
reshaped from the original 3-D version HSI, similarly as
in [18]. For an over-complete dictionarymatrixD, its columns
are regarded as prototype signal atoms. So a signal X can be
represented as a sparse linear combination of the atoms, i.e.,
X = Dα, where most coefficients in α are close to zero [38].
Thus, the representation of X over D can be estimated from
Y by:

min
D,α
‖Y − Dα‖2F + η‖α‖0, (2)

where η is a positive parameter and ‖α‖0 is the number of
non-zero elements in α. Once D and α are obtained, X can
be estimated by X = Dα. In (2), getting D is the process
of dictionary learning and getting α is called sparse coding.
We remark that the K -means singular value decomposition
(K-SVD) is a widely used algorithm to solve (2) [28].

B. WEIGHTED NUCLEAR NORM
The weighted nuclear norm of X is defined as:

‖X‖φ,∗ =
n∑

g=1

φgσg(X ), (3)

where n is the number of the singular values, φ =

[φ1, φ2, · · · , φn] ≥ 0 is the weight vector, σg(X ) is the
gth singular value of X , for g = 1, · · · , n, and φg is the
weight to the singular value σg(X ) [36]. Clearly, the weighted
nuclear norm improves the flexibility of the standard nuclear
norm with φg = 1 for all g [37]. In order to utilize the
weighted nuclear norm in HSI denoising, we generally solve
the following problem:

min
X
λ‖X‖φ,∗ +

1
2
‖Y − X‖2F , (4)

where λ > 0 is a regularization parameter.
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It is well-known that (4) has a closed-form solution when
the elements of the weighted vector is set to be nonnegative
and non-descending [35]. In order to express this closed-form
solution, we first give two definitions: SHR and SVT. First,
the soft-thresholding operator on the matrix 6 is defined as

SHR1(6) = sign(6) max(0, |6| −1), (5)

where 1 is the matrix that contains thresholding
parameters [39]–[41]. The operator in (5) performs in an
element-wise manner. It is worth noting that when the soft-
thresholding operator is applied on a diagonal matrix, we only
shrink the diagonal elements. Thus, these diagonal elements
can be shrinked by thresholding parameters contained in
a vector. Then, we define the singular value thresholding
operation on matrix Y as

SVTδ (Y ) = U SHRδ(6) V T , (6)

where Y = U6V T is the singular value decomposi-
tion (SVD) of Y and δ is a vector whose elements are
the thresholding parameters shrinking the diagonal elements
of 6. Then, from [35], [42], the solution of (4) can be
expressed as:

X = SVTλφ (Y ) . (7)

The weighted nuclear norm has been widely used in many
applications, such as image denoising [37], compressive sens-
ing [43], hyperspectral unmixing [35], and so on.

III. PROPOSED METHOD
A. THE PROPOSED MODEL
The classic sparse representation HSI denoising model is:

min
X ,D,{αi}

γ ‖X − Y‖2F+
J∑
i=1

(
‖RiX − Dαi‖2F + η‖αi‖0

)
, (8)

where γ is a positive parameter, X is the denoised HSI
and Y is the noisy HSI, Ri is the operator which extracts
ith overlapping local patch RiX ∈ Rt×t from X , J is the
number of patches, D is the trained dictionary, and αi is the
representation coefficient of RiX over D.
It is clear that the objective function in (8) has two terms:

the data fidelity term and the summation term. The fidelity
term restricts the proximity between the denoised HSI X
and the noisy HSI Y , where the weight γ depends on the
noise level [26]. It helps to remove visible artifacts on patch
boundaries [18]. The summation term indicates that every
RiX has a sparse representation with small error, in other
words, every RiX can be represented linearly by a few atoms
in D with a small error.
To improve the denoising performance, a low-rank reg-

ularizer is combined with the sparse representation for the
HSI denoising denoising problem in [18]. Mathematically,
the resulting denoising model is:

min
X ,D,{αi}

γ ‖X − Y‖2F +
J∑
i=1

(
‖RiX − Dαi‖2F + η‖αi‖0

)
+µ‖X‖∗, (9)

where µ and η are regularization parameters. This model
jointly utilizes the local and the global redundancy and
correlation of HSIs and achieves a good noise removal
performance.

