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ABSTRACT With the recent advances in wireless technologies, high frequency radio has become the
primary medium for long-distance communication. Among various types of modulation in signal transmis-
sion, morse code stands out due to its simplicity and efficiency in information transmission while costing
small bandwidth. In practice, however, it is extremely laborious to locate morse signals in wideband commu-
nication. It’s a needle in a haystack, if morse code is sent in random carrier waves at random period. To avoid
this, automatic morse signal detection has become a challenging task in wireless morse communications,
and new solutions could be derived from the latest machine learning techniques. In this paper, we propose
a deep learning framework, namely DeepMorse, to blindly detect morse signals in wideband spectrum data.
In particular, we first develop a multi-signal sensing module to retrieve signal candidates from wideband
spectrum without prior knowledge. Then, we construct a CNN-based module to extract informative features
from the located candidates, in order to distinguish the morse signal from other types of modulation.
To evaluate the proposed DeepMorse model, we set up a testbed utilizing commercialized long-distance
wireless communication devices. The experimental results demonstrate that DeepMorse is able to effectively

detect morse signals and outperform the state-of-the-art methods on four real-world datasets.

INDEX TERMS Deep learning, blind signal detection, morse code, wideband wireless spectrum.

I. INTRODUCTION

The recent advancement in wireless technologies has made
it possible for long-distance communication using low-cost
transceivers. In particular, high frequency radios are capa-
ble of broadcasting over large areas through skywave prop-
agation [1], and hence have become the primary medium
for a wide range of real-world applications, such as inter-
national and regional broadcasting, aviation and marine
communication, military radio system, and emergency com-
munication [2], [3]. Among different applications, morse
code transmission is one of the most commonly used modu-
lation types to incorporate information in shortwave signals.
By encoding information into dashes and dots, morse codes
could be efficiently transmitted in a small bandwidth with-
out using special equipment. In order to detect morse sig-
nals, traditional approaches focus on manual analysis of the
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information provided by a spectrum analyzer [4], [5]. Specif-
ically, through wideband spectrum inspection, the time-
frequency patterns of such narrowband morse signals can be
visualized, recognized, and monitored by expert. In practice,
morse signals are usually used in encrypted communications,
where no prior information of the initial communication or
the bandwidth of the carrier wave is available. It would
depend much on the sophisticated professionals to recog-
nize morse codes [6]—[8]. It remains a challenging task for
researchers to automatically detect morse signals from wide-
band spectrum data.

To develop an automatic morse signal detector for wide-
band radio systems, several challenges should be addressed.
First, the frequency information of each carrier signal is
unknown, which makes it difficult to distinguish signals
based on spectrum. On one hand, the bandwidth of morse
signal is narrow and its position is usually stochastically
distributed. On the other hand, various irrelevant signals,
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in the form of different modulation types, are usually trans-
mitted in different frequency bands simultaneously. Intu-
itively, an ideal morse detection approach should be able to
locate source signals from wideband spectrum and capture
representative patterns of each signal to distinguish among
the types of modulation. Moreover, the noise in communica-
tion environment is often unstable and may vary significantly
across temporal and frequency domains, rendering it a chal-
lenge to develop a robust detector.

To address the aforementioned challenges, we propose to
construct a deep learning model, which has been proved to
be effective in modern wireless communications [9]. In par-
ticular, convolutional neural networks (CNN) and recur-
rent neural networks (RNN), have great abilities to extract
high-level representative features from noisy and massive
data. In this paper, a deep convolutional learning framework,
namely DeepMorse, is proposed to blindly detect morse sig-
nals from wideband wireless spectrum data. While modulated
signals may overlap in time domain, they would show vari-
ous shape and distribution in spectrum domain. In addition,
CNN cannot be directly used for wideband spectrum, since
the whole wideband spectrum contains multiple unlocated
signals. To this end, the idea is to mimic the practical visual
inspection that pays attention to locate source signals at dif-
ferent frequency bands followed by checking each candidate.
To the best of our knowledge, this is the first work using deep
learning towards blind morse signal detection in wideband
spectrum. Specifically, we develop a multi-signal sensing
module to retrieve signal candidates with their frequency
information from wideband spectrum. We also construct a
CNN-based module to extract informative features from the
located candidates and incorporate the spatial locality into our
framework. Taking advantages of deep learning, the proposed
DeepMorse is able to capture morse signals from wideband
spectrum, meanwhile distinguish them from other types of
modulation.

