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ABSTRACT Recently, multi-floor indoor positioning has become increasingly interesting for researchers,
in which accurate recognition of indoor activities is critical for the detection of floor changes and the improve-
ment of positioning accuracy according to indoor landmarks. However, we have not found a comprehensive
study for recognizing indoor activities related to multi-floor indoor positioning based on a robust machine
learning algorithm. In this work, we propose a framework for recognizing five indoor activities, i.e., walking,
stillness, stair climbing, escalator, or elevator taking. In this framework, we investigate the relevant sensors
and features to improve the recognition accuracy of these activities, especially some specific features in
the frequency domain and wavelet domain. We propose to utilize a promising tree-based ensemble learning
classifier, XGBoost, to recognize these activities. Based on our dataset created by 40 volunteers, we provide
a comprehensive analysis of the proposed framework for indoor activity recognition. Considering both
accuracy and computational cost, the XGBoost-based indoor activity recognition algorithm outperforms the
other ensemble learning classifiers and single classifiers, and the average recognition F-score of XGBoost
reaches 84.41%. In addition, our introduced specific features in the frequency domain and wavelet domain
can significantly improve the recognition accuracy. Moreover, we use a publicly available dataset to verify
our proposed framework and XGBoost classifier reaches 84.19% that outperforms the other classifiers.

INDEX TERMS Activity recognition, ensemble learning, XGBoost, smartphone.

I. INTRODUCTION
In recent years, indoor positioning has become an emerging
research topic and received a lot of attentions due to its
huge commercial values. Much research has been conducted
to improve positioning accuracy on single floor. For exam-
ple, WiFi based indoor positioning is often integrated with
pedestrian dead reckoning (PDR) to get accurate single-floor
indoor positioning, in which the PDR algorithm calculates
the user’s current position by using a previously determined
position based on inertial sensors [1]. However, most build-
ings in cities are with multiple floors, the traditional PDR
algorithm [2] can not locate the users on multiple floors.
Hence, in these buildings, detection of floor numbers is a
critical research issue to achieve multi-floor indoor position-
ing. On the other hand, the crowdsensing of indoor walk-
ing paths based on crowdsourcing PDR traces have recently
become interesting for researchers because it can eliminate
the effort of site surveying in fingerprinting based indoor
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positioning [3]. However, at present, the research on the
crowdsensing of walking paths is mainly conducted on sin-
gle floor [3]–[6]. To achieve multiple-floor crowdsensing of
walking paths, we need to further cluster the traces based on
their floor numbers [7]. In order to address the aforemen-
tioned problems in the multiple-floor indoor positioning and
the crowdsensing of walking paths, human activity recogni-
tion (HAR) technique can be used to detect the changes of
floor number by recognizing and classifying different kinds
of indoor activities of users, such as walking, stair climbing,
and elevator taking, based on inertial sensor data. In MPiLoc
[7], the authors propose to leverage barometer to detect floor
changing then partition the user traces into multiple floors.
Although this method can detect the floor changes, it can not
recognize different types of activities. In ALIMC [4], barom-
eter and accelerometer are adopted to detect the activities of
stair climbing and elevator taking for crowdsensing of walk-
ing paths. However, the authors do not provide and evaluate
their HARmethods explicitly. In iMap [6], the authors design
a rule-based algorithm based on barometer and accelerometer
to recognize indoor activities of stair climbing, escalator or
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elevator taking. Although they claim a high accuracy of the
algorithm, the performance of the rule-based algorithm sig-
nificantly relies on the empirical parameters and is normally
not robust to the changes of users and environments. To the
best of our knowledge, there is still no robust solution for
recognizing indoor activities, i.e., walking, stillness, stair
climbing, escalator or elevator taking, which is critical for
the multi-floor indoor positioning. Additionally, much work
has been conducted in HAR to investigate different user
activities, such as falling detection and risk assessment for
elderly people [8], assisting security personnel to monitor
surrounding environment and detect suspicious activities [9]
and inferring transportation modes [10].

In the early stage of HAR, most researches utilize wear-
able sensors placed in various parts of human body lead-
ing to complicated data collection [11] and demanding an
extra cost for hardware [12]. In recent years, smartphones
become more and more popular in peoples’ daily life, which
integrate various embedded sensors such as accelerometer,
gyroscope, and barometer for diverse applications. Compared
with the wearable devices, smartphones are easy to use,
available and portable. Therefore, we can use the embedded
sensors in a smartphone to conduct HAR due to its con-
venience, low cost, and ubiquitousness. In embedded sen-
sors, accelerometer and gyroscope in a smartphone are often
used to detect common activities such as walking, standing,
jogging, etc. [13], [14], which can achieve high recognition
accuracy. However, indoor activities are often conducted in
three dimensions, which could be difficult to reach high
recognition accuracy when we only rely on accelerometer
and gyroscope. Fortunately, barometer can measure altitude
changes. Hence, for indoor activity recognition especially
for the detection of floor changes, barometer can help us
significantly enhance the performance of HAR [15], [16].
Besides the types of sensors used for HAR, the applied fea-
tures also play an important role in the accuracy of HAR and
highly correlated with the activities to be analyzed. The most
commonly-used features in time domain are mean, variance,
minimum, maximum and median for HAR [17]. However,
the frequency domain and wavelet domain features are rarely
investigated for the recognition of indoor activities.

