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ABSTRACT Liver cancer is one of the most common cancers. Liver tumor segmentation is one of the
most important steps in treating liver cancer. Accurate tumor segmentation on computed tomography (CT)
images is a challenging task due to the variation of the tumor’s shape, size, and location. To this end, this
paper proposes a liver tumor segmentation method on CT volumes using multi-scale candidate generation
method (MCG), 3D fractal residual network (3D FRN), and active contour model (ACM) in a coarse-to-fine
manner. First, livers are segmented using 3D U-Net and then MCG is performed on these liver regions for
obtaining tumor candidates (all superpixel blocks). Second, 3D FRN is proposed to further determine tumor
regions, which is considered as coarse segmentation results. Finally, the ACM is used for tumor segmentation
refinement. The proposed 3D MCG-FRN + ACM is trained using the 110 cases in the LiTS dataset and
evaluated on a public liver tumor dataset of the 3DIRCADb with dice per case of 0.67. The experimentations
and comparisons demonstrate the performance advantage of the 3D MCG-FRN + ACM compared to other
segmentation methods.

INDEX TERMS Fractal residual network, multi-scale candidate generation method, active contour model,
liver tumor segmentation, CT volume.

I. INTRODUCTION
According to the World Health Organization (WHO) reports,
liver cancer is one of the most common cancers in the
world and is a main cause of death in all cancers. In 2012,
745,000 patients died of liver cancer worldwide [1], hepatic
cell carcinoma (HCC) accounts for about 80% of all primary
liver cancers andmost patients with chronic liver disease have
HCC. Detection of HCC at an early stage can greatly improve
the cure rate of patients.

Computed tomography (CT), featured by its high spatial
resolution and fast scanning speed, plays a significant role in
liver cancer detection and diagnosis. The primary treatment
methods include surgical resection, interventional therapy,
locoregional ablation, etc. These treatment methods need the
detail information of tumors, such as the size, shape, and
location before therapy in order to develop a fine treatment
program [2]. In routine clinical practices, the segmentation of
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liver cancer can be done manually by radiologists with good
expertise and experience. However, this is a time-consuming
task requiring the radiologist to search through a 3D CT
scan which may include hundreds of slices and multiple
lesions. At the same time, automatic liver tumor segmen-
tation is a difficult task due to different image acquisition
protocols, various contrast-agents, and varying levels of con-
trast enhancements. In addition, dissimilar scanner resolu-
tions lead to unpredictable intensity, and many different types
of lesions, especially tumor sub-types, can occur in livers.
Thus, these different types of tumors with varying contrast
levels (hyper-/hypo-intense tumors) create obstacles for auto-
mated tumor segmentation [3]. In recent decades, with the
development of computer-aided diagnosis (CAD) [4], sev-
eral methods based on machine learning for automatic liver
tumor segmentation on CT images have been developed
which include traditional machine learning methods and deep
learning methods. For traditional machine learning methods,
Smeets et al. [5] proposed a combining level set method with
supervised pixel classification for liver tumor segmentation.
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Vorontsov et al. [6] used support vector machines (SVM)
with a texture based deformable surface model to refine
segmentation results. Shimizu et al. [7] utilized adaboost on
texture features for liver lesion extraction. Conze et al. [8]
proposed scale-adaptive supervoxel-based random forests to
segment liver tumors. Hong et al. [9] adopted fuzzy C-means
clustering to automatically segment liver tumor. The classi-
fier used 16 × 16 image patches on individual CT slices.
Billelo et al. [10] utilized intensity-based histogram and liver
contour refinement to segment liver tumors, followed by an
SVM to sift out false alarms. Masuda et al. [11] described a
method to segment liver tumors by enhancing the CT scan
contrast levels and expectation maximization of the poste-
rior marginal. This super-voxel method, called EM/MPM,
produced candidates that were then filtered using shape and
location information.

