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ABSTRACT Photovoltaic power generation forecasting is an important topic in the field of sustainable
power system design, energy conversion management, and smart grid construction. Difficulties arise while
the generated PV power is usually unstable due to the variability of solar irradiance, temperature, and other
meteorological factors. In this paper, a hybrid ensemble deep learning framework is proposed to forecast
short-term photovoltaic power generation in a time series manner. Two LSTM neural networks are employed
working on temperature and power outputs forecasting, respectively. The forecasting results are flattened and
combined with a fully connected layer to enhance forecasting accuracy. Moreover, we adopted the attention
mechanism for the two LSTM neural networks to adaptively focus on input features that are more significant
in forecasting. Comprehensive experiments are conducted with recently collected real-world photovoltaic
power generation datasets. Three error metrics were adopted to compare the forecasting results produced
by attention LSTM model with state-of-art methods, including the persistent model, the auto-regressive
integrated moving average model with exogenous variable (ARIMAX), multi-layer perceptron (MLP), and
the traditional LSTM model in all four seasons and various forecasting horizons to show the effectiveness
and robustness of the proposed method.

INDEX TERMS PV power generation, short-term forecasting, long short term memory, attention
mechanism.

I. INTRODUCTION
Photovoltaic power is known as a clean, safe, sustainable and
renewable energy, which is widely applied to replace fossil
fuel power resources in the near future. The PVmarket system
has a rapid development pace since 2007; and PV power
generation, transmission, maintenance and consumption have
become important components in the construction process of
smart power grids [1], [2]. However, the energy generated
by PV systems is always influenced by various factors, such
as sunshine, cloud cover, temperature and relative humidity.
When large-scale PV power plants are connected to the grid,
the stability and safety of the power grid will be seriously

The associate editor coordinating the review of this manuscript and
approving it for publication was Lin Zhang.

threatened. Short-term PV forecasting is therefore one of
the key technologies towards the solution stabilizing the PV
power generation [3].

PV power generation forecasting is a long existed prob-
lem, which attracts a broad range of attentions. Various
methods have been proposed in the literature, including the
numerical weather prediction (NWP) model, statistical meth-
ods, machine learning methods and hybrid methods. The
NWP model focuses on forecasting meteorological parame-
ters, such as irradiance, atmospheric temperature, and wind
speed. The forecasted meteorological parameters are then
inserted into a physical model to forecast PV power gen-
eration [4]. Pierro et al. [5] employed the NWP model
to forecast 1 day-ahead PV power generation. An ensem-
ble model was proposed after comparing a variety of
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TABLE 1. Abbreviation and full name.

forecasting models. Chen et al. [6] proposed an ultra-short
time PV power forecasting method using the ground-based
sensors; and a ramp rate control method is proposed to
smooth the PV power output based on the forecasting results.

Statistical methods and machine learning methods are
data-driven methods that use historical records of power gen-
eration, solar irradiance, atmospheric temperature, humid-
ity, etc. to build forecasting models [7], [8]. Massidda and
Marrocu [9] used the historical meteorological data and his-
torical PV power data to establish the multilinear adaptive
regression splines model; this model used weather forecast
as input to forecast the power of a PV plant in Borkum,
Germany. Machine learning is a popular forecasting method
for time series data forecasting, such as the PV power outputs
and other similar applications [10]–[12]. Mellit et al. [13]
divided the data into three types: sunny, partly cloudy and
overcast, according to the mean value of the solar irradiance.
An artificial neural network (ANN) model was constructed
using different types of data to carry out short-term PV power
forecasting. Behera et al. [14] used the extreme learning
machine (ELM) to forecast PV power in 15 min, 30 min
and 60 min horizons. The particle swarm optimization (PSO)
method is employed to optimize the ELM. Experimental
results showed that the performance of ELM was better
than that of ANN Huang et al. [15] proposed a data-driven
framework based on fusing spatial and temporal information
of the target PV station and its neighboring PV stations.
Four data-driven models, including boosted regression tree
(BRT), ANN, support vector machine (SVM), and least abso-
lute shrinkage and selection operator (LASSO) regression
model were employed for multi-step forward forecasting of
solar irradiance. Experiments show that information from
neighbor PV stations is useful for improving the forecasting
accuracy.

Hybrid model methods that combine multiple
cross-discipline methods are proposed to deal with various

FIGURE 1. Unrolled LSTM uses time series data as input.