It is assumed in [44] that the rank of a noise-free HSI
is far smaller than its size and a noisy HSI is hard to keep
this property. We note that the low-rank constraint on the
global HSI utilizes spectral correlation [45]. Due to piecewise
smoothness and spectral correlation of HSIs, we use the local
low-rank property to utilize the spatial-spectral correlation in
local patches.

To compare the local and the global low-rank properties
of HSIs, we give a simple example on the Washington DC
Mall dataset which is used in Section IV-A and many other
studies [44], [46]. First of all, in order to value the low-rank
property, we introduce the accumulation energy ratio of the
first h singular values as

AccEgyR =

∑h
p=1 σp∑q
p=1 σp

, (10)

where σp is the pth singular value of amatrix and q is the num-
ber of the singular values. TheAccEgyR shows the proportion
of the top h singular values in all singular values [47], [48].
So when the AccEgyR is higher, the proportion is larger.
Then, in order to show the low-rank property of the local
patches, we randomly select 5000 different patches with size
8 × 8 from Ỹ ∈ R65536×68 whose columns are vectorized
bands of the Washington DC Mall dataset and calculate the
mean singular values of these patches.

FIGURE 1. Comparision of the global low-rank property and the local
low-rank property of the Washington DC Mall dataset. (a) The singular
values of Ỹ . (b) The mean singular values of 5000 different patches
from Ỹ .

Fig. 1(a) shows the singular value curve of the matrix Ỹ .
We note that the AccEgyR attains to 0.9673 when h = 10.
Fig. 1(b) shows the curve of the mean singular values
of 5000 different local patches. And the AccEgyR attains to
0.9796 when h = 1. It says that the proportion of the first
one singular value in all singular values of the local patches
is larger than the proportion of the first ten singular values
in all singular values of the matrix Ỹ . Therefore, we expect
that the low-rank constraint on the local patches is more
reasonable than on the global HSI and thus improves the
denoising performance.
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Based on the above-mentioned observations, we propose
to utilize the low-rank constraint on the local patches to
make better use of the spectral-spatial correlation in HSIs.
In particular, we use a nuclear norm regularization on each
local patch and the resulting denoising model is:

min
X ,D,{αi}

γ ‖X − Y‖2F

+

J∑
i=1

(
‖RiX − Dαi‖2F + η‖αi‖0 + µ‖RiX‖∗

)
. (11)

We note that the difference between (9) and (11) is the use
of the nuclear norm.We also note that singular values contain
important physical information [49]. Large singular values
contribute to the main physical characteristics of the HSI and
vice versa. To further enhance the low-rank property of the
local patches, we use the weighted nuclear norm as a low-
rank regularizer. Thus, the proposed HSI denoising model
becomes:

min
X ,D,{αi}

γ ‖X − Y‖2F

+

J∑
i=1

(
‖RiX − Dαi‖2F + η‖αi‖0 + µ‖RiX‖wi,∗

)
, (12)

where each wi ≥ 0 is a weight vector.

B. THE LLRSR METHOD
We now solve (12) under the alternative minimization frame-
work. It is clear that there is more than one variable to be
solved in (12), so variable splitting is utilized. Let Pi = RiX ,
for i = 1, · · · , J , and then we rewrite (12) to the following
constrained problem:

min
X ,{Pi},D,{αi}

γ ‖X − Y‖2F

+

J∑
i=1

(
‖RiX − Dαi‖2F + η‖αi‖0 + µ‖Pi‖wi,∗

)
,

s.t. Pi = RiX (i = 1, 2, · · · , J ). (13)

By utilizing a proper positive parameter ρ for the quadratic
penalty term, we obtain the following unconstrained problem:

min
X ,{Pi},D,{αi}

γ ‖X − Y‖2F +
J∑
i=1

(‖RiX − Dαi‖2F + η‖αi‖0

+µ‖Pi‖wi,∗ + ρ‖RiX − Pi‖
2
F ). (14)

We now solve the unconstrained problem (14) by alterna-
tive minimization. In the process of alternative minimization,
each variable in (14) is optimized while fixing others. So we
obtain the following sub-problems:

1) D- and {αi}-subproblem:

min
D,{αi}

J∑
i=1

(
‖RiX − Dαi‖2F + η‖αi‖0

)
. (15)

This step is dictionary learning and sparse coding,
which can be solved by K-SVD [28].