With the development of deep learning, many meth-
ods have been developed to segment liver tumors through
convolutional neural networks. Li et al. [12] designed a
hybrid densely connected U-Net to effectively probe hier-
archical intra-slice features for liver and tumor segmen-
tation. Jiang et al. [13] proposed a cascaded deployment
of AHCNet, which combined soft and hard attention
mechanism and long and short skip connections, pro-
ducing competitive results for liver tumor segmentation
in CT volumes. Chen et al. [14] trained a neural network
classifier on the liver voxels with a custom feature
descriptor. Ben-Cohen et al. [15] used a fully convolu-
tional network (FCN) for liver segmentation and tumor
detection. Christ et al. [16] combined a FCN with dense
3D conditional random fields to segment liver tumors.
Yuan. et al. [17] segmented liver and tumor by two hierarchi-
cal convolutional-deconvolutional neural networks(DCNNs)
and used histogram equalization to enhance segmented liver
region. Then, the enhanced region was sent to the third
DCNN as additional information for liver tumor segmen-
tation. Vorontsov et al. [18] proposed a simple single-stage
model that was trained end-to-end and there were two FCNs
in this model. The first FCN was used to segment liver
regions and the features, which were extracted by the first
FCN, were fed into the second FCN to segment liver tumors.
Lei et al [19] gradually learned and inferred the boundaries
of both the liver and the liver lesions through cascaded
deep resnet with multi-scale fusion. The first resnet was
used to generate the probability map of liver and tumor,
and the second can predict the final result. Li et al. [20]
automatically segmented CT liver images through CNNs and
then post-processed them through random forests. Bellver
et al. [21] proposed a cascade network for liver tumor seg-
mentation. First, they used deep retinal image understand-
ing (DRIU) to segment the liver, and then used a detector to
segment liver tumors.

These deep learning methods are image-level segmen-
tation which result in unsatisfactory sensitivity for liver
tumor segmentation. The sensitivity of segmentation can be
effectively improved if block-level segmentation is adopted.

Nowadays, a sliding window is the mainstream method for
candidate regions selection of liver tumor. However, using
a sliding window to obtain the liver tumor candidates will
divide one tumor into multiple regions, which is unfavor-
able for the segmentation of liver tumor. To solve this
problem, a tumor candidate generation method based on
superpixel segmentation is proposed in this paper, which
ensures the integrity of tumor information while decreas-
ing the calculation complexity by reducing the number of
tumor candidates. Nowadays, the superpixel segmentation
and classification method is widely utilized for segmentation
tasks in other fields of disease recognition. For example,
Li et al. [22] segmented pancreas cancer based on the sim-
ple linear iterative clustering. Bechar et al. [23] proposed
a semi-supervised glaucoma screening approach including
applying superpixel method and incorporating prior knowl-
edge of the optic cup and disc. Then they trained the Co-forest
classifier by these superpixels. Chu et al. [24] developed
a multiple stage method for breast mass detection. They
segmented mass candidates through the simple linear itera-
tive clustering (SLIC) method. Then they prescreened sus-
picious regions through superpixel classification. Finally,
level set was utilized to optimize lesion contour refine-
ment. Bejnordi et al. [25] implemented automatic detection
of regions of interest in whole slide histopathological images
through generating and classifying superpixels at multiple
resolution.

In this paper, we propose a method for liver tumor segmen-
tation. First, 3D U-Net [26] is used to segment liver regions.
Then, liver regions are segmented to tumor candidates by
multi-scale candidate generation. Tumor candidates are con-
sequently classified and fused for the purpose of segmenta-
tion. This method can increase the proportion of liver tumor
information compared with the liver information in candi-
date regions. In order to improve the classification accuracy
and sensitivity of the network for liver tumor segmentation,
a new network structure, namely, fractal-residual structure,
was proposed.

The contributions of this paper are as follows.
• (1) This paper proposes a method combining the
multi-scale superpixel segmentation method and mul-
tiple neighborhood information to generate liver tumor
candidates for segmentation, which can involve more
complete tumor information for candidate regions. This
increases the network’s classification sensitivity to liver
tumor details and reduces computational complexity
caused by redundant information while increasing the
amount of effective information.

• (2) It is well known that residual structure and frac-
tal structure are both very efficient network structures.
We introduce the idea of the fractal structure into the
residual structure to obtain the fractal residual structure,
which increases the network width while keeping the
depth of network in order to extract more modal char-
acteristics and increase the generalization ability of the
network.
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FIGURE 1. The flowchart of the proposed liver tumor segmentation method. The red box part (tumor candidate generation, 3D FRN, and
multi-scale fusion) highlights the contributions of this paper.