On the other hand, many machine learning algorithms
have been used in HAR, such as Support Vector Machine
(SVM) [18], K-nearest Neighbor (KNN) [19], Hidden
Markov Model (HMMs) [20] and Multi-Layer Percep-
tion (MLP). However, it is still challenging to achieve
high recognition accuracy by using these machine learn-
ing algorithms with single classifiers. To address this prob-
lem, ensemble learning which accomplishes learning tasks
by combining multiple learners has played a key role in
HAR [21]. This ensemble learning often achieves general-
ized performance that is significantly superior to a single
learner. In ensemble learning classifiers, Extreme Gradient
Boosting (XGBoost) has recently been proposed as an emerg-
ing ensemble learning approach and it can achieve excellent

performance in many applications, e.g., web text classi-
fication, behavior prediction and malware classification.
Compared with the other classifiers, XGBoost has many
advantages such as high efficiency, low computational cost,
supporting parallelization, robustness to overfitting, etc. It has
also made excellent results in data analysis and data mining
competitions in recent years.

In this work, we present a framework based on XGBoost to
recognize five kinds of indoor human activities, i.e., walking,
stillness, stair climbing, escalator or elevator taking to help
multi-floor indoor positioning. The main contributions of this
work are summarized as follows:
• We build a comprehensive indoor activity dataset col-
lected from 40 subjects based on the aforementioned
five indoor activities and four smartphone placement
locations, i.e., in trouser pocket, in bag, in hand and
holding horizontally. The total length of the dataset is
5.16 million samples collected in 2,400 minutes. Com-
pared with the other datasets, our dataset is the first
complete set for indoor activities related to floor change.

• We apply XGBoost to achieve high recognition accuracy
of indoor activities. We optimally adapt the parameters
in a XGBoost model based on ten-fold cross validation
to obtain a robust and accuratemodel. Note that although
XGBoost has shown its excellent capability in many
applications, we find little work of using XGBoost in
activity recognition based on smartphone sensors, espe-
cially in the domain of indoor activities related to floor
change.

• Based on the our dataset, we provide a comprehensive
analysis of our proposed XGBoost-based indoor activity
recognition algorithm and compare it with the other
two tree-based ensemble learning classifiers, random
forest and GBDT. Additionally, we also compare the
performance of the ensemble learning classifiers and the
single classifiers. The results show that the ensemble
learning classifiers outperform the single classifiers and
XGBoost performs the best.

• Moreover, we explore diverse sensors and features in
frequency domain and wavelet domain, especially the
spectrum entropy and the wavelet energy related to
these indoor activities to improve recognition accuracy.
Besides the commonly used accelerometer and gyro-
scope for HAR, we further leverage barometer data in
our algorithm to better distinguish the altitude changes
for different activities.

The rest of the paper is organized as follows: Section II
presents the latest development and research of HAR.
Section III gives the preliminaries to ensemble learning based
on tree structure. Section IV introduces our main contribu-
tion about our XGBoost based indoor activity recognition
algorithm. Section V describes the implementation of our
system for indoor activity recognition. Section VI provides
the experimental results and analysis. Section VII concludes
the paper.
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II. RELATED WORK
Researchers have been studying HAR for many years, which
mainly has two directions: vision-based activity recogni-
tion and sensor-based activity recognition. The vision-based
activity recognition monitors the subjects in real time through
cameras and uses image analysis technology to recognize
the activities of subjects [22]–[24]. Although this vision-
based activity recognition has shown ideal results in terms
of complexity and accuracy, its performance depends on
external environments. Particularly it requires sufficient light
and background conditions, and it may invade the privacy of
subjects. On the other hand, the HAR based on wearable sen-
sors has become popular in recent years due to its robustness
to external environments and less privacy issues. However,
wearable sensors require extra sensing components which are
inconvenient for users. To deal with aforementioned problem,
researchers begin to use embedded sensors in smartphone
for HAR.

Nowadays, the applications of smartphone become more
popular, and many sensors such as accelerometer, gyroscope,
magnetometer, and barometer are embedded in a smart-
phone. Considering portability and ubiquitousness of smart-
phone, the research for HAR based on smartphone sensors
has been conducted. For instance, Jain and Kanhangad [25]
use accelerometer and gyroscope sensor data to identify
the subject activities. Furthermore, Vaizman et al. [26] col-
lect 300,000 minutes sensor data from 60 subjects, using
accelerometer, gyroscope, and location, audio, and phone-
state sensors to improve context recognition. Considering
indoor activity recognition for multi-floor indoor positioning,
some people use barometer to recognize activities [15], [16].
However, in these studies, barometer data is analyzed based
on the rule-based algorithms. They do not deeply investigate
the relevant features in the barometer data related to the
activities.