In order to evaluate the proposed DeepMorse framework,
we conduct extensive real-world experiments. In particular,
we deploy a long-distance wireless communication infras-
tructure where several transmitters continuously emit signals
to HF wideband, while a wideband receiver collect data
from real-world wireless communication environment. The
parameters of transmitted signals are not provided to the
receiver. The collected spectrum data, after being prepro-
cessed, are fed to our proposed DeepMorse model. Experi-
mental results demonstrate that DeepMorse outperforms the
state-of-the-art algorithms, which justify that our proposed
framework using deep learning techniques can achieve the
level of human experts in blindly detecting morse signals
from wideband spectrum.

To sum up, DeepMorse has the following advantages.

o We propose DeepMorse, a convolutional deep learning
framework, to mimic the practical blind spectrum visual
inspection. To the best of our knowledge, this is the first
work using deep learning towards blind morse signal
detection in wideband spectrum.

80578

o DeepMorse can not only retrieve morse signals from
wideband spectrum without prior knowledge, but also
characterize and distinguish morse codes from other
types of modulation.

o« We set up a testbed using COTS (i.e., commercial
off-the-shell) equipment, and collect real-world data.
We empirically show that the proposed DeepMorse
can effectively detect morse signals and outperform the
state-of-the-art methods on four collected datasets.

The rest of the paper is organized as follows: We first
review the related work in the next section. In Section II,
we describe the system overview of DeepMorse, and present
the detail of our proposed methodology in Section IV. The
experimental results are then discussed in Section V. Finally,
we conclude this work in Section VI.

Il. RELATED WORK

In this section, we summarize the literatures related to four
research topics: automatic modulation classification, deep
learning for spectrum, blind spectrum sensing, and morse
signal detection, respectively. We briefly discuss them in the
followings.

A. AUTOMATIC MODULATION CLASSIFICATION

Automatic modulation classification (AMC) is one of the
core research topics in the area of wireless communication.
In general, AMC belongs to a classification problem that aims
at automatically identifying the modulation type of trans-
mitted signal. The existing studies of this topic are diverse
due to the wide range of civilian and military applications.
Traditionally, in order to build the AMC system, researchers
use several handcrafted features to train a classifier in a
multi-stage fashion. On one hand, different kinds of features
are utilized for modulation classification, such as statistical
features [10], high-order cumulants [11], [12] and wavelet
cyclic features [13]. On the other hand, some well-known
classifiers are employed in the AMC system, including sup-
port vector machine (SVM) [14], neural networks (NN) [15],
k-nearest neighbors (KNN) [16], and decision tree [17].
With any strategy adopted, the design of these methods typi-
cally rely on handcrafted feature engineering which is deter-
mined based on the specific case and professional domain
knowledge.

More recently, significant efforts have been made to
explore automatic signal representation techniques using
deep learning methods. Such deep features have proven to
be more robust than the handcrafted features due to bet-
ter classification performance. Ali ef al. [18] adopt stacked
autoencoders that combine the in-phase with quadrature con-
stellation points to classify signals received in AWGN and
flat-fading channels. Some variants of CNN are employed
to analyze signal modulations. Schmidt et al. [19] and
Akeret et al. [20] propose to utilize CNN for the tasks
of interference identification in unlicensed bands and
radio astronomy, respectively. CNN are also employed to
detect characteristic patterns in complex-valued temporal
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radio signals proposed by O’Shea et al. [21]. Moreover,
Rajendran et al. [22] and Zhang et al. [23] build CNN-based
AMC system for low-cost sensors and unmanned aerial vehi-
cles, respectively. Different from the above work, we develop
a systematic AMC framework to explore the characteristics
of morse codes and distinguish them from other common
modulation types. Furthermore, the features learned by the
aforementioned deep learning models are directly extracted
from narrowband signals where the prior frequency informa-
tion is given. In contrast, we propose to retrieve unknown
morse codes from wideband signals by explicitly utilizing the
spatial features learned by convolution operators.

B. DEEP LEARNING FOR SPECTRUM REPRESENTATION
Learning deep representations of spectrum data has gained
great attention in many scientific disciplines, since it pro-
vides sufficient information carried by frequency contents
of signals. Kulin at al. [24] present a deep learning frame-
work for wireless signal identification using spectrum data.
The authors discuss the details of spectrum data represen-
tation, referred to as the input of deep learning model.
To assess the applicability of CNN in the radar emitter clas-
sification, Selim at al. [25] propose a spectrum monitoring
framework for the detection of radar signals in spectrum
sharing scenarios. Regarding to other signal applications,
a CNN-based deep learning model is proposed in [26] for
human activity recognition using on-node sensor spectro-
gram. Yuan et al. [27] propose multi-view stacked autoen-
coders to unsupervisedly learn seizure representations from
multi-channel EEG spectrum. Different from the existing
studies, the data structure of our spectrum data is more com-
plicated, since it consists of multiple source signals. It means
that the aforementioned methods cannot be directly used
since they make a binary decision for the whole spectrum and
hence cannot identify individual signals lied within the wide-
band spectrum. Compared to the conventional networks, our
proposed DeepMorse framework incorporates a multi-signal
sensing module to retrieve signal candidates from the given
spectrum.