• (3) Auxiliary classifiers are introduced in the proposed
network. Specifically, we use a joint loss function to
enable the auxiliary classifier to assist the main classi-
fier. The method takes full account of the features pro-
posed in each block and uses them to jointly supervise
the main classifier. Each auxiliary classifier is consid-
ered as a back propagation gradient signal added to the
network.

II. METHOD
The flowchart of proposed liver tumor segmentation method,
which includes (1) liver region segmentation; (2) liver tumor
candidate generation; (3) tumor candidate classification, and
(4) liver tumor boundary refinement using an active contour
model [27], is shown in Figure 1.

The specific steps are as follows.

Step 1:We segment liver regions from CT volumes through
3D U-Net [26].

Step 2:The multi-scale candidate generation method,
which combines multi-scale superpixels segmen-
tation method based on linear spectral clustering
(LSC) [28] andmultiple neighborhood information,
is proposed for segmenting tumor candidates within
liver regions.

Step 3:3D FRN combining the fractal structure [29] and
the residual structure [30] is proposed for classify-
ing the liver tumor candidates.

Step 4:The active contour model [27] is introduced to
refine the boundary of the liver tumor and the high
probability region in the network output is used as
the initial contour.

A. TUMOR CANDIDATE GENERATION METHOD IN THE
LIVER REGION
Because the size of liver tumors in the CT image varies, accu-
rate liver tumor segmentation remains a challenge. To this
end, the region of background needs to be narrowed by seg-
menting the liver region, which can effectively improve the
segmentation efficiency of tumors. In this paper, we use the
3D U-Net for liver segmentation before liver tumor segmen-
tation. Although the image after liver segmentation reduces
a large number of non-interested regions, the tumor region
of interest is still too small to be segmented in liver regions.

To solve this problem, we decided to cut each segmented
liver image into tumor candidates and then classify the tumor
candidates to obtain the segmentation results. Nowadays,
the effective candidate generation method is to use a sliding
window to generate candidate regions pixel by pixel, which
is a type of pixel-level classification. Although the neighbor-
hood information of each pixel can be fully considered in this
method, it also causes a series of problems, such as, large
amount of redundant information and significant requirement
of calculation. Also, some scattered points are caused by false
positives, which can be misleading to doctors. Therefore, for
the above problems, we propose a tumor candidate generation
method (MCG) for dividing liver regions into tumor candi-
dates. The method includes multi-scale superpixel method
and multiple neighborhood information.

1) MULTI-SCALE SUPERPIXEL METHOD
The superpixel method, linear spectral clustering (LSC),
which maps images to high-dimensional spaces to find rela-
tionships between pixels, putting the same type of pixels
into the same candidates. LSC can generate good candidates
with prior knowledge which benefits tumor segmentation.
Therefore, LSC is used to generate tumor candidates.

The traditional superpixel classification method is to
directly classify superpixels as classification units and class
them by extracting superpixel features. However, it has
been experimentally found that the single-scale segmenta-
tion results heavily depend on the superpixel segmentation
results. If the segmentation result of a single-scale superpixel
segmentation method cannot segment the tumor boundary
accurately, it will also affect the final segmentation result.
The single-scale superpixel segmentation method has low
tolerance to false positive and is based on a single-scale
candidate region. Consequently, only limited local informa-
tion is used, which results in a higher false positive rate and
lower sensitivity. Therefore, a multi-scale superpixel method
is chosen as the method to generate tumor candidates.

For Ik ∈ Rc×c, the kth slice of input image I which only
includes the liver region, we calculate superpixel results of s
scales. The formula for the single-scale superpixel result is as
follows.

Fn (Ik) = LSC (Ik , n) (1)
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where LSC (·) stands for linear spectral clustering operation.
Parameter n represents the number of superpixels we segment
Ik by LSC in one scale. Fn (Ik) is the superpixel mask of Ik
and lth superpixel region in Fn (Ik) is B(k,l). Some examples
of superpixel segmentation are shown in Figure 2.