The extracted features are normally application oriented.
For different activities, we need to select different relevant
features. Xu et al. [17] select time domain features in motion
signals such as mean, variance, zero crossing rate, etc.,
to represent human activities. In order to detect the period
of an activity and recognize the activities with repeating
motion patterns (e.g. walking) from those without a repe-
tition, Ustev et al. [27] add frequency domain features and
improve recognition accuracy. Wang and Zhang [28] propose
a method for extracting wavelet domain features including
both time domain and frequency domain features to recog-
nize six activities. From these previous studies, we find that
the extracted features are greatly relevant to the analyzed
activities.

Some advanced studies explore various human activities
in HAR. Shoaib et al. [29] utilize smartphones to recognize
activities, like smoking, eating, giving a talk, coffee drink-
ing, walking and biking. Hsu et al. [30] present a wearable
inertial sensor network to recognize ten common domestic
activities in human daily lives and eleven sport activities.

Their final recognition accuracy can reach more than 95%.
Zubair et al. [31] analyze the fusing data of smartphone
sensors including 30 subjects and recognize fifteen activi-
ties. Besides these daily activities, some research has been
conducted in indoor activities related to multi-floor indoor
positioning. The authors of [4], [6] recognize stair climbing,
escalator or elevator taking as a supplement to construct
indoor maps. However, up till now, we have not found a
comprehensive study of indoor activities related to multi-
floor indoor positioning, i.e., walking, stillness, stair climb-
ing, escalator or elevator taking based on a robust machine
learning method.

Different classification algorithms for HAR have been
developed. Paul and George [32] use the KNN classification
algorithm and Clustered KNN to recognize four activities of
walking, running, sitting and standing, and achieve an overall
accuracy of 92%. In their study, the Clustered KNN is an
improvement of Minimum Distance and K-Nearest Neighbor
classification algorithms to eliminate the computational com-
plexity of KNN by creating clusters. San-Segundo et al. [33]
present a human activity sensing system based on HMMs
for classifying physical activities i.e., walking, upstair walk-
ing, downstair walking, sitting, standing and lying down.
They apply a publicly available dataset to conduct experi-
ment and achieve an activity recognition accuracy of 97.5%.
Chen et al. [34] propose a robust HAR system based
on coordinate transformation, principal component analy-
sis (CT-PCA) and online support vector machine (OSVM)
to improve the activity recognition accuracy. In addition,
to evaluate the performance of each classifier, diverse clas-
sification algorithms are compared in [35] and [36]. In these
algorithms, XGBoost has become a hot research topic, which
has been applied to smartphone authentication, user autho-
rization [37] and electroencephalography (EEG) based brain
activity recognition [38]. However, in indoor activity recogni-
tion, XGBoost is rarely used. Besides, there are many factors
that affect the performance of activity recognition, such as
location and orientation of smartphone and sensors type, and
they have been investigated in many studies [29], [35], [39].

Some publicly available datasets are used in study of HAR.
Saha et al [57] utilize the University of Dhaka mobility
dataset (DU-MD) which consists of eight daily activities,
i.e., jogging, laying down, sitting, descending stairs, ascend-
ing stairs, standing, walking and falling. They apply SVM,
KNN and ensemble of classifiers to the dataset for activity
and fall classification and achieve HAR classification accu-
racy of 93%, fall detection accuracy of 97% respectively.
Ye et al [58] propose a novel probabilistic algorithm pFTA
for HAR and apply it to three publicly available sdatasets,
UCI Daily and Sports Activities, Smartphone-Based Human
Activity dataset and MSRActionPairs dataset. The experi-
ments on these three public HAR datasets show the pro-
posed pFTA approach can achieve competitive performance
in both accuracy and efficiency. Xu et al. [15] use Mobile
Health (mHealth) dataset from the UCI Machine Learning
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Repository to recognize twelve activities such as standing,
walking, cycling, jumping, etc., and present a set of activity
recognition algorithm based on decision trees with ensemble
approach. From these studies in recent years, we find that
there are many datasets widely-used in HAR, but to our
knowledge there is still no comprehensive indoor activity
dataset, including data of walking, stillness, stair climbing,
escalator or elevator taking.