C. BLIND SPECTRUM SENSING

Blind spectrum sensing is one of the most critical compo-
nents in cognitive radio (CR) that aims at increasing the
efficiency of frequency spectrum utilization [28]. It has been
widely studied for many years, though there are still many
challenges to deal with [29], [30]. Several sensing solutions
have been proposed to determine the presence of signals,
such as matched filtering [31], cyclostationarity-based detec-
tion [32], and energy detection [33]. Among them, energy
detection stands out due to its effectiveness in wideband
sensing when the information of primary user signals is not
provided. Towards this end, different variants of energy-based
method are proposed for blind spectrum sensing [34]-[36],
and applied in different communication systems including
OFDM [37] and massive MIMO [38]. In this work, we pro-
pose a new energy-based multi-signal blind sensing algorithm
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for the task of morse detection, which can be easily integrated
into the deep learning module.

D. MORSE SIGNAL DETECTION

Previous research efforts in wireless communications related
to morse signal detection are dominantly based on signal
processing tools, such as Phase-locked loop, stochastic res-
onance filters, and time-frequency analysis [39]-[41]. Moti-
vated by recent advances and the remarkable success of
machine learning, some handcrafted features are developed
to model morse signals in a supervised fashion. In particular,
Wei et al. [42] present a machine learning method for auto-
matic morse signal detection, and achieve the state-of-the-art
performance. The authors propose to train an SVM classifier,
named HSVM, using graphical features extracted from morse
spectrum, including symmetry features, intermittent features,
and distribution features. However, to the best of our knowl-
edge, there have been few deep learning work on blind morse
signal detection in wideband spectrum.

IlIl. SYSTEM OVERVIEW

DeepMorse is a wideband blind signal detection system
which takes advantage of the superior representation capa-
bility of deep learning techniques. The proposed DeepMorse
system takes the wideband wireless spectrum data as the
input, and outputs inferred narrowband morse signals with
their frequency information. Fig. 1 provides an overview of
the DeepMorse system. As can be seen, DeepMorse consists
of three major components: data collection, data preprocess-
ing, and morse signal detection.

Transmitters Wideband Spectrum

§ Multi-signal Sensing

+

Deep Learning
o)
o

Wireless o=
Network STFT
2
gl i SPTTY
[ : - )
Receiver : Raw Signal Signal Labels

Data Collection Data Preprocessing Morse Signal Detection

FIGURE 1. Overview of the proposed DeepMorse system. DeepMorse
consists of three major components: data collection, data preprocessing,
and morse signal detection.

A. DATA COLLECTION

In this paper, we consider a real-world scenario where several
heterogeneous transmitters are continuously emitting wire-
less signals to HF wideband and each of them may gener-
ate different types of signal on different center frequencies,
e.g., AM, FM, Morse, and Voice. Our DeepMorse sys-
tem first collects the wideband raw signals from real-world
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FIGURE 2. Architecture of the proposed DeepMorse model. DeepMorse is a deep learning framework for blind morse signal detection with

wideband wireless spectrum data inputs.

communication environment using an off-the-shell receiver
and forward them to the data preprocessing component. In our
prototype DeepMorse system, we also deploy some morse
transmitters to broadcast morse signals in some specific
frequency bands (narrow bands). Note that the parameters
of those emitted morse signals are not provided for the
receiver. Moreover, in usual communication environment,
multiple irrelevant signals are usually transmitted in different
frequency bands at the same time, which makes the commu-
nication channel with variant types of signals. Our goal is
to develop a deep learning-based model to blindly retrieve
morse codes from those unlabeled and unlocated narrowband
signals.

B. DATA PREPROCESSING

Since DeepMorse is designed to detect morse signal in real-
time, we first segment the raw signal into fix-length slot
utilizing an /-length non-overlapping time window. Then,
we utilize short-time Fourier transform (STFT) [43] on each
signal segment with ng-point fast Fourier transform algo-
rithm (FFT). After preprocessing the input data, we obtain a
real-valued spectrum § € R *" by squaring the magnitude
of the complex-valued STFT. It is worth noting that the
dimension of S relies on the settings of both the two prede-
fined hyper-parameters: / and ng. On one hand, increasing
the window length / may improve detection performance
while would cause delay in real-time applications. On the
other hand, the number of FFT points ng relates to how the
signal is represented with different time-frequency resolu-
tions. We discuss the sensitivity of hyper-parameter settings
in Section V-F.