2) Pi-subproblem, for i = 1, · · · , J :

min
Pi

µ

2ρ
‖Pi‖wi,∗ +

1
2
‖Pi − RiX‖2F ,

i = 1, · · · , J . (16)

Let the weight coefficient vector wi be

wi =
(

1
σ1(RiX )+ ε

, · · · ,
1

σt (RiX )+ ε

)
, (17)

similarly as in [35]. Here, σ1(RiX ), · · · , σt (RiX ) are the
non-ascending singular values of RiX and ε = 10−16 is
set in our experiments to avoid singularity. Therefore,
the elements inwi are nonnegative and non-descending.
It follows from Section II-B that every Pi-subproblem
in (16) has a closed-form solution:

Pi = SVT µ
2ρ wi

(RiX) , i = 1, · · · , J . (18)

3) X -subproblem:

min
X
γ ‖X − Y‖2F +

J∑
i=1

‖RiX − Dαi‖2F

+ρ

J∑
i=1

‖RiX − Pi‖2F . (19)

It is a least squares problem. Thus we have:

X =

(
(1+ ρ)

J∑
i=1

RTi Ri + γ

)−1
(

J∑
i=1

RTi (Dαi + ρPi)+ γY

)
. (20)

We stop the optimization procedure when a pre-defined max-
imum number of iterations is reached.

We now summarize the proposed algorithm, named
LLRSR, in Algorithm 1. It is worth noting that the conver-
gence of Algorithm 1 is hard to obtain theoretically due to
the non-convexity of the objective function in (14). However,
we will numerically show the convergence of Algorithm 1 in
Section IV-A.

C. COMPUTATIONAL COMPLEXITY
We now show the computational complexity of Algorithm 1.
Consider the HSI Y ∈ RM×N×b, where M is the number of
rows, N is the number of columns, and b is the number of
spectral bands. The computational complexity ofAlgorithm 1
mainly consists of three parts as follows.

1) Dictionary learning and sparse coding. Dictionary can
be learned offline to accelerate the algorithm. So we
only consider the computational complexity of sparse
coding. If the step size of extracting patch is d and
the patch number is dMNd e · d

b
d e, then the dictionary

size used in Algorithm 1 is t2c. So the computational
complexity of sparse coding is O(t2c · dMNd e · d

b
d e).

2) Updating {Pi}. For a t× t patch, the computational cost
of SVD isO(t3). In addition, it costsO(2t) to calculate
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Algorithm 1 Local Low-Rank and Sparse Representation
(LLRSR) for HSI Denoising

Input: Noisy HSI Y
Output: Denoised HSI X
Initialize: X0

= Y , k = 1, parameters γ , µ, ρ,
the maximum number of iterations K ,
and the size of RiX t × t
While: k ≤ K
1. Dictionary learning and sparse coding.{

Dk , {αki }
}

= argmin
D,{αi}

∑J
i=1(‖RiX

k−1
− Dαi‖22 + η‖αi‖0),

t which is solved by the K-SVD method.
2. Updating auxiliary variables Pi, i = 1, · · · , J .
Pki = SVT µ

2ρ wi

(
RiX k−1

)
,

where wi =
(

1
σ1(RiX k−1)+ε

, · · · , 1
σt (RiX k−1)+ε

)
.

3. Updating denoised HSI X .

X k =
(
(1+ ρ)

∑J
i=1 R

T
i Ri + γ

)−1(∑J
i=1 R

T
i

(
Dkαki + ρP

k
i

)
+ γY

)
.

4. k = k + 1.
EndWhile.

the weighting coefficient and solve the element-wise
soft shrinkage. Thus, the overall computational com-
plexity to update {Pi} is O(dMNd e · d

b
d e · t

3).
3) Updating X . The computational complexity of this step

is O(MNb).
In conclusion, the overall computational complexity of

Algorithm 1 per iteration is O(dMNd e · d
b
d e · t

2(t + c)).