FIGURE 2. The internal structure of a LSTM unit, The symbols ⊗ and ⊕

represent pointwise scalar multiplication and the sum function,
respectively.

forecasting problems. Eseye et al. [16] proposed a hybrid
forecasting model that combines wavelet transform, SVM
and PSO. The wavelet transform was used to decompose
NWPmeteorological data and photovoltaic power time series
into multiple subsequences. The subsequences obtained by
wavelet transform were used to train SVM; and the PSO was
used to optimize SVM parameters. Yao et al. [17] proposed
a forecast model based on echo state network. This model
uses the restricted Boltzmann machine to extract the relative
feature of input data, and uses the principal component analy-
sis to extract the main feature. The Davidon–Fletcher–Powell
quasi-Newton algorithm is used to optimize the reservoir
parameters of echo state network.

Deep learning is currently one of the hottest research areas
of machine learning and artificial intelligence. The biggest
difference between deep learning and traditional machine
learning methods is that deep learning can automatically
learn useful features from data instead of using traditional
feature selection methods. Deep learning has been applied
in the field of PV power forecasting and achieved outstand-
ing results [18], [19]. LSTM, as one of the most important
deep learning technique, is frequently applied in the related
works [20].

Targeting at the real-world short-term photovoltaic power
forecasting problem, in this study, we proposed a hybrid
ensemble deep learning framework that combines the atten-
tion mechanism with multiple LSTM (ALSTM) models.
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FIGURE 3. The proposed ALSTM model structure.

The ALSTM model uses the attention mechanism to give
greater weight to the values associated with the model output
in the LSTM hidden layer output vector. The PV power time
series and the PV module temperature time series were used
as ALSTM model input to forecast the PV power at the next
moment.

In conclusion, this study has the following main contribu-
tions to the literature:
• An ensemble deep learning framework.We proposed
an ensemble deep learning forecasting method that
applies two LSTM neural networks on temperature and
power output time series data forecasting, respectively.
The two prediction results are flattened and merged
through a fully connected (FC) layer to enhance the
prediction accuracy.

• A novel hybrid deep learning method.The ensemble
deep learning framework is further integrated with the
attention mechanism to forecast photovoltaic power out-
puts. The attention mechanism allows the two LSTM
neural networks to adaptively focus on input features
that are more significant in forecasting. To our best
knowledge, the entire proposed method is novel on the
topic of solar energy power generation forecasting.

• A comprehensive comparative study with state-of-
art methods tested on real-world datasets and differ-
ent time horizons.The performance of ALSTM model
is justified using real-world solar energy generation
data that is collected in recent years. A comprehen-
sive comparative study is conducted comparing the
proposed method with state-of-art methods, including
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FIGURE 4. Detailed training and testing procedures for the proposed framework.

the persistence model, ARIMAX, MLP model and a
single LSTM model on all four seasons and different
time horizons of 7.5 min-ahead, 15 min-ahead, 30 min-
ahead and 60 min-ahead. The experimental results show
that the proposed ALSTMmodel has obvious advantage
on forecasting accuracy.

II. METHODOLOGY DESCRIPTION
A. LSTM NEURAL NETWORK
Recurrent neural network introduces the concept of timing to
the traditional neural network structure to make it adaptive
to time horizon dependencies. For traditional RNN, there
is always a problem of gradient disappearance or gradi-
ent explosion, resulting in training failures [22]. Aiming at
the gradient vanishing problem, Hochreiter et al. proposed
LSTM, which enables the recurrent neural network to pro-
cess time series data effectively [23]. Fig.1 illustrates the
underlining working mechanism of a LSTM neural network.
A LSTM neural network consists of a series of LSTM cells.
h0, h1, . . . , ht are time series data samples that are feed into
different LSTM cells simultaneously as inputs.

Fig.2 shows the internal structure of an LSTM cell. The
internal cell states are denoted by Ct . LSTM updates, main-
tains, or deletes cell state information using forget gate ft ,
input gate it and output gate Ot , respectively. At time t ,
the input is the sequence vector X (t), hidden layer output
ht−1 and cell state Ct−1. The outputs are LSTM hidden layer
output ht and cell state Ct . Forget gate, input gate, and output
gate are calculated according to Equations (1), (2), and (3):

ft = σ (Wf • [ht−1, xt ]+ bf ) (1)

it = σ (Wi • [ht−1, xt ]+ bi) (2)

Ot = σ (WO • [ht−1, xt ]+ bo) (3)

The current candidate cell state C̃ is calculated by
Equation (4):

C̃t = tanh(WC • [ht−1, xt ]+ bC ) (4)

TABLE 2. Mean and variance of daily power.