C. MORSE SIGNAL DETECTION

In wireless communication, the frequency range of mod-
ulations is indefinite. Moreover, background noise usually
decays the communication channels and make the spectrum
image hard to identify the source signals. This also makes it
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difficult for traditional machine learning algorithms to char-
acterize the underlying patterns of source signals. To address
this challenge, we make use of deep learning techniques to
derive discriminative representations from the preprocessed
spectrum data. In particular, we propose a deep convolutional
learning model, which incorporates a multi-signal sensing
algorithm, to automatically locate morse signals from wide-
band spectrum data. The details of the proposed DeepMorse
model are described in Section IV. Given the wideband spec-
trum data, our model can improve the detection performance
by learning informative representations of morse signal.

IV. METHODOLOGY

In this section, we introduce DeepMorse, a deep learning
framework for blind morse signal detection with wideband
wireless spectrum data inputs. The architecture of the pro-
posed model is illustrated in Fig. 2. In the following subsec-
tions, we give the main components of our proposed Deep-
Morse model.

A. MULTI-SIGNAL SENSING
In practice, the wideband wireless spectrum data usually
involves different types of modulation with no prior infor-
mation to estimate the distribution coefficient of the signal
frequency. Under such conditions, there is no efficient way
to construct conventional filter banks for signal selection,
and directly adopt deep learning methods for signal feature
extraction as well. It would be very time-consuming to explic-
itly monitor all the signal fragments of every center frequency
in wideband spectrum, since the computational complexity
may grow substantially with the increase in the number of
frequency points. Therefore, in order to retrieve multiple
signal without estimating the signal components, we develop
an energy-based multi-signal sensing module in the proposed
DeepMorse model.

In the spectrum image, as we can see in Fig. 2, signal
with high signal-noise ratio (SNR) usually corresponds to
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FIGURE 3. Schematic illustrations of the multi-signal sensing procedure in our proposed Deepmorse model. (a) and (b) present the energy vectors of
the wideband spectrum and one of its sub-vector, (c) indicates the threshold value based on the histogram of sub-vector, (d) and (e) show the effect
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diagrams of the sub-vector processed by multi-signal sensing.

bright regions, which describes the power of the signals.
In our model, we propose to aware source signals according to
the frequency-wise energy distribution in spectrum domain.
Fig. 3 illustrates an example of our proposed multi-signal
sensing procedure. Given a wideband spectrum S, we can
obtain its frequency-wise energy vector e € R/ as follows:

1y
e = Z Sijs
J=1

where §;; and e; denote the element of matrix S and vec-
tor e, respectively. The resulting energy vector reflects the
cumulative energy distribution in frequency domain as shown
in Fig. 3a. As we can see, on one hand, signals with high SNR
exhibit high energy values in vector e. Signals with low SNR
may be hidden beneath the background (i.e., noise) which is
varied over frequencies. In order to eliminate the influence of
the communication channel-wise noise for sensing signals,
we divide the energy vector into K sub-vectors, denoted
as {eV, ... &)} where e®) e R%/K. Fig. 3b shows an
energy vector of sub-vector as example, where the noise has
a period of slow variation (relatively stable), and hence we
can estimate an appropriate threshold a® to determine the
presence of signals.

Subsequently, we propose to utilize the histogram to esti-
mate the adaptive threshold a®) of sub-vector e®) shown
in Fig. 3c. The histogram displays the distribution of energy
values in the sub-vector. The x-axis of the histogram repre-
sents the range of energy values grouped into several bins,
whereas on the y-axis, is the count of these intensities.
According to the ITU radio regulations [44] that most signals
should be assigned into different frequency bands to prevent
interference, the signals should be allocated sparsely in the
background. It means that the calculated energy vector con-
tains more noise than source signal, which can be proved from
Fig. 3d. Intuitively, the most frequently occurring energy
value (highest peak) in the histogram should be concentrated
toward the left (low energy) which is the noise portion.

ey
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Thus, the threshold &®) can be estimated as follows:

(k)

mode

(k) )

_(k - -
o« = egn())de + Ae ~ Cnin 2

where é%d@ and éﬁrl:i)n denote the modal (i.e., max count)
and minimum center bins (i.e., energy values) of histogram.
Here in Eq. (2), XA is the hyper-parameter that control the
distance between a®) and émg 4. In addition, we employ
the Freedman-Diaconis rule [45] to determine the number of
bins b in histogram, since it is more suitable for data with
long-tailed distributions.