Many researchers study HAR based on data from
smartphone-sensors, among them, the closest study to our
work is [43]. In [43], Chen and Shen present a performance
analysis for HAR via smartphone-sensors. They first collect
and preprocess 10 subjects’ sensor data (i.e., accelerometer
and gyroscope) using smartphone, then extract some features
which have been normalized in time, frequency and wavelet
domain. They implement three classifiers, KNN, random for-
est and SVM to recognize five human activities, i.e., descend-
ing stairs, ascending stairs, walking, jogging and jumping.
They analyze four factors that may influence recognition per-
formance: 1) various smartphone placement settings, 2) dif-
ferent user space, 3) combination of sensors, and 4) impact
of data imbalance. Although they present a systematic per-
formance evaluation for HAR, it is still greatly different from
our work in this paper. First, in [43], they focus on a compre-
hensive analysis of HAR based on smartphone-sensor data,
and consider some factors that may affect recognition per-
formance, including sensor type, smartphone placement, etc.,
by using three classifiers widely applied in HAR. However
we concentrate on comparing the performance of tree-based
ensemble learning classifiers, XGBoost, Random Forest and
GBDT to three commonly used single classifiers MLP, SVM
and KNN. Specifically, we apply XGBoost, a classifier that
is not widely used in indoor activity recognition, and achieve
better recognition results. Second, the recognized activities
are very different. In [43], they choose five common activities
in daily life, i.e., stair descending, stair ascending, walking,
jogging and jumping. While in our work, in order to address
multiple-floor indoor positioning, we recognize five indoor
activities, i.e., walking, stillness, stair climbing, escalator
or elevator taking, to detect the changes of floor number
comprehensively. Finally, we have different sizes of dataset.
In [43], they build a dataset including 27681 sensory samples
from 10 male subjects aging from 20 to 23. However, to make
data diverse, our dataset contains more than 5 million sensory
samples from 40 subjects from different gender, age and
region.

In summary, the previous studies have not yet provided a
comprehensive analysis for robust machine learning recogni-
tion of indoor activities. Moreover, the selected sensors and
features are highly correlated with the analyzed activities, and
they require to be deeply investigated for improving recog-
nition accuracy. Although XGBoost has revealed excellent
performance in many research results, it has not yet been
applied in the recognition of the indoor activities related
to multi-floor positioning even it has been proved a strong
potential classification ability.

III. PREPARATION FOR ENSEMBLE LEARNING
CLASSIFIERS BASED ON TREE STRUCTURE
Since the principle of XGBoost is based on two tree-based
ensemble learning classifiers, i.e., random forest and GBDT,
we give a brief introduction of them in this section.

A. RANDOM FOREST
Leveraging integration thinking, random forest algorithm
combines multiple decision trees to improve the accuracy of
classification, in which each decision tree is a base classifier.
After a random forest model is trained, the prediction results
of the model are obtained by a voting approach based on
the classification results from all the decision trees. We sum-
marize the main construction process of random forest as
follows.

1) n pieces of data are randomly selected from the original
training data as the input of random forest.

2) Each decision tree randomly selectsm features from the
entire feature set with a size ofM. In general,m is much
smaller than M.

3) In each decision tree, the feature with the smallest Gini
index or the largest information gain is used to split the
nodes. Other nodes of the decision tree are constructed
using the same splitting rules until all training samples
of the node belong to the same class or reach the max-
imum depth of the tree. In our experiment, we choose
the feature that maximizes the information gain to split
the nodes.

4) Repeat the above steps T times to get a random forest
with T decision trees.

Random forest has two prominent advantages. First,
the random selection of original training data and features
improves the capability of noise resistance and generalization
ability. Second, a parallel training model in random forest can
speed up the training process. Therefore, random forest can
achieve a high and robust recognition accuracy. Additionally,
it is suitable for the applications based on the data with high-
dimensional features.

B. GRADIENT BOOSTED DECISION TREE
GBDT (Gradient Boosted Decision Tree) combines multiple
decision trees in a boosting way. In contrast with the random
forest in which each tree is independent, the trees in GBDT
are closely related to the previously established decision
trees. In general, each new tree is created to reduce the
residual of the previous model toward the gradient direction,
in which the residual is defined as the difference between
the true value and the predicted value. Until the resid-
ual is smaller than a threshold or the number of decision
trees reaches a certain threshold, the final model has been
trained.

Moreover, GBDT uses the negative gradient value of the
loss function as an approximation of the residual to fit a
decision tree, which means that the tree is established in the
direction of the negative gradient of the loss function obtained
by the previously established decision trees.
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TABLE 1. GBDT algorithm description.

Let y and f (x) denote the labels of classes and the cumu-
lative output values for all the current decision trees, respec-
tively. In this paper, we select a log-likelihood loss function
as the objective function to be optimized, i.e.,

L(y, f (x)) = −
K∑
k=1

yk log pk (x) (1)

where yk = 1 if the label of the sample is class k . pk (x) refers
to the probability of the predicted value belonging to class k .
The description of the GBDT algorithm is shown in Table 1,
where M presents the number of iterations, K represents the
number of categories, and N is the number of samples. ỹik
is the negative gradient of the loss function of the sample i
corresponding to class k , and a decision tree {Rjkm}Jj=1 con-
sisting of J leaf nodes is obtained from each sample point X
and ỹik . After the decision tree is established, the gain of each
leaf node γjkm is calculated. Finally, the output values fkm(x) is
updated. It is proved that GBDT can achieve high recognition
accuracy with a short time of parameter adjusting [44].