FIGURE 5. PV power generation data in three dimension.

The forget gate and the input gate determine the propor-
tions of information occupied by the Ct−1 and the C̃ in the
current cell state Ct , respectively. The state Ct was updated
by the Equation (5):

Ct = ft • Ct−1 + it • C̃t (5)

The current output of the hidden layer is calculated by
Equation (6):

ht = Ot • tanh(Ct ) (6)

where Wf , Wi and Wo are forget gate, input gate, and output
gate weight matrix, respectively; and bf , bi and bo are forget
gate, input gate, and output gate bias, respectively.σ stands
for the sigmoid activation function.
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FIGURE 6. Window moves over time series.

B. ATTENTION MECHANISM
Attention in the biological vision system allows the animal
to focus on the specific objects for observations. The atten-
tion mechanism is a neural network that simulates the atten-
tions of brain. It has been successfully applied to machine
translation [24], video analysis [25] and other related fields.
Applying the attention mechanism to the deep neural net-
work allows the neural network to adaptively focus on input
features that are more important to the current output, and
mitigate the interference of other features. Using the LSTM
hidden layer output vectorH ={h1, h2, . . . , ht} as the input
of the attention mechanism, the attention mechanism will
look for the attention weight αi of hi, which can be calculated
as shown in Equations (7) and (8):

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (7)

αi =
exp(ei)
t∑
i=1

exp(ei)
,

t∑
i=1

αi = 1 (8)

where Wh is the weight matrix of hi; and bh is the bias. The
values ofWh and bh vary during the ALSTM training process.
The attention vector H

′

= {h
′

1, h
′

2, . . . h
′

t} can be obtained by
multiplying attention weight αi and hi:

h
′

i = αi • hi (9)

The attention mechanism is implemented as a custom layer
where the parameters are optimized using RMSProp back-
propagation [26].

C. PROPOSED MODEL
The proposed ALSTM model structure is shown in Figure 3.
The ALSTM model uses the fixed size PV power time series
and PV module temperature time series as inputs to forecast
the next moment power. The PV power and PV module tem-
peratures contain different information. Therefore, feature
extractions of these two quantities are performed separately.
LSTM is used to extract the time series features of PV power;
and the attention mechanism is used to process the LSTM

hidden layer output Hp. Each element in Hp is given differ-
ent attention weights to obtain H

′

p. The same process was
used for PV module temperature to get H

′

T . The proposed
model was implemented using Keras (version 2.1.6). For both
ALSTM neural networks, the two outputs H

′

p and H
′

T are
3-dimensional arrays, including batch size, time steps and
the number of units. Then, the two 3-dimensional arrays are
flattened into two dimensional vectors using flatten layers and
merged into a single 2-dimensional array to meet the input
requirement of the fully connected (FC) layer.

D. TRAINING AND TESTING
The PV power and the PV module temperature data from
2014 to 2016 is taken as the training dataset; and the data
from 2017 to 2018 is used for testing.

The training and testing process of the ALSTM model is
shown in Figure 4. During the model training, theMSE loss is
calculated according to the training output and the normalized
actual power. The RMSProp optimizer is used to optimize the
entire network tominimize theMSE loss. TheALSTMmodel
predicts the forecast samples and outputs the forecast results
in the testing phase.

III. RESULTS
A. DATA DESCRIPTION AND PROCESSING
The data used in the experiments is collected from a 20kW
rooftop PV power station located at Shaoxing city, Zhejiang
Province, China (120◦23′E, 29◦72′N). The PV power and the
PV module temperature are monitored from October 2014 to
September 2018, in a time interval of 7.5 min. The mean and
variance of daily PV power from 2014 to 2018 were shown
in Table II.

From the data, power generation distribution in year
2016 is shown in Figure 5. The peak and the start/stop time
of power generation in different seasons were different. The
peak power in January and February (winter) is low; and the
daily generation time is short. The peak power in summer
is high; and the daily generation time is longer. Due to the
seasonal characteristics of photovoltaic power generation, the
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FIGURE 7. PV power forecast result in 7.5 min-ahead, 15 min-ahead, 30 min-ahead, and 60 min-ahead forecasting horizons. (a) forecast results for spring
days in 2018, (b) forecasts result for summer days in 2018, (c) forecasts result for autumn days in 2017, (d) forecasts result for winter days
in 2018.

forecast model is demanded to be distinguished over different
seasons.