Based on the estimated threshold a®), we can retrieve a set
of source signal fragments X with their frequency infor-
mation I® from each sub-vector S(k), as shown in Fig. 3e.
Moreover, in order to unify the dimensions of fragments as
input for the following CNN module, we limit the bandwidth
o to 2KHz. In particular, we expand the captured fragments
on frequency center if their bandwidths are less than w,
otherwise we resize the larger fragments using bilinear inter-
polation [46]. The detailed steps of the proposed multi-signal
sensing module is summarized in algorithm 1. In this way,
a set of narrowband signal fragments X = {xi,---,xf}
where x; € R is retrieved from wideband spectrum. All
the captured fragments are treated as morse signal candidates,
which enable the following CNN module to further identify
morse signals. Compared to the whole wideband spectrum,
the size of the located candidates is relatively small and it is
suitable for the input of CNN.

B. DEEP CONVOLUTIONAL FEATURE EXTRACTION

In order to extract local spatial features from spectrum,
we present a CNN-based module to extract convolutional
features from the retrieved spectrum fragments. We construct
the CNN encoders by stacking a series of convolutional-
nonlinear-pooling cells with different filter maps. Specifi-
cally, a 2-cell CNN architecture is adopted to extract latent
features from the located candidates. Unlike nature images
that usually involve complicated and abstract geometrical
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Algorithm 1 Multi-Signal Sensing

Input: wideband wireless spectrum S with dimension
(nf, n;), number of sub-vector K = 7, bandwidth @ = 2kHz
Output: Signal fragment set X, frequency information set I

1: Compute the energy vector e of spectrum S using Eq. (1)
2: Divide e into K sub-vectors: {e'V, - - . | &)}

3: Initialize: X <« {}, I <« {}

4: for each e® € e do

5: Initialize: X% « {}, 1% « {}, flag < 0,

(lstart» lend) <~ (=1, -1, x < 1]
6:  Compute the histogram and threshold a®) of e
using Eq. (2)
7: for each egk) ce® do
8: if egk) > a® then
9: if flag == 0 then
10: lstare < 1, flag < 1
11: end if
12: else
13: if flag == 1 then
14: lena < i, flag < 0
15: leonter < argmax(S(k)[lmr, “leonds 1]
16: if long — Lyare < @ then
17: x < SPOlleonter £0.50, 1]
18: else
19:
x < Resize(S®[Lyart : lond, 1. [, :])
20: end if
21: X® . x®y x
22: 19 < 19U (k= Dy /K) + leenter
23: end if
24: end if
25: end for

2% X < Xux®
7. I <~ 1TUI®
28: end for

structures, the located spectrum is characterized by local tex-
tural features. Although the modulation textures in spectrum
are intuitively easy for experts to perceive, formulating a
formal definition as handcrafted features is not trivial. This
encourages the use of CNN to automatically learn spatial fea-
tures from spectrum and hence distinguish textures of morse
signal from other types of modulation. Since the textures of
the candidates are characterized by fine grained low-level
features, adopting a 2-cell CNN architecture is enough for
our morse signal detection task.

Given a located spectrum fragment x, the latent features of
the r-th feature map in the first cell, denoted as hgrl), can be
obtained as follows:

h) = Pooling,, (f (x * W) + b)), (3)

where * is the convolution operator, f(-) denotes the ReLU
function (i.e., f(z) = max(0, z)), and WE.’I) and bg’l) are
the learnable parameters. Here in Eq. (3), the convolution

80582

operator with sets of learnable filter banks are utilized to
extract local features from the input spectrum, and the pooling
operator (max pooling) is used for down-sampling. Similar-
ity, we can obtain the latent features of the g-th feature map
in the second cell hg) based on all the captured features in the
previous cell, as follows:

h9 = Pooling,, (f(z B« WD)+ D)), (4)

r=1

where R is the total number of feature map in the previ-
ous cell, WEZ) and bg) are the learnable weight matrix and
bias vector, respectively. Subsequently, all the latent features
extracted using Eq. (4) are flattened to derive the hidden
representation k, € R by:

h, = f (W Flatten(h'?) + b,), Q)

where Q is the total number of feature maps in the last cell,
W, and b, are the parameters to be learned. Note that the
dimension of hg) and bg) relies on the structure configuration

of CNN, which is given in Section V-D.