FIGURE 2. Examples of three-scale superpixel segmentation results.
(a) Input CT image with the red region indicating the liver region.
(b) Superpixel segmentation result for scale with n = 1000. (c) Superpixel
segmentation result for scale with n = 1500. (d) Superpixel segmentation
result for scale with n = 2000.

2) MULTIPLE NEIGHBORHOOD INFORMATION
Although using the multi-scale superpixel segmentation
method can generate good tumor candidates, these tumor
candidates, which contain only single slice image information
and ignore background information, are not sufficient for
effective segmentation. Therefore, a novel approach (MCG)
which includes both context information and multi-scale
information is developed to increase multiple neighborhood
information in superpixel results of each scale. Let function
T represent the transformation from the liver region volume
data to the input of the proposed network and T −1 stand for
the transformation from the output of the proposed network
to the segmentation results:

Xin = T (Ik ,Fn (Ik)) , Xin ∈ Rm×i×L×L×s (2)

Y = T −1 (Xout ,Fn (Ik)) , Y ∈ Rm×512×512 (3)

wherem is the number of slices,T −1 is the inverse operation
of T , Xin is the input of the 3D fractal residual network (3D
FRN) and Xout is the output of the 3D FRN. T includes
a series of operations and the detailed process of T is as
follows.

First, we use LSC to generate Fn (Ik) of Ik and calculate
the area S(k,l) of B(k,l). Second, if B(k,l) is not all 0, the center
point P(k,l) of B(k,l) is used as the center of the square tumor
candidates. Third, the size of the tumor candidates L(k, l, i)

is determined according to S(n,k). There are i kinds of size we
choose, and each size is calculated as follows,

L(k, l, i) =

{⌊√
S(k,l)

⌋
, if i = 1

L(k, l, 1)+ (i− 1)
√
L(k, l, 1), otherwise

(4)

Then, i square areas, which take P(k,l) as center point,
L(k, l, i) as side length, are taken from Ik and resized to the
mean size among all candidates. They are then stacked into
an i channel tumor candidate.
Finally, the context information is also utilized to intro-

ducemore sufficient neighborhood information. For an image
Ik , Ik−1 and Ik+1 are involved to generate 3-channel tumor
candidates. The class of a tumor candidate can be predicted
through the 3D FRN and the prediction result is also regarded
as the class of the corresponding superpixel that generates the
candidate. For a specific superpixel scale of Ik , the classifica-
tion results of all superpixels are combined based on Fn(Ik )
to form the image-level result of this superpixel scale. The
detailed generation process is shown in Figure 3. We obtain
s binary image-level results corresponding to s superpixel
scale, which means, for each pixel, there are s prediction
results [P1,P2, . . . ,Ps]. min([P1,P2, . . . ,Ps]) is the finally
segmentation result of this pixel.

B. 3D FRACTAL RESIDUAL STRUCTURE
It is well known that liver tumor segmentation is considered as
a challenging task. First, the morphology of liver tumor varies
widely in patients, such as size, shape, location and numbers.
Second, some tumor boundaries are fuzzy, which is simi-
lar to blood vessels and surrounding tissues in morphology.
Therefore, we propose a 3D fractal residual (FR) structure
inspired by the idea of the fractal structure. The original
fractal network, due to the random discarding mechanism,
has improved the generalization ability of the network, but
has also led to the discarding of many effective features.
In order to increase the generalization ability of the network
as well as acquire more features of different resolutions,
we add the shortcut connection in the FR structure. By means
of building a deep network, the FR structure enlarges the
width of the network, expands the dimension of the features
extracted by the network, realizes the reuse of the features,
and greatly improves the ability of the network to classify
tumor candidates. FR structure can be expanded iteratively to
an i-level structure, which is expressed as follows,

Mi =

{
res, if i = 1
2Mi−1

⊕
M1

⊕
z, otherwise

(5)

where res represents residual structure. There are two types
of residual structure as shown in Figure 4, We use residual
structure (b) instead of residual structure (a) in order to reduce
parameters. Mi represents the i-level FR structure, which is
the adjacent structure of Mi−1. In order to illustrate the FR
structure in detail, the structure ofM3 is presented in Figure 5
as an example. z is the input and ⊕ is a join operation. The
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FIGURE 3. The detailed generate process T and multi-scale fusion process T −1.