In the data pre-processing phase, normalization is per-
formed according to Equation 10:

x∗i =
xi − xmin

xmax − xmin
(10)

where xi is the original data and x∗i is the normalized data.
The training sample is obtained by the sliding window

method as shown in Figure 6. A fixed-size window slides
on the PV power time series and the PV module temperature
time series, the value in the window is taken as the training
input vector, and the PV power at the next moment is used as
the training target. During the test, the power value and the
temperature value in the current sliding window are used as
model inputs to forecast the PV power at the next moment.

B. METRICS
Three evaluation metrics, MAPE, RMSE and MAE are used
to evaluate the performance of the forecast model.

MAPE =
1
n

n∑
i=1

|xmodel,i − xactual,i|
xactual,i

(11)

RMSE =

√√√√1
n

n∑
i=1

(xmodel,i − xactual,i)2 (12)

MAE =
1
n

n∑
i=1

|xmodel,i − xactual,i| (13)

where xmodel is the forecasted value of the model and xactual
is the actual value.
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TABLE 3. Comparison of MAPE for four forecast horizons in each month of a year.

C. BENCHMARK MODEL DESCRIPTION
Persistence model (PM): PM is widely used benchmark
model, which is effective for short-term forecasting prob-
lems [27]. The persistence model suggests that the PV power
at the next moment will be the same as the current PV power,
it can be expressed as Equation 14:

P̂(t + 1) = P(t) (14)

where P̂(t+1) is the forecasted value of PV power at the next
moment and P(t) is the current PV power.
Auto-Regressive Integrated Moving Average Model With

Exogenous Variable (ARIMAX): ARIMAX is a time series
forecasting algorithm in statistical model. ARIMAX requires
data to be stable or stable after data difference, and is often
used for short-term photovoltaic power forecasting. It adds a
data differential operation to make the prediction more stable.
This model uses PV power as endogenous variable, and use
PV module temperature as exogenous variables.
MLP Model: MLP is a shallow neural network with good

predictive ability, it has many researches and applications

in the field of PV power forecasting [28]. This model takes
the PV power time series and the PV module temperature
time series as input, and uses two hidden layers to output the
predicted PV power.
LSTM Model: The LSTM model uses two LSTM layers

to extract features from the PV power time series and PV
module temperature time series respectively; The hidden
layer output of LSTM is expanded into a one-dimensional
vector and merged; The last layer uses a fully connected
layer to output the forecasted PV power outputs. This sin-
gle LSTM model is used to compare with the ALSTM
model to investigate the impact of attention mechanism
on LSTM.

D. FORECASTING RESULT
This paper uses Keras version 2.1.6 to implement the ALSTM
model. The LSTM layer uses 32 units and the full connection
layer uses 128 hidden units. We compared the forecasting
results of the proposed ALSTM model with PM, ARIMAX,
MLP and LSTM models in 7.5 min-ahead, 15 min-ahead,
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TABLE 4. Comparison of RMSE for four forecast horizons in each month of a year.

30 min-ahead, and 60 min-ahead horizons in spring, summer,
autumn and winter (Figure 7). All experiments were repeated
ten times by rebuilding the two LSTM models with random
initialization. And all results stated in this section are aver-
aged over the ten repeated runs. The differences between the
five models are small for 7.5 min time interval. With the
expansion of the forecasting time horizon, the forecasting
curves of each model gradually deviate from the actual curve.
The PM has advantages in the 15min and 7.5min forecasting.
Especially in the case of sunny days, the forecast curve of
persistence model is close to the actual curve, but the per-
sistence model forecast curve showed significant hysteresis
at 30 min and 60 min time interval experiments. ARIMAX
has a good prediction result with 7.5 min forecasting. When
the PV power fluctuates, the forecasting curve of ARIMAX
fluctuates greatly, which results in larger prediction error.
MLP and LSTM outperform PM and ARIMAX for most of
the cases in 30 min interval, but still have a gap compared to
ALSTM. ALSTM model effectively forecasts PV power in
all four seasons; and the forecasting curves of the ALSTM

model are very close to the actual curves in all different time
intervals.