C. LEARNING AND DETECTION

Given the hidden representation h, calculated by Eq. (5),
we feed it through the softmax layer to identify morse signal
in the located candidate, as follows:

¥ = Softmax(W sh, + by), (6)

where W € RICI%P and by € RIC! are the parameters to be
learned. Here we employ cross-entropy to measure the loss
between the ground truth y and the y obtained by Eq (6) For-
(m) ~_(m)
mally, given M training sets {x; ", x, ~, --- _; with
(m) _ (m)
their corresponding labels {y} ™, y, ", -
function can be represented as:
1 1 M M
JDeepM()rSe(x(l ): cee x;:()l)a o x(l ), e ;;'(}\/)I))

F®

ZFU)Z[ logys + (1 — yf) log (1 — yf)]

, yF(m) }m 1 the cost

V. EXPERIMENTS AND DISCUSSIONS

In this section, we carry out experiments on four datasets
collected by a real-world testbed to demonstrate the efficacy
of our DeepMorse framework. We first describe the datasets
used in the experiments, then introduce the baselines, evalua-
tion criteria, and implementation details. We finally show the
experimental results and discuss the model sensitivity.

A. DATASET DESCRIPTION

In the experiments, four datasets are collected from a
real-world testbed to validate our proposed DeepMorse
model. The raw signals are received from a COTS 400W
shortwave communication platform consisting of several
transmitters and one wideband receiver. In order to fully
evaluate our model under different real-world environments,
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TABLE 1. Statistics of each experimental dataset (ng; = 128K,
I = 8.532sec).

‘ Datasets
Description | sm ™ oM 12M
Frequency center 5 MHz 7 MHz 9 MHz 12 MHz
Frequency width 2 MHz 2 MHz 2 MHz 2 MHz
Sample Rate 256 MHz 256 MHz 2.56MHz 2.56 MHz
Time duration 102 sec 102 sec 102 sec 102 sec
# of samples 5,171 8,582 7,277 1,898
- # of morse samples 2,520 4,968 3,192 768
- # of non-morse samples 2,651 3,614 4,085 1,130
- # of raw features 85 x 400 85 x 400 85 x 400 85 x 400

we collect data with different settings including center fre-
quency, transmission distance, season, and time of day. The
collected data are manually labeled to train and test our
proposed deep learning model. Moreover, since the morse
signals in our scenarios are treated as rare events, we use
data augmentation, including the operations of rotations and
Gaussian noising, to enlarge the number of morse samples.
Finally, we present the statistical information of the collected
datasets in Table 1.

B. BASELINES
We compare our proposed DeepMorse model with five com-
monly used feature learning baselines:

Support Vector Machine (SVM) [47]. SVM is a classic
machine learning method. Here we first reshape the input
data into a vector space, and use them to train a binary SVM
model.

Principal Component Analysis [48] + SVM (PSVM). PCA
is a widely adopted mechanism to extract features from high
dimensional data. For the sake of fairness, we select top-p
related components as features to train the SVM model,
namely PSVM.

HSVM [42]. This method is the state-of-the-art morse
detection model using handcrafted feature engineering to
exclude redundant and irrelevant information from raw data.

Deep Neural Networks (DNN) [49]. DNN is a standard
deep learning model that incorporate multiple hidden layers
to enhance feature representation. We train a 3-layer DNN
model for morse detection. We set the size of each hidden
layer as 4p, 2p, and p, respectively.

Stacked Autoencoders (SAE) [50]. SAE is a widely used
deep learning networks stacked by several basic autoen-
coder (AE) layers. Similarly, we train a 3-layer SAE model
to minimize both the reconstruction and classification errors.

C. EVALUATION CRITERIA

To quantify the performance, four evaluation criteria, includ-
ing precision, recall, F1-score, and accuracy, are adopted as
the evaluation criteria. Moreover, the area-under-the-curve of
precision-recall (AUC-PR) and receiver operator characteris-
tic (AUC-ROC) are also utilized to evaluate each approach.
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D. IMPLEMENTATION DETAILS

We implement the proposed DeepMorse model using
Pytorch [51]. During the training process, Adadelta optimiza-
tion algorithm [52] with mini-batch (the batch size is 100) is
used to optimize the parameters. For all the datasets, we first
shuffle all the samples and conduct 5-fold cross validation.
We also deploy 0.5 dropout, 0.95 momentum, and 0.001
weight decay to prevent overfitting. The configurations of
CNN in DeepMorse is presented in Table 2, and we use
p = 128 for baselines and our model.

TABLE 2. CNN structure of the proposed DeepMorse model.

Cell No. Conv Non-linear  Pooling
1 5% 5 x 16 ReLU 2x2
2 5 x5 x 32 ReLU 2x2

E. DETECTION PERFORMANCE

We report the comparison results of our proposed DeepMorse
model and baselines in Table 3. Here we show the average
performance of each method based on 5-fold cross validation.
We can observe that DeepMorse achieves the best perfor-
mance in terms of all the evaluation measurements.