IV. EXPERIMENT RESULTS AND DISCUSSION
To demonstrate the effectiveness of LLRSR, the denois-
ing results are compared with the results of four well-
known methods, including: 1) the low-rank representation
method in the spectral difference space (LRRSDS) [19];
2) the block-matching and four-dimensional filtering algo-
rithm (BM4D) [12]; 3) the sparse representation and low-rank
constraint method (SRLR) [18]; 4) the TV-regularized low-
rank method (LRTV) [17].

Three quantitative picture quality indices (PQIs) are
employed for evaluation, namely, peak signal-to-noise ratio
(PSNR) [40], [41], structure similarity (SSIM) [50], and spec-
tral angle distance (SAD) [51]. These PQIs are adopted as
mean PSNR (MPSNR), mean SSIM (MSSIM), and mean
SAD (MSAD) for HSI evaluation. The MSAD is defined as

MSAD =
1
b

b∑
i=1

180
π
· arccos

(ζ s)T · (ζ̂ s)

‖ζ s‖ · ‖ζ̂ s‖
, (21)

where ζ s and ζ̂ s are the sth spectral signatures of the noise-
free and denoised HSIs, respectively, and b is the number of
bands. We note that BM4D is a parameter-free method. For
other four methods, we try different parameters to reach the
maximum MPSNR value.

TABLE 1. Parameters of LLRSR under different noise levels.

TABLE 2. PQIs of different denoising methods on the Pavia city center
dataset under different noise levels.

A. SIMULATED EXPERIMENTS ON
DIFFERENT NOISE LEVELS
1) DATA DISCRIPTION
This subsection compares LLRSR with other four HSI
denoising methods under different noise levels. Three com-
monly used datasets are tested. They are the Washington
DC Mall dataset1, the San Diego dataset [18], and the
Pavia City Center dataset1. The size of the Washington
DC Mall subdataset which is selected is 256 × 256 × 68.
We choose a subdataset of the San Diego dataset whose
size is 200× 200× 68. In the experiment of the Pavia City
Center dataset, a subdataset whose size is 300 × 300 × 40
is selected. Spectral bands which are heavily contaminated
by noise are removed in these subdatasets. Four different
levels of Gaussian noise are added to the datasets, i.e., σ =
0.025, 0.05, 0.075, and 0.1. For each dataset, the gray values
of each HSI band are normalized between [0, 1].

2) PARAMETERS SETTING
All the experiments were implemented in MATLAB 2016a
with the platform of Intel(R) Core(TM) i5-3570 CPU @
3.40GHz and 8 GB memory.

Notice that there are four parameters in (14). Under the
same noise level, we use the same parameters for all three
datasets. Table 1 lists the parameters γ , µ, and ρ that we use

1Available from http://lesun.weebly.com/hyperspectral-data-set.html
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TABLE 3. PQIs of different denoising methods on the san diego dataset
under different noise levels.

for LLRSR under different noise levels for all three datasets.
It is worth noting that the second parameter η in (14) is set
implicitly.

3) COMPARISON WITH OTHER METHODS
Tables 2, 3, and 4 present the PQIs of different methods on
the the Pavia City Center dataset, the San Diego dataset, and
the Washington DC Mall dataset, respectively. The best and
the second best results of each PQI are highlighted as bold
and underlined, respectively.

From Table 2, we see that the PQIs of LLRSR are
higher than those of LRRSDS, LRTV, BM4D, and SRLR.
In Tables 3 and 4, most of the LLRSR’s PQIs are the best,

TABLE 4. PQIs of different denoising methods on the Washington DC
mall dataset under different noise levels.

although LRTV has better PQIs in a few cases. In Table 4,
the PQIs of LRTV are better than those of LLRSR when
σ = 0.1. It can be expected since the TV term imposes spatial
consistency and has a good performance when the HSIs
admit a piecewise smooth character, especially under heavy
noise [17]. To sum up, LLRSR obtains comparable or better
results compared with other four methods. This indicates the
advantage of the proposed method for HSI denoising.