IV. HUMAN ACTIVITY RECOGNITION
BASED ON XGBOOST
In this section, we introduce our proposed indoor activity
recognition algorithm based onXGBoost.We first present the
sensors and features used in our work related to the indoor
activities of walking, stillness, stair climbing, escalator or
elevator taking, in which some specific features have been
extracted. Then, we present the XGBoost classifier for the
indoor activity recognition.

A. SENSOR FEATURES
The selected features for HAR are closely correlated with
the activities to be analyzed. Since the indoor activities of
walking, stillness, stair climbing, escalator or elevator taking
are rarely investigated in the previous work, we need to
investigate the effective features for these activities, where
we use n samples, and we denote each sample value as xi.

1) TIME DOMAIN FEATURES
Time domain features are the most commonly used features
for HAR.We first introduce the time-domain features used in
our work.

Mean: It is an indicator of trends in the signal.

x̄ =
1
n

n∑
i=1

xi (2)

Variance: It is a measure of the differences between the
source signals and the mean.

σ =
1
n

n∑
i=1

(xi − x̄)2 (3)

Max and Min: It is a reflection or a range of signal.
Median: It is a value in the middle of signal that is not

affected by maximum and minimum values.
Interquartile Range: It is an dispersion indication of sig-

nal in middle 50%. It becomes larger if the signals are more
concentrated in the middle. The interquartile range (IQR) is
defined as

IQR = Q3 − Q1 (4)

where Q3 is 75% of the values in the sample and Q1 is 25%
of the values.

Kurtosis: It is an indicator to reflect the sharpness or
flatness of the distribution curve comparing with the normal
distribution. The value of zero indicates the distribution same
as the normal distribution. The value larger than zero shows
that the distribution is steeper than the normal distribution.
Otherwise, the distribution is flat compared with the normal
distribution. Kurtosis is defined as

Kurt =

1
n

n∑
i=1

(xi − x̄)4(
1
n

n∑
i=1

(xi − x̄)2
)2 (5)

2) FREQUENCY DOMAIN FEATURES
The indoor activities to be analyzed show different frequency
characteristics. Hence, in this work, we apply some features
in frequency domain to improve recognition accuracy. Fast
Fourier Transform (FFT) converts time domain signals into
frequency domain signals which show the information in
different frequencies.

Values and Indexes of Top and Second Peaks: We take
stair climbing and escalator taking as an instance to introduce
the feasibility of these frequency features for indoor activ-
ity recognition. A user climbing stairs will make periodic
changes of accelerometer data which generate a large ampli-
tude with his frequency. However, escalator taking normally
generates more stable accelerometer data and the peak value
in frequency domain may be small. Therefore, in considera-
tion of the indoor activities to be analyzed, the peak values
in frequency domain and their corresponding indexes can be
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extracted as features. Therefore, we extract the first two peaks
in the frequency domain as the features since they have very
different values for different activities.

Spectrum Entropy: For different activities, the complex-
ity of signals in frequency domain is very different. For
example, the complexity of accelerometer data in frequency
domain for elevator taking is much lower than that for stair
climbing. We know that the spectrum entropy can represent
uncertainty and complexity of recognition signals. The more
complex the signal, the larger the spectral entropy. Spectrum
Entropy is defined as

H = −
n∑
i=1

p[i]× log(p[i]) (6)

where

p[i] = P[i]/
n∑
i=1

P[i] (7)

and P[i] is the square of amplitude of the frequency domain
signal.

3) WAVELET DOMAIN FEATURES
As introduced in the aforementioned subsections, the indoor
activities show the specific features in both time domain
and frequency domain. The traditional Fourier transform can
only describe the frequency characteristics of data but can
not provide the relevant features in time domain. Hence,
we further apply wavelet analysis to investigate the features
in both frequency domain and time domain.