FIGURE 4. Two types of residual structure. (a) is the convolutional
residual block with two-layer learning unit and (b) is the convolutional
residual block with three-layer learning unit.

joint operation is to merge three globs into a single output
glob. The three globs are obtained by residual block, Mi,
and the original input. These globs represent three types of
features in visual levels, which are extracted to increase the
classification efficiency of network. In addition, because of
the existence of random dropping paths in the join operation,
the back propagation process randomly enhances each path,
thereby, improving the overall performance of the network.
Then, each path of the FR structure is a single resnet in the
process of back propagation. resnet introduces the input of
each layer of the network to the later layers by introducing a
characteristic shortcut connection, thus making the gradient
flow uninterrupted, allowing parameters to be updated in
depth in the network, and making the convergence speed
faster in the course of training. The FR structure, which
combines the advantages of fractal structure and residual
structure, reduces overfitting and improves the accuracy of
classification with a continuous improvement in learning
ability.

C. 3D FRN WITH MULTI-CLASSIFIER
The 3D RFN is composed of b blocks which combine global
information with detail information. Each block is aMi struc-
ture. Then, the 3D FRN includes b × 4 ×

(
2i − 1

)
layers.

In this paper, we build a 3D RFN with 112 layers (b = 4,
i = 3) which includes 3D convolution layer, 3D maxpooling
layer and predict layer. The structure of 3D FRN is shown
in Figure 6. In [31], it is shown that for liver tumor analysis,
the network stacking a large number of small convolutional

kernels provides the same sensitivity field effect as the net-
work with a large convolution kernel, but small convolution
kernel reduces the computational cost of training network.
To this end, the shape of all convolution kernels in 3D FRN
are 3× 3× 3.
In order to increase the classification ability of the network,

some auxiliary classifiers are added after the output of each
block. This method can effectively alleviate the problem of
gradient disappearance and assist the training process with
direct supervision on the hidden layers.

Although the 3D FRN and the fractal network use the
similar structure, there are major differences. First, 3D FRN
combines with shortcut connection and randomly dropout
paths and we extend the 3D FRN by replacing a single
layer with a larger fractal residual block, so that the features
of any layer can be transferred to any subsequent layer or
discarded. In this way, the loss of a large amount of detailed
information due to the high level of hierarchy (for example,
fast R-CNN [32] and faster R-CNN [33] both use the features
of the last convolution layer for target detection) can be
avoided. Furthermore, this greatly increases the variety of
features extracted by 3D FRN, either the detailed information
of the lower level or the semantic features of the higher
level. Second, the back propagation mode of the 3D FRN is
different from the fractal network. The 3D FRN can reach a
much deeper extent than the fractal network because of the
existence of multiple shortcut connections during the back
propagation process. Regardless if all paths are reserved or
only one path is reserved, the shortcut connection can be used
to ensure that the gradient can be passed back, ensuring the
efficiency of back propagation and speeding up.

D. LOSS FUNCTION
In order to ensure that the multiple auxiliary classifiers can
effectively supervise the training of the entire network, we use
a joint loss function. The loss function consists of three parts.
The first two parts are the loss of the main classifier and the
loss of the auxiliary classifier and, for preventing the network
from overfitting, we add a regularization term to the loss
function.

L(X ;W ,wm)=L(X ;W )+
M∑
m=1

λmLm(X ;W ,wm)+µ ‖W‖2

(6)
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FIGURE 5. FR structure with 3 levels, M3 is composed by M2 and M2 is composed by M1. In order to
explain the structure of M3 more clearly, we also exhibit the structure of M1 and M2. From left to
right: M1, M2 and M3 represent FR structures with 1 level, 2 levels and 3 levels, respectively.

FIGURE 6. The structure of 3D FRN which contains four blocks, each of which is a 3-level FR structure. The X (1)
out , X (2)

out and X (3)
out is

the output of each auxiliary classifiers.

where W and wm represent the weight of a main classifier
and m auxiliary classifiers respectively and X is the train-
ing sample. The main classifier’s cross-entropy loss function
L(X ;W ) and the auxiliary classifiers’ cross-entropy loss
function Lm(X ;W ,wm) are calculated as follows.