Fig. 2 shows the denoising results of band 38 of the
San Diego dataset under σ = 0.025. We also show the
corresponding PSNR values. The magnified red blocks are
displayed in Fig. 3. From Fig. 3, we can observe that all
five methods remove noise effectively. Clearly, BM4D and

FIGURE 2. Band 38 of the San Diego dataset before and after denoising via five different methods under σ = 0.025.
(a) Original noise-free image. (b) Noise image under σ = 0.025. (c) Result of LRTV (PSNR = 41.48 dB). (d) Result of
LRRSDS (PSNR = 42.25 dB). (e) Result of BM4D (PSNR = 41.77 dB). (f) Result of SRLR (PSNR = 42.53 dB). (g) Result of
LLRSR (PSNR = 43.39 dB).
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FIGURE 3. Details of the red blocks in Fig. 2. (a) Original noise-free image. (b) Noise image under σ = 0.025. (c) Result
of LRTV. (d) Result of LRRSDS. (e) Result of BM4D. (f) Result of SRLR. (g) Result of LLRSR.

FIGURE 4. Band 22 of the Pavia city center dataset before and after denoising via five different methods under σ = 0.05.
(a) Original noise-free image. (b) Noise image under σ = 0.05. (c) Result of LRTV (PSNR = 37.52 dB). (d) Result of LRRSDS
(PSNR = 34.66 dB). (e) Result of BM4D (PSNR = 35.83 dB). (f) Result of SRLR (PSNR = 37.18 dB). (g) Result of LLRSR
(PSNR = 38.15 dB).

LRTV over-smooth the image. Though the denoised image of
LRRSDS is better than that of BM4D in Fig. 3, it still remains
more noise than that of LLRSR. The results of SRLR and
LLRSR are close, but SRLR loses more details than LLRSR
in the denoised result. In conclusion, LLRSR achieves the
best result among the five methods.

Fig. 4 displays the denoising results of band 22 of the Pavia
City Center dataset under σ = 0.05 and the correspond-
ing PSNR values. The magnified red blocks are displayed
in Fig. 5. It is shown that the results of BM4D and LRTV are
over-smoothed in Fig. 5 and they lose some texture details.
And the results of SRLR and LRRSDS are noisy compared
to the result of LLRSR.

Fig. 6 presents the denoising results of band 5 of theWash-
ington DC Mall dataset under σ = 0.075. The magnified red
blocks are displayed in Fig. 7. The result of BM4D is blurred.
For the original image Fig. 7 (a), LLRSR removes noise
and restores details more accurately than LRTV, LRRSDS,
and SRLR, as presented in Figs. 7 (g), (c), (d), and (f),
respectively.

Fig. 8 shows the denoising results of band 4 of the San
Diego dataset under σ = 0.1. We also list the corresponding
PSNR values. The magnified red blocks are displayed
in Fig. 9.We can observe fromFig. 9 that LRRSDS and SRLR
still remain some noise. Clearly, BM4D over-smooths the
image with the loss of some texture details. Compared with
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FIGURE 5. Details of the red blocks in Fig. 4. (a) Original noise-free image. (b) Noise image under σ = 0.05. (c) Result
of LRTV. (d) Result of LRRSDS. (e) Result of BM4D. (f) Result of SRLR. (g) Result of LLRSR.

FIGURE 6. Band 5 of the Washington DC Mall dataset before and after denoising via five different methods under
σ = 0.075. (a) Original noise-free image. (b) Noise image under σ = 0.075. (c) Result of LRTV (PSNR = 32.44 dB).
(d) Result of LRRSDS (PSNR = 32.80 dB). (e) Result of BM4D (PSNR = 33.41 dB). (f) Result of SRLR (PSNR = 33.05 dB).
(g) Result of LLRSR (PSNR = 34.00 dB).

LRTV, LLRSR better restores the image while suppressing
noise.

In order to show the preservation of spectral information in
denoising results, we display the spectral curves and the spec-
tral difference curves of original full-band pixels taken from
the San Diego Dataset and its estimations by different meth-
ods in Fig. 10, similarly as in [52]. We note that the pixels of
the band 38 are spatially located at the center of the red circles
displayed in Fig. 3. Fig. 10 shows that LLRSR is an effective
denoising method preserving the spectral information.