Wavelet Energy: In wavelet decomposition, each layer
decomposes low frequency signals from upper layer into
low frequency and high frequency signals. There are many
wavelet functions can be used in wavelet decomposition,
e.g., Haar (haar), Daubechies (db), Symlets (sym), Coiflets
(coif), Biorthogonal (bior), and Reverse biorthogonal (rbio).
In this work, we take three-order Daubechies wavelet (db3) at
four levels to decompose data. Then, signals are decomposed
into a sum of subbands as

x = D1 + D2 + D3 + D4 + A4 (8)

where Di is the high frequency signals obtained by decom-
position of the i th layer and Ai is the low frequency sig-
nals. Here, we apply wavelet energy to extract the following
feature

E = ‖D3‖
2
+ ‖D4‖

2 (9)

B. XGBOOST
In many pioneering works of HAR, the most commonly used
classifiers are the traditional single classifiers, e.g., Decision
Tree, SVM,MLP, and KNN. The performance of these single
classifiers can be improved by increasing the amount of
training data. However, the improvement of the algorithms
gets marginal after the training data increases to a certain
extent. In other word, even if a single classifier is trained with

a large amount of data, its recognition accuracy cannot meet
our requirement. As a result, we consider to combine several
models to improve the recognition accuracy.

As mentioned in Section III, GBDT is a boosting learner
based on multiple decision trees and uses the gradient boost-
ing to iteratively form a strong learner. In this case, the
algorithm often runs a certain number of trees to achieve
satisfactory recognition accuracy. However, when the dataset
is large and complex, it is probable to take thousands of
iterations to train a GBDT model resulting in a computa-
tional bottleneck to use the algorithm. In order to address
this problem, a recent scalable machine learning system for
tree boosting eXtreme Gradient Boosting, namely XGBoost,
is proposed in [45].

XGBoost can be efficiently implemented compared
with GBDT. Its objective function is

Obj(φ) = L(y, f (x))+
∑
m

�(fm) (10)

L(y, f (x)) represents the loss function and �(f ) is the reg-
ularization item indicating the complexity of the model. The
additional regularization item in XGBoost is added to avoid
overfitting and simplify themodel comparedwithGBDT. The
objective function of the mth iteration is calculated by

Obj(m) =
N∑
i=1

L(yi, ŷ
(m)
i )+

m∑
i=1

�(fi)

=

N∑
i=1

L(yi, ŷ
(m−1)
i + fm(xi))+�(fm) (11)

A second order Tailor expansion is conducted on
Equation (11) as

Obj(m) '
N∑
i=1

[
L(yi, ŷ

(m−1)
i )+ gifm(xi)+

1
2
hif 2m(xi)

]
+�(fm) (12)

where gi and hi are the first and second order gradient statis-
tics on the loss function

gi = ∂ŷ(m−1)L(yi, ŷ
(m−1))

hi = ∂2ŷ(m−1)L(yi, ŷ
(m−1)) (13)

After removing the constant terms, we can obtain

Obj(m) '
N∑
i=1

[
gifm(xi)+

1
2
hif 2m(xi)

]
+�(fm) (14)

According to the CART theory, fm(x) can be determined by
the structure of the tree q and its leaf weights w, i.e.,

fm(x) =wq(x), w ∈ RT , q : Rd
→ {1, 2, · · · T } (15)

where T represents the number of leaf nodes in a tree, q(x) is a
mapping used to map a sample to a leaf node, that is to
represent the structure of the tree. And the regularization item
can be described as

�(f ) = γT +
1
2
λ‖w‖2 (16)
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where γ is the complexity of each leaf and λ is a parameter
to scale the penalty.

We can rewrite (14) according to (15) and (16) as

Obj(m) '
N∑
i=1

[
giwq(xi) +

1
2
hiw2

q(xi)

]
+ γT +

1
2
λ

T∑
j=1

w2
j

=

T∑
j=1

∑
i∈Ij

gi

wj +
1
2

∑
i∈Ij

hi + λ

w2
j

+ γT
=

T∑
j=1

[
Gjwj +

1
2

(
Hj + λ

)
w2
j

]
+ γT (17)

where

Gj =
∑
i∈Ij

gi

Hj =
∑
i∈Ij

hi (18)

and Ij = {i|q(xi) = j} is defined as the sample set of leaf j.
When q(x) is fixed,we can compute the optimal weight w∗j

of leaf j and the corresponding value of objective function

w∗j = −
Gj

Hj + λ
(19)

Obj∗ = −
1
2

T∑
j=1

G2
j

Hj + λ
+ γT (20)

TABLE 2. Greedy algorithm description.

Obj∗ can evaluate the structure of a tree. For searching
the best structure of tree, we can apply the greedy strategy,
that is each feature and all its values are traversed, and the
feature and its value corresponding to the maximum gain
are selected to perform node splitting. The description of the
greedy algorithm is shown in Table 2 [45]. And the gain after

the split is

Gain =

[
G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)2

HL + HR + λ

]
− γ (21)

For searching the best splitting point, the exact greedy
algorithm needs to be enumerated over all possible splitting
leaf nodes greedily. In order to improve the computational
efficiency, a more efficient algorithm than the greedy strategy
is proposed in XGBoost. The general idea is to enumerate
several candidate points that may become the splitting points
according to the percentile method, and then to find the best
splitting point from the candidate points. This approach can
greatly reduce the computational cost. Another advantage of
XGBoost is its support for parallelism. In the learning process
of a tree, features need to be sorted by the loss function
to determine the optimal splitting point. Before training,
XGBoost sorts the features in advance and saves them as a
block [46]. This block is used repeatedly in iterations which
greatly reduces the amount of calculation.