L(X ;W ) =
∑
xi∈X
−yi log ŷi(xi;W ) (7)

Lm(X ;W ,wm) =
∑
xi∈X
−yi log ŷi(xi;W ,wm) (8)

where ŷi is the probability of xi belong to each class and yi is
the label of xi.

E. ACTIVE CONTOUR MODEL
The preliminary result can be experimentally obtained
through aforesaid methods as shown in Figure 7. However,
the data generated based on MCG leads to superfluous infor-
mation. Consequently, in the boundary of the tumor, many
candidate regions contain only part of tumors because the
border of candidates overlap with tumor edges, but they tend
to be classified as tumor regions due to the generalization
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FIGURE 7. The preliminary result. (a). The green regions are the predict of
liver tumor by 3D MCG-FRN. (b). The red regions are the ground truth
and (c). The yellow regions denote correctly tumor segmentation we
predict while the green ones for tumor false positive pixels and the red
ones for tumor false negative pixels.

process of 3D FRN. As a result, the final segmentation result
will be larger than the real tumor. In addition, even though
multi-scale superpixel can narrow the burr boundaries to
some extent, the smoothness of segmentation boundary still
needs improving since the final result is a superpixel-level
result. Therefore, the active contour model [27] is applied as
a simple post-processing procedure to finetune the obtained
boundary since 3D FRN could provide an excellent initial
boundary. In this way, a secondary correction step will be per-
formed on candidate regions. Meanwhile, the burr boundary
problem can be effectively solved.

III. EXPERIMENTS AND RESULTS
A. DATASET
Experiment dataset is the LiTS dataset, involving 131 patients’
contrast enhanced 3D abdominal CT scans which include
118 cases of tumor patients and 13 cases of normal patients.
The number of slices per patient varies greatly. The dataset
contains 58638 slices in total which is collected from six
clinical sites by different scanners and protocols, with very
different in-plane resolution from 0.55mm to 1.0mm and
section spacing from 0.45mm to 6.0mm. The dataset cov-
ers dramatic changes in population, contrast, scan range,
pathology and field of vision (FOV). Most CT scans are
pathological, including tumors of different sizes, metastases
and cysts. It is worth noting that the 3DIRCADb dataset1 is
a subset of the LiTS dataset.2 In order to evaluate our model
fairly, we use 3DIRCADb dataset as the testing data and the
remaining data in LiTS dataset is considered as the training
data.

B. PREPROCESSING
To facilitate experimental training, we clip the pixels outside
the range (-150, 250) of the original images to the mini-
mum/maximum value to improve the contrast between the
liver and surrounding organs and tissues, therefore, exclud-
ing organs that are not of interest. After that, the image is
normalized.

Since smaller proportion of the number of slices containing
tumors in the dataset, in order to enhance the classification
effect of the network, the dataset needs to be expanded. The

1https://www.ircad.fr/research/3dircadb/
2https://competitions.codalab.org/competitions/17094

data expansion is in addition to a series of geometric transfor-
mations, such as random cropping, flipping, shifting, scaling
and tilting, and also using Elastic Distortions, which enables
the network to learn deformation invariance, to expand the
training data, to prevent over-fitting, and further enhance the
ability of generalization. We use a random displacement vec-
tor to generate a smooth deformation on a coarse 3× 3 grid.
The displacement is sampled from a Gaussian distribution
of 10-pixel standard deviation and then the displacement per
pixel is calculated using bicubic interpolation. The expanded
image is shown in Figure 8.

C. TRAINING PROCESS
To validate the method we proposed, we trained on the
LiTS dataset and tested on the 3DIRCADb dataset. The
3DIRCADb dataset is the subset of the LiTS dataset, which is
publicly available and provides a more accurate label. We use
3DIRCADb as the testing data and the other 110 cases in
LiTS as the training and validation data (90% for training and
10% for validation). Themodel was implemented usingKeras
package [34].