In order to investigate the performance of ALSTM model
in different time horizons, experiments were carried out at
7.5 min, 15 min, 30 min and 60 min horizons to forecast
the PV power over one year, i.e., from October 2017 to
September 2018. Tables III – V list the MAPE, RMSE and
MAE values of the five compared models, in each month,
over the whole year, respectively. ARIMAX is suitable for
forecast below 15 minutes, but has higher error rates in other
horizons. LSTM has the ability to extract time series features,
and its three error metric values are lower than MLP. The
attention mechanism can further improve the forecast accu-
racy of LSTM. The proposed ALSTM model has the best
performance over all compared methods in general.

Figure 8 shows the MAPE, RMSE, and MAE curves of
the five compared forecasting models over different time
horizons. PM and ARIMAX performed better at 7.5 min
and 15 min time intervals forecasting. However, while the
time horizon expands, the MAPE, RMSE andMAE values of
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TABLE 5. Comparison of MAE for four forecast horizons in each month of a year.

TABLE 6. Comparison of t statistic and p value of LSTM and ALSTM for four forecast horizons in each month of a Year.

the PM and ARIMAX increased monotonically. The MAPE,
RMSE and MAE values of MLP are higher than those of
LSTM and ALSTM. LSTM and ALSTM have the obvious

advantage over the other methods in a time horizon for more
than 15 min. The ALSTM model significantly reduces the
MAPE, RMSE and MAE values of LSTM. In summary,
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FIGURE 8. Comparison of different forecasting horizons: (a) MAPE (B) RMSE (c) MAE.

compared with four benchmark models, ALSTM has obvious
advantages using all three error measurement metrics, includ-
ing MAPE, RMSE and MAE.

The independent two-sample t-test was used to infer
whether there is a difference between the population mean
of forecast results of the LSTM and ALSTM. The t-statistic
is calculated following Equations 15 and 16:

t =
X1 − X2

sp ·
√

1
n1
+

1
n2

(15)

sp =

√
(n1 − 1)s2X1 + (n2 − 1)s2X2

n1 + n2 − 2
(16)

where X1 and X2 are the sample mean of LSTM and ALSTM
forecast results, respectively; SX1 and SX2 are the standard
errors of LSTM and ALSTM forecast results, respectively;
and n1 and n2 are the sizes of LSTM and ALSTM forecast
results, respectively.

Null hypothesis H0 and alternative hypothesis H1 are
defined as follows:

H0 : µ1 = µ2 (17)

H1 : µ1 6= µ2 (18)

where µ1 and µ2 are the population mean of LSTM and
ALSTM forecast results, respectively. The p value (P ∈[0,1])
determines whether or not to reject null hypothesis. The
smaller the p value, the more confident to reject null
hypothesis.
T -statistics and p values of LSTM and ALSTM in dif-

ferent forecast horizons are shown in Table VI. From the
monthly forecast results, there are differences between LSTM

and ALSTM, and there are significant differences in some
months. From the results of annual forecast, the p value of
15–60 min is small, and it can be concluded that there is a
significant difference in the population mean of LSTM and
ALSTM in annual forecast. In general, the forecast error of
ALSTM is lower than that of LSTM, and there are differences
between ALSTM and LSTM. From Table VI, it is shown that
the attention mechanism significantly improves the LSTM
forecasting results.

IV. CONCLUSION AND FUTURE WORK
PV power forecasting is of great significance for maintaining
grid security and coordinating resource utilization. This paper
proposed a new hybrid model based on LSTM and attention
mechanism for short-term photovoltaic power forecasting.
Different from traditional forecasting models, the proposed
ALSTM model employs LSTM to extract features from the
time series photovoltaic power data and learn long-term
dependency information in sequence. We applied the trained
attention mechanism to the LSTM neural networks to focus
on important extracted features, which potentially enhance
the original forecasting power of LSTM neural networks.

In the experiment section, a real-world dataset, which
was collected from a 20kW PV power station located in
eastern China, in 2017 and 2018, is employed. A com-
prehensive comparative study is conduced to compare the
proposed ALSTM method with available state-of-art meth-
ods, including PM, ARIMAX, MLP and LSTM models in
7.5 min-ahead, 15 min-ahead, 30 min-ahead, and 60 min-
ahead horizons in all four seasons with three different error
metrics, namely, MAE, RMSE andMAPE, comprehensively.
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The results show that LSTM and ALSTM have the obvious
advantage over the other methods in a time horizon for more
than 15 min. We further show the improvement of ALSTM
over traditional LSTM using t-statistics and p values.
Future work of this study includes extending the cur-

rent framework to longer term forecasting problems using
multi-step forecasting strategies [15], [20].
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