To achieve an optimal performance of XGBoost for the
indoor activity recognition, we need to correctly set the
parameters in XGBoost. In general, XGBoost has the follow-
ing parameters required to be optimized by cross-validation.
• Learning rate: Lower learning rate improves the
robustness of the model and the optimum model can
be accurately obtained. However, a lower learning rate
requires more iterations to find the optimal model.

• Number of subtrees: It is the number of iterations in
training. A XGBoost model with more subtrees nor-
mally has better performance, but it will require more
training time.

• Gamma: In XGBoost, a node is only split if the value of
the loss function decreases after splitting. Gamma spec-
ifies the minimum drop value of the loss function for the
node splitting. An algorithm becomesmore conservative
with the increasing Gamma.

• L1 regularization and L2 regularization weights:
These two parameters prevent overfitting.

• Maximum depth of a tree: It controls the complexity
of a model.

• Minimum weight sum of leaf node sample: It is also
used to prevent overfitting.

V. IMPLEMENTATION
In this section, we introduce the implementation of the pro-
posed indoor activity recognition system. The overview of the
system is shown in Figure 1.

A. DATA COLLECTION AND PREPROCESSING
1) DATA COLLECTION
We build a dataset for indoor activities by using a self-
designed Android application for data collection running on
smartphone. Using six kinds of phones as shown in Table 3,
we collect diverse sensor data in the application such as
accelerometer, gyroscope, magnetometer, proximity sensor,
barometer, light sensor, GPS, and WiFi RSSI. In this work,
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FIGURE 1. Basic process framework of HAR.

TABLE 3. Sampling rate of barometer in different phones.

we only use accelerometer, gyroscope and barometer to rec-
ognize the indoor activities. In these sensors, the accelerom-
eter and gyroscope are sampled with 50 Hz. The barometer is
sampled according to the type of smartphone given in Table 3.
We store the values of sensors together with their sampling
timestamp in milliseconds. Then, we synchronize the values
from different sensors with their timestamps.

To build the dataset, we collect the sensor data from 40 sub-
jects performing five daily activities, i.e., walking, stillness,
stair climbing, escalator or elevator taking.Moreover, the sen-
sor data are collected with the smartphone placed in different
locations, i.e., in trouser pocket, in bag, swinging in hand and
holding horizontally. For each activity, the sensor data are
collected around three minutes for each subject. To ensure the
natural movement of each subject, we do not control the speed
and the way of their movements. We collect about 60 minutes
of data for each subject. The total length of the dataset we
have built is 2,400 minutes with about 5.16 million samples.
All the data are uploaded to a cloud server for processing.

2) DE-NOISING
The raw data collected from the sensors are normally noisy
which will significantly degrade the performance of activity
recognition. Filtering techniques are often used to mitigate
the influence of these unwanted noise [47]. The most com-
mon filtering methods include mean filter, low-pass filter,
Gaussian filter, wavelet filter and Kalman filter, etc. In this
work, we apply the five-spot triple smoothing algorithm [43]
to smooth the raw data as

x̄−2 = (69x−2 + 4x−1 − 6x0 + 4x1 − x2)/70
x̄−1 = (2x−2 + 27x−1 + 12x0 + 4x1 − x2)/35
x̄0 = (−3x−2 + 12x−1 + 17x0 + 12x1 − 3x2)/35
x̄1 = (2x−2 − 8x−1 + 12x0 + 27x1 + 2x2)/35
x̄2 = (−x−2 + 4x−1 − 6x0 + 4x1 − 69x2)/70

(22)

where (x−2, x−1, x0, x1, x2) are the five time-adjacent points
for a sensor data series and (x̄−2, x̄−1, x̄0, x̄1, x̄2) are the
smoothed samples. Compared with the other filtering meth-
ods, the five-spot triple smoothing algorithm is more time
efficient and consumes less cache.

3) DATA SEGMENTATION
After de-noising, in order to determine the activity of a sub-
ject over a period of time, we need to slice the data. Inspired
by the studies of [48], [49], we extract a sliding window
in 5 seconds overlapped 10% from the previous window.

B. FEATURE EXTRACTION AND NORMALIZATION
We extract the features introduced in Section IV-A in each
sliding window. Because different ranges of features will
influence the final recognition results, we normalize all the
features to a certain range. The normalization can eliminate
the adverse effects caused by singular sample data and avoid
the recognition results dominated by certain features with
a wide range of values. Normalization techniques, such as
z-normalization (zNorm), batch normalization (BN), and
pressure mean subtraction (PMS) are widely utilized in
HAR [50]. In our work, we apply z-normalization as

z =
x − µ
σ

(23)

where µ and σ refer to the mean and standard deviation over
all available training data.