The experimental process is divided into two stages. The
first stage is the process of dividing the image into tumor
candidates. First, the 3D U-Net is used to find the mask of the
liver on CT image, which is used to reduce the background
regions. Then, the image of liver region is segmented by
MCG. The number of superpixel scale is 3 and the number
of superpixel n of each scale is 1000, 1500, 2000, respec-
tively. The stretch ratio of each scale is 0.2, and the final
size of candidates is 32 × 32. In order to balance the scale
between positive cases and negative cases in training dataset,
the number of liver tumor candidates is limited to the same
as the number of background candidates during the training
process.

The second stage is to classify tumor candidates, 3D FRN
depth 112 (b = 4, i = 3) is used for classification, with initial
learning rate 0.002. When the loss of validation data does
not reduce during three consecutive epochs, the learning rate
decays to one tenth of the original. We train the network for
400 epochs with SGD optimizer. The momentum of SGD is
0.9 and the batch size is 20. From the first to the fourth block,
we use 128, 256, 256, 512, 3 × 3 convolutions respectively.
At the end of each block, we add a classifier. There are
total four classifiers, including a main classifier and three
auxiliary classifiers and the weights of auxiliary classifiers
are λm = (0.3, 0.3, 0.3). All tumor candidates are integrated
into the original image size according to the superpixel mask
that was originally divided and then the three-scale images
are combined. The minimum probability value is selected as
the final segmentation result. Finally, refine the preliminary
result through ACM to optimize the boundary of the segmen-
tation results.

All computations were performed on an Intel R©CoreTM
i7-7700K CPU@3.60GHz, 8 Cores, 32 GB RAM running on
Ubuntu 16.04 LTS and NVIDIA GeForce GTX 1080ti GPU
with 3584 cores and 11GB memory.
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FIGURE 8. The sample of Elastic Distortions. (a) The original CT image. (b)−(e) cropped CT image to the elastic distortion sample.
(f) The image after the Hu value. (g)−(j) cropped liver ground truth to the elastic distortion sample.

FIGURE 9. The comparison between segmentation results obtained by
proposed method and the ground truth in 3D. (a) The green regions is the
segmentation by 3D MCG-FRN. (b) The red regions is the ground truth.

D. RESULTS
1) EVALUATION METRICS
This paper evaluates the segmentation results using the fol-
lowing metrics, dice per case, dice global, volumetric over-
lap error (VOE), relative volume difference (RVD), average
symmetric surface distance (ASD) and the maximum surface
distance (MSD). The smaller the value of the last four evalu-
ation metrics, the better the segmentation results.

2) LIVER TUMOR SEGMENTATION RESULTS
This section presents the segmentation performance of the
proposed method and the comparison with other methods,
We compare our method with some recent segmentation
methods [17], [35]–[37] on 3DIRCADb dataset. We found
that our method still outperforms 3D U-Net [35] and
resnet [37], with 16% and 7% improvement on dice per case
for tumor segmentation.

IV. DISCUSSIONS
Liver tumor segmentation is an important prerequisite for
effective treatment of liver disease. The method we propose
is based on MCG, and the advantage is to find liver tumor
regions accurately. Different from other candidate generation

FIGURE 10. The training process of classify candidates with different
model.

methods, our method has two important characteristics with
respect to the proposed MCG. First, the context information
and multi-scale information are involved in tumor candi-
dates while reducing the number of tumor candidates and
increasing computational efficiency. Second, the final seg-
mentation results do not directly dependent on the results of
superpixel segmentation. All tumor regions can be accurately
included in one of the multi-scale superpixels or a combina-
tion of multiple scales, which facilitates later tumor segmen-
tation. After that, we proposed 3D FRN. The new structure
contains the residual structure and fractal structure, which
increases the width and depth of the network and extracts
more modal features, which effectively increases the accu-
racy of classification and improves the performance of the
segmentation.

Figure 9 shows the 3D visualization result of the tumor
through our proposed method. It can be seen that our results
are approximately consistent with the label. However, there
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TABLE 1. Segmentation results by ablation study of our methods on the 3Dircadb dataset. Statistically significant results are highlighted in bold font.
(The CG means the MCG with single scale superpixel.)