Fig. 11 shows the PSNR, SSIM, and SAD values of each
band of the denoising results of the San Diego dataset under

noise level σ = 0.025, the Pavia City Center dataset under
noise level σ = 0.05, and the Washington DC Mall dataset
under noise levels σ = 0.075 and 0.1, respectively. Clearly,
LLRSR achieves the best PSNR, SSIM, and SAD values in
most bands in Figs. 11 (a)-(f). In Figs. 11 (g)-(i), LLRSR has
better PSNR, SSIM, and SAD values than BM4D, SRLR, and
LRRSDS in most bands and has comparable PSNR, SSIM,
and SAD values to LRTV. As for Figs. 11 (j)-(l), PSNR,
SSIM, and SAD values of LLRSR are better than those of
BM4D in most bands and comparable to those of SRLR and
LRRSDS. LRTV has better PSNR, SSIM, and SAD values
than LLRSR in most bands because of the piecewise smooth
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FIGURE 7. Details of the red blocks in Fig. 6. (a) Original noise-free image. (b) Noise image under σ = 0.075. (c) Result
of LRTV. (d) Result of LRRSDS. (e) Result of BM4D. (f) Result of SRLR. (g) Result of LLRSR.

FIGURE 8. Band 4 of the San Diego dataset before and after denoising via five different methods under σ = 0.1.
(a) Original noise-free image. (b) Noise image under σ = 0.1. (c) Result of LRTV (PSNR = 31.00 dB). (d) Result of LRRSDS
(PSNR = 30.12 dB). (e) Result of BM4D (PSNR = 32.00 dB). (f) Result of SRLR (PSNR = 29.98 dB). (g) Result of LLRSR
(PSNR = 32.66 dB).

character of the HSI. In addition, the PQIs of LLRSR are
more stable than those of SRLR, LRRSDS, and LRTV.

Fig. 12 shows the relative change (RelCha) [53] in each
iteration loop of the Washington DC Mall dataset under σ =
0.025 and the San Diego dataset under σ = 0.075. Here,
the RelCha is defined as

RelCha =
‖X k+1 − X k‖F
‖X k‖F

. (22)

It is shown in Fig. 12 that the convergence history of LLRSR
in the experiments is stable.

B. EXPERIMENT WITH DIFFERENT NOISE
LEVELS IN EACH BAND
In this section. we do an experiment on the Washington
DC Mall dataset to show the effectiveness of LLRSR when
the noise level varies in different bands. Fig. 13 shows the
noise level of the noise we have added on each band of the
Washington DC Mall dataset.

Recall that LLRSR assumes that each band has the same
noise level. Therefore, in order to apply LLRSR to the
above dataset, we first do a preprocessing step such that the
noise levels of each band are equal. The preprocessing step
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FIGURE 9. Details of the red blocks in Fig. 8. (a) Original noise-free image. (b) Noise image under σ = 0.1. (c) Result
of LRTV. (d) Result of LRRSDS. (e) Result of BM4D. (f) Result of SRLR. (g) Result of LLRSR.

FIGURE 10. (a) The spectral curves and (b) the spectral difference curves
of the choosen pixels in San Diego dataset via five different methods
under σ = 0.025.

proposed in [18] is:

Ỹ:,:,l =
Y:,:,l
σl
× σ, (23)

where Y:,:,l is the intensity of the lth band, σl is the noise level
of the lth band, and σ is a given constant that the noise levels
in each band change to after the preprocessing step. We set

TABLE 5. PQIs of different denoising methods on the Washington DC
mall dataset under the noise which varies in different bands.

σ = 0.025 in this experiment. After the denoising process,
an inverse step is used to get the final recovered result:

X:,:,l =
X̃:,:,l
σ
× σl, (24)

where X̃:,:,l is the intensity of the lth band after denoising and
X:,:,l is the final recovered result of the lth band. Here, we use
LLRSRp to represent LLRSR with the preprocessing step.
Table 5 shows the PQIs of different denoising methods

on this dataset. We can see from Table 5 that LLRSRp gets
the best PQIs. It shows that LLRSRp achieves an effective
denoising result and the preprocessing step works for LLRSR
to get a better result.