Given the results of baselines, we can see that the plain
SVM performs well at the original high-dimensional input
data. However, after reducing the dimensionality to the same
one as ours through PCA, PSVM performs worse. It means
that simply adopting PCA cannot make SVM separate the
morse and non-morse labels in the projected feature space.
We can also see that the NN-based models (i.e., DNN and
SAE) perform much worse than the SVM-based models due
to the curse of dimensionality. Compared with DNN, the lim-
ited improvement of SAE demonstrates that the layer-wise
reconstruction procedure helps deep structure learn relative
better feature representations from spectrums. Not surpris-
ingly, HSVM works well on morse detection as also reported
in previous work [42], which suggests the effectiveness of
handcrafted engineering to extract meaningful features.

From the results, our DeepMorse model outperforms all the
baselines. For example, DeepMorse achieves the best accu-
racy of 0.9718 on the 7M datasets, compared with 0.9539 and
0.8658 obtained by the HSVM and SVM baselines, respec-
tively. Compared the results among all the datasets, Deep-
Morse achieves a robust performance under different wire-
less environments. The reason is that the spatial information
of signal spectrum is remained by locally-connected neural
networks. Fig. 4 and Fig. 5 illustrate the ROC and PR curves
on all the datasets, respectively. From the ROC curves shown
in Fig. 4, we can observe that the true positive rate increases
fast from the start, which means that DeepMorse has great
abilities to capture distinctive information from spectrum.
Regarding the PR curves shown in Fig. 5, the precision rate
of DeepMorse decreases more slowly at the beginning than
the others. This again illustrates the effectiveness of our
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TABLE 3. Performance comparisons on four real-world datasets.

‘ Evaluation Measurements

Method Dataset ‘ AUC-ROC  AUC-PR  Precision  Recall Fl-score  Accuracy
5M 0.9801 0.9797 0.9743 0.8679 0.9179 0.9244
SVM ™ 0.9421 0.9617 0.9186 0.8428 0.8791 0.8658
oM 0.9539 0.9809 0.9280 0.9527 0.9402 0.9095
12M 0.9735 0.9663 0.9555 0.7645 0.8481 0.8899
5M 0.9172 0.9190 0.9135 0.7889 0.8464 0.8606
PSVM ™ 0.8114 0.8350 0.8086 0.7178 0.7604 0.7382
oM 0.8482 0.9418 0.8301 0.9248 0.8746 0.8022
12M 0.8953 0.8665 0.8502 0.6564 0.7399 0.8146
5M 0.5219 0.7325 0.2563 0.5000 0.3389 0.5127
DNN ™ 0.4999 0.7893 0.2894 0.5000 0.3666 0.5789
oM 0.5005 0.8729 0.3732 0.5000 0.4274 0.7463
12M 0.5052 0.7004 0.2977 0.5000 0.3732 0.5954
SM 0.8999 0.9086 0.8545 0.7548 0.7935 0.8113
SAE ™ 0.5113 0.6790 0.2894 0.5000 0.3666 0.5789
oM 0.7276 0.8739 0.3732 0.5000 0.4274 0.7463
12M 0.7401 0.6521 0.6575 0.5598 0.5666 0.6802
5M 0.9902 0.9912 0.9862 0.9591 0.9724 0.9735
HSVM ™ 0.9867 0.9897 0.9717 0.9479 0.9597 0.9539
oM 0.9871 0.9930 0.9807 0.9846 0.9826 0.9740
12M 0.9916 0.9910 0.9725 0.9584 0.9652 0.9721
5M 0.9926 0.9931 0.9872 0.9786 0.9828 0.9834
DeepMorse ™ 0.9893 0.9918 0.9838 0.9672 0.9754 0.9718
oM 0.9923 0.9944 0.9876 0.9925 0.9900 0.9850
12M 0.9946 0.9945 0.9961 0.9792 0.9875 0.9900
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DeepMorse model. Furthermore, based on Table 3, the pro-
posed DeepMorse method consistently achieves the best F. SENSITIVITY ANALYSIS

AUC in terms of the ROC and PR on different datasets, In this subsection, we discuss the effects of wvarious
demonstrating an effective method in the task of morse hyper-parameter choices in DeepMorse, including the dimen-
detection. sionality of hidden representation p, the length of time
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FIGURE 6. Performance variations with different parameter settings on
the 5M dataset. (a) Sensitivity analysis with different sizes of hidden
layer. (b) Sensitivity analysis with different time window lengths.

(c) Sensitivity analysis with different numbers of FFT points.

window [/, and the number of FFT points ng. Specifically,
we plot accuracy results of the DeepMorse under differ-
ent hyper-parameter settings on the SM dataset, as shown
in Fig. 6. We ignore the results of DNN because of the
bad performance. The basic configuration is mentioned in
Section V-D, and we vary one hyper-parameter while keeping
others fixed to the basic configuration.