TABLE 2. Our method’s segmentation results compare with some other method on the 3Dircadb dataset. Statistically significant results are highlighted in
bold font.

are some burrs on the boundary and the tumor surface is not
smooth. Figure 12 shows the segmentation results for several
patients with different tumor sizes.Most were segmentedwell
(the first four rows) and there are few false positives. The
segmentation result boundary is closely matched with the
label boundary. But, in some cases, such as the fifth row, our
method divides two tumors which close to each other into one
tumor regions. For very small tumors (sixth row), our method
has some miss detection.

In order to test the performance of the network, we com-
pared the training process between the 3D fractal network,
the 3D FRN, the 3D ResNet, and the 3D FRN with auxiliary
classifier. As shown in Figure 10, it can be observed that the
3D FRN with auxiliary classifier achieves the lowest loss and
the highest accuracy of validation dataset. 3D FRN performs
worse than 3D FRN with auxiliary classifier, but better than
3D fractal network and 3D ResNet. This shows that the 3D
FRN is better than 3D fractal network and 3D ResNet, at the
same time, the auxiliary classifier has some improvement
over FRN.

Figure 11 presents the visualization performance compari-
son between 3D MCG-FRN + ACM and 3D MCG-Fractal
Net + ACM. It is seen that 3D MCG-FRN + ACM is
more accurate than 3D MCG-Fractal Net + ACM, and 3D
MCG-FRN + ACM is more sensitive than 3D MCG-Fractal
Net + ACM.

Table 1 presents our performance of liver tumor segmenta-
tion results by ablation study of our methods on the 3Dircadb
dataset. The 3DMCG-FRN basedwith active contourmethod
has the best segmentation performance on dice and VOE.
FRN performs better than fractal net and resnet from the com-
parison between the result of 3D CG-Fractal Net+ACM, 3D

FIGURE 11. Tumor segmentation sample compare results, from left to
right: Test image, the segmentation results by 3D MCG-Fractal Net + ACM
and our results. Comparison between our result and 3D MCG-Fractal
Net + ACM. For each comparison the following conventions were used: In
red - ground truth, in green - out segmentation result, in yellow -
overlapping regions between segmentation results and ground truth.
(a) Test image. (b) The segmentation result by 3D MCG-Fractal Net+ACM.
(c) The segmentation result by 3D MCG-FRN + ACM.

CG-FRN + ACM and 3D CG-ResNet + ACM. At the same
time, According to the comparison of the results between
3D CG-Fractal Net + ACM and 3D MCG-Fractal Net +
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FIGURE 12. Tumor segmentation sample compare results. There are six
samples, from left to right: Ground truth, the segmentation result by 3D
MCG-FRN + ACM and overlap of them. Comparison between our result
and ground truth. For each comparison the following conventions were
used: In red - ground truth, in green - out segmentation result, in yellow -
overlapping regions between our segmentation results and ground truth.

ACM and the comparison of the results of 3D CGFRN +
ACM and 3D MCGFRN + ACM, we can see that using the
multi-scale method is helpful for the final dice result. From
the result of 3D MCG-FRN, we can see the importance of
post processing.

The performance comparison of the proposed methods
with other methods using 3DIRCADb dataset is shown

in Table 2. For five evaluation indicators, 3D MCG-FRN +
ACM achieves best results in terms of dice per case, dice
global and RVD. As ACM is not very sensitive to fuzzy
boundaries, 3D MCG-FRN + ACM performs not as good
as [17] in terms of ASD and MSD.

V. CONCLUSION
In this paper, we propose a new method for liver tumor
segmentation in CT images, including liver segmentation,
multi-scale tumor candidate generation, tumor candidate
classification, and the active contour model. First, we use 3D
U-Net for liver segmentation and obtaining tumor candidates
using MCGmethod. Then, with regards to candidate classifi-
cation, we propose 3D FRN. Finally, for better segmentation
results, active contour model is selected for post processing.
We performed the segmentation tasks on 3DIRCADb dataset,
the experiment results and comparisons with related work
demonstrate that our proposed model can achieve a better
segmentation performance.

There are some limitations in the methods proposed in
this paper. For example, the boundaries of tumors cannot be
accurately segmented and multiple adjacent tumors may be
segmented into a single tumor region. In the future, we plan
to address those issues using advanced algorithms, such as
the 3D level set method or the 3D conditional random field
method [16].
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