C. EFFECTIVENESS OF THE SPARSE REPRESENTATION
PRIOR AND THE LOCAL LOW-RANK PRIOR
In this experiment, we show the effectiveness of simultane-
ously utilizing the sparse representation prior and the local
low-rank prior in LLRSR on three datasets. For all three
datasets, on the one hand, we denoise HSIs only by sparse
representation and ignore the local low-rank term. That is to
set µ = 0 in (12). And we use SR to represent the resulting
method. On the other hand, we denoise HSIs only using the
local low-rank constraint and ignore the sparse representation
prior. The resulting method is denoted as LLR for short.
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FIGURE 11. PQIs of the denoising results for three different datasets by five different methods. (a)-(c) the San Diego dataset under
σ = 0.025. (d)-(f) the Pavia City Center dataset under σ = 0.05. (g)-(i) the Washington DC Mall dataset under σ = 0.075. (j)-(l) the
Washington DC Mall dataset under σ = 0.1.

In this case, the minimization problem (12) becomes

min
X
γ ‖X − Y‖2F +

J∑
i=1

µ‖RiX‖wi,∗. (25)

Table 6 shows that the PQIs of LLRSR are better than those
of SR and LLR. It means that LLRSR works better than SR
and LLR in the experiment. Therefore, it demonstrates the

rationality to simultaneously utilize the sparse representation
prior and the local low-rank prior rather than to utilize only
one of them.

D. A REAL EXPERIMENT
In this section, we present the effectiveness of LLRSR on
a real dataset. In the experiment, we use the Indian Pines

79860 VOLUME 7, 2019



G. Ma et al.: Local Low-Rank and Sparse Representation for Hyperspectral Image Denoising

FIGURE 12. RelCha in each iteration loop of (a) the Washington DC mall
dataset under σ = 0.025 and (b) the San Diego dataset under σ = 0.075.

FIGURE 13. Noise level of each band in the Washington, DC, mall dataset.

dataset2 of size 145× 145× 220. Images in spectral bands 1,
104-109, 150-163, and 219-220 are abandoned because the
noise levels in these bands are high and there is nearly no
useful information in these bands.

In the real experiment, the noise level of each band of
the HSI is different. So we first estimate the noise level of
each band by a fast and accurate local noise level estima-
tion method proposed in [54]. Similarly as in Section IV-B,

2Available fromhttp://www.ehu.eus/ccwintco/index.php/Hyperspectral_
Remote_Sensing_Scenes

FIGURE 14. Noise level of each band in the Indian pines dataset before
and after the preprocessing step.

in order to apply LLRSR to the real noisy data, we apply the
preprocessing step in (23) to make the noise level of each
band be equal. Fig. 14 shows the estimated noise level of
each band in the Indian Pines dataset before and after the
preprocessing step.

Similarly as in Section IV-B, we denote LLRSR with the
preprocessing step as LLRSRp. Figs. 15 and 16 show the
images of bands 103 and 142 before and after denoising via
the five different methods. It can be observed that BM4D is
hard to restore the details. Also, SRLR remains some noise.
Clearly, LRRSDS, LRTV, LLRSR, and LLRSRp achieve bet-
ter denoising results. They remove most of the noise while
preserving many details. In particular, LLRSRp gets better
denoising results comparing to LLRSR. In Table 7, we utilize
a blind HSI quality assessment introduced in [55] to evalu-
ate the HSIs before and after denoising. A better denoising
result is indicated by a lower blind HSI quality assessment
score [55]. As shown in Table 7, LLRSRp achieves the lowest
score, which means that the LLRSRp gets a better result than
other four compared methods. In addition, Table 7 also shows
the effectiveness of the preprocessing step in LLRSRp.

TABLE 6. PQIs of SR, LLR, and LLRSR on different datasets under different noise levels.
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FIGURE 15. Band 103 of the Indian pines dataset before and after denoising via five different methods. (a) Original
image. (b) Result of LRTV. (c) Result of LRRSDS. (d) Result of BM4D. (e) Result of SRLR. (f) Result of LLRSR. (g) Result
of LLRSRp.

FIGURE 16. Band 142 of the Indian pines dataset before and after denoising via five different methods. (a) Original
image. (b) Result of LRTV. (c) Result of LRRSDS. (d) Result of BM4D. (e) Result of SRLR. (f) Result of LLRSR. (g) Result
of LLRSRp.