Hidden representation size p. We report the influence of
p in Fig. 6a. From the figure, we can observe that different
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models get their best accuracy in different sizes of hidden
representation. Specifically, PCA achieves the best accuracy
when p is 512, and 128 is the optimal choice for SAE.
When p is too large, the performance of SAE decreases
significantly due to the curse of dimensionality. We can see
that our proposed DeepMorse framework is able to achieve
comparable results with relative small hidden units, and gets
stable performance under different settings of p.

Time window length I. Fig. 6b illustrates the change of
accuracy for different values of time window length /. From
the figure, we can see that decreasing the time length degrades
the performance of all of the algorithms, since the short time
leads to insufficient information provided by spectrum to
train the models. We can also obverse that different nature
of feature extraction strategies contributes to different perfor-
mance variations under different configurations. In particular,
as we decrease the length, both SAE and PSVM lack the
capability of capturing representative features, resulting in
limited performance on accuracy. Moreover, we find the per-
formance bifurcation point of HSVM when the length is less
than 1 second. It means that the handcrafted features extracted
by HSVM cannot guarantee consistently good performance
across different situations. This can also be found from the
performance of SVM using raw features, where the accuracy
decreases dramatically when [ is getting smaller. In contrast,
our proposed DeepMorse model consistently beats the base-
lines. This results from the fact that CNN has the strong
capability of model generalization.

Number of FFT points ng;. Fig. 6¢ shows the experimental
results of ng;. From the figure, we can see the similar trends
of all the models under the influence from 32K to 128K . This
demonstrates that spectrum with different time and frequency
solutions may carry different amount of information describ-
ing morse signals. As we increase the number of FFT points
from 128K to 512K, all the models shows an increasing
modeling power except HSVM. This means that a larger
value of ng; leads to worse capture of critical information
using HSVM. Moreover, our proposed DeepMorse model
still get better performance than the others.

According to the overall sensitivity analysis, we conclude
that our proposed DeepMorse model achieves the highest
accuracy and DeepMorse’s performance is robust to choice of
the hyper-parameters in a wide range of values. Comparing
to the more volatile performance of HSVM, we can see
that DeepMorse not only improves the performance, but also
stabilizes it as well.

VI. CONCLUSION

In this paper, we present a deep learning-based framework,
namely DeepMorse, to address the challenges of blind detec-
tion of morse signals from wideband spectrum data. Deep-
Morse aims at mimicking the practical blind spectrum visual
inspection that pays attention to locate source signals in
different frequency bands followed by detailed check of
each candidate. With the help of our proposed multi-signal
sensing and deep convolutional feature extraction modules,
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DeepMorse is able to independently locate morse signals in
wideband spectrum without prior knowledge, and capture
representative patterns of each signal to distinguish morse
codes from other types of modulation. For validation, a real-
world testbed is built using commercialized long-distance
wireless communication infrastructure, and we collect four
datasets with different scenario settings. Experimental results
on the four collected datasets demonstrate that DeepMorse
can achieve better and more robust performance than the
stat-of-the-art morse detection approaches, and hence proves
the effectiveness of DeepMorse for blind detection of morse
signals.

Regarding the robustness of our framework, we first
retrieve signal candidates from wideband spectrum by the
multi-signal sensing module, then feed the candidates to the
CNN module for feature extraction and signal detection.
Since the located candidates belong to narrowband signals,
the CNN module in DeepMorse is able to deal with different
settings. In our future work, as the proposed DeepMorse
framework is task-oriented, it is applicable to other appli-
cations with similar blind detection scenario, especially in
spectrum sensing where monitoring and understanding the
spectrum usage is still a major challenge in cognitive radio.

Regarding the hardware capability in our experiments,
we build a real-world testbed using a COTS 400W shortwave
communication platform. It means that it is possible and
available to implement such wideband sensing scenario in
practice, which has been widely used in many real-world
applications. For the cases where the equipment cannot cap-
ture the whole spectrum of interest, the collected spectrum
would be a part of the whole spectrum, and hence the size
of the collected spectrum would be relatively small. The pro-
posed multi-signal sensing module is able to retrieve signal
candidates from the partial wideband spectrum by reducing
the number of sub-vector K. Furthermore, one solution of
the equipment issue is that we can adopt the multi-signal
sensing module for multiple partial spectrums (collected by
multiple receivers) in parallel to obtain signal candidates from
the whole spectrum. We will investigate more test related to
this issue in our future work.
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