TABLE 7. Blind HSI quality assessment by different denoising methods
for the Indian pines dataset.

E. DISCUSSION
1) PARAMETERS DISCUSSION
Recall that the first parameter γ in (14) is the weight of the
fidelity term. Parameter γ determines the influence degree of
noisy HSI Y on the process of denoising. Large γ guaran-
tees that the recovered HSI X is close to the noisy HSI Y .
In consequence, when the noise level is lower, γ is larger,
and vice versa, as Table 1 lists. In Fig. 17, γ changes from

FIGURE 17. MPSNR of the san diego dataset with different γ under two
noise levels (a) σ = 0.05 and (b) σ = 0.1.

the set of {0.0025, 0.005, 0.015, 0.02, 0.04, 0.08}. From the
figure, results are relatively stable, and get the best with
the chosen value in Table 1. As we can see, the second
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FIGURE 18. MPSNR of the san diego dataset with different µ under two
noise levels (a) σ = 0.05 and (b) σ = 0.1.

FIGURE 19. MPSNR of the san diego dataset with different ρ under two
noise levels (a) σ = 0.05 and (b) σ = 0.1.

FIGURE 20. PQIs of denoising the Washington DC mall dataset with
different patch sizes t × t under σ = 0.05. (a) MPSNR. (b) MSSIM.
(c) MSAD. (d) Computational Time.

parameter is η, which is set implicitly in the process of
sparse coding in (15) [28]. It keeps the balance between the
representation error and sparsity. Then the third parameter
is µ, which weights the local low-rank constraint. As Table 1
indicates, parameter µ is set according to the noise level.
During the optimization process, the noise level decreases
iteratively. So µ is divided by 10 in each iteration loop of
our optimization process. In Fig. 18, µ changes from the set
of {0.00125, 0.0025, 0.05, 0.01, 0.02, 0.04, 0.08}. From the
figure, the result changes with different µ. Notice that the

FIGURE 21. PQIs in each iteration loop of denoising the Washington, DC,
mall dataset under different noise levels. (a) MPSNR and (b) MSSIM.

FIGURE 22. PQIs in each iteration loop of denoising the san diego
dataset under different noise levels. (a) MPSNR and (b) MSSIM.

FIGURE 23. PQIs in each iteration loop of denoising the pavia city center
dataset under different noise levels. (a) MPSNR and (b) MSSIM.

fourth parameter ρ constrains auxiliary variable Pi to be close
to the local patch RiX . In Fig. 19, ρ changes from the set of
{0.375, 0.75, 1.5, 3, 4, 6, 8}. We choose ρ from the set for the
best MPSNR value.

As shown in Fig. 20, we see that there is a tradeoff between
PQIs and the computational time for the same patch size.
In all of our experiments, we set the patch size to be 8 × 8
to obtain comparable results.

2) MAXIMUM ITERATION NUMBER SETTING
We note that MPSNR and MSSIM values in each iteration
loop of the Washington DC Mall dataset, the San Diego
dataset, and the Pavia city center dataset under four different
noise levels are recorded in Figs. 21, 22, and 23, respec-
tively. These figures present the relation between the iteration
number and the denoising performance. As the optimization
procedure only needs a few iterations to get a valid result,
it is sufficient to set the iteration number as 20, similarly as
in [17]–[19], [28]. It is worth noting that a larger iteration
number may cause over-fitting and therefore a poor denoised
performance [18].
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V. CONCLUSION
In this paper, we have proposed a local low-rank and sparse
representation method for HSI denoising problem. We uti-
lize the local low-rank property in our model to preserve
local spectral-spatial information of HSIs. We solve the
proposed model under the alternative minimization frame-
work and obtain an algorithm called LLRSR. The weighted
nuclear norm is adopted to enhance the local low-rank prop-
erty. We also show the convergence of the proposed algo-
rithm numerically. The experimental results indicate that our
method removes HSI noise effectively, comparing with other
four state-of-the-art methods.

We notice from the numerical experiments that dictionary
learning has high computational complexity. In our future
work, we will consider accelerating LLRSR by reducing the
computational complexity of dictionary learning.
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