C. CLASSIFIER IMPLEMENTATION
In this work, we implement XGBoost to achieve indoor
activity recognition with high accuracy by adjusting the
parameters as introduced in Section IV-B. Moreover, we also
implement other five commonly used classifiers, i.e., ran-
dom forest, GBDT, MLP, SVM and KNN for comparison.
Note that this work focus on applying XGBoost to recognize
indoor activities and the other five classifiers are only as the
references during our evaluation. Moreover, we adopt a ten-
fold cross validation method to find the optimal combination
of parameters in XGBoost to prevent overfitting. We divide
the training set into ten parts, nine of which are used as the
training data and the rest as the testing data. we obtain a
F-score for each test and calculate the average of F-scores
over ten times. The parameters with the largest means are
selected as the optimal parameters to train the model.
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VI. EXPERIMENTS AND RESULTS EVALUATION
In this section, we present our evaluation method and the
analysis of results. In the evaluation, we analyze the following
factors that affect the recognition results: 1) various classi-
fiers, 2) sensors combination, 3) feature extraction, 4) param-
eter tuning of XGBoost, 5) positions to carry smartphone,
6) number of subject and 7) model scalability.

A. PERFORMANCE EVALUATION METHOD
In order to evaluate the performances of recognition algo-
rithms, e.g., accuracy and generalization, the dataset is
divided into the training and the testing one. The training set is
used to build and fit the model, while the testing set is utilized
to evaluate the discriminating ability of the classifier for new
samples. In this work, we employ ten-fold cross validation to
evaluate the performance. In the validation process, we divide
the dataset with 40 subjects into ten parts, each of which
contains 4 subjects and is labeled with i, i = 1, 2, · · · , 10.
Each time we select the ith set as the testing set and the
rest as the training set to train a model. In this way, ten
models are established and the prediction results of these ten
models are averaged to get the final results for avoiding the
effects of individual abnormal data on the results. In order to
evaluate the generalization of the classifiers, we provide two
performance measures, accuracy and F-score. The F-score
is a comprehensive consideration of precision and recall.
Moreover, we also investigate the training time of the models
and their prediction time, which are important for the design
of a real-world system.

B. RESULTS AND ANALYSIS
1) ACTION RECOGNITION VIA DIVERSE CLASSIFIERS
As we know that machine learning algorithms are normally
application depended, we compare the performance of our
proposed XGBoost to the other five commonly-used clas-
sifiers, i.e., random forest, GBDT, MLP, SVM, and KNN,
based on the the dataset we built for indoor activities.

FIGURE 2. Average F-scores of various classifiers.

Figure 2 gives the measured F-scores and their averages
over ten times (ten-fold cross validation as introduced in
Section VI-A). Table 4 shows the detailed results. As shown
in Figure 2, compared with the single classifiers of MLP,

SVM and KNN, the ensemble learning classifiers behave
better, in which the F-score increases by 5%. Additionally,
both training and prediction time are greatly shortened for the
ensemble learning compared with those of MLP and SVM.
As for KNN, although the training time is short, we note that
the prediction time is long and the recognition performance is
inferior to those of the other classifiers. The average F-score
is only 69.60%.

For the three ensemble learning classifiers, XGBoost and
GBDT provide the best performance from the perspective
of recognition F-score, whose F-scores reach 84.41% and
84.26% compared with random forest of 83.71%. To well
evaluate performance of a classifier, it is based on not only
its F-score, but also the computational cost reflected by
training and prediction time. The running time of a pro-
gram determines CPU time of a system. The longer the
running time, the more resources a CPU uses. As shown
in Table 4, the training time of GBDT is the longest,
whose average training time is 985.475 seconds. For ran-
dom forest and XGBoost, the training time are comparable,
which are 296.579 seconds and 476.343 seconds respectively.
We known from Section III-B that GBDT is difficult to train
in parallel due to the dependence among the weak classifiers.
Additionally, the loss function and its gradient under all
features in GBDT are calculated each time for splitting the
feature nodes, which is extremely time consuming for high-
dimensional training data with diverse features. By contrast,
the parallel training supported XGBoost and random forest
can accelerate the training rate, which is suitable for high-
dimensional data processing. Consequently, we conclude that
XGBoost is the best choice in these six commonly-used
classifiers for the indoor activity recognition considering both
recognition F-score and computation cost.

2) SENSOR COMBINATION
Accelerometer and gyroscope are the most commonly-used
sensors for HAR. For the indoor activities in this work,
we leverage barometer as another sensor to improve the
recognition F-score. The barometer measures the changes of
atmospheric pressure at altitude. In this work, we develop
two ways of sensor combination, i.e., the combination
of accelerometer and gyroscope, and the combination of
accelerometer, gyroscope, and barometer. Figure 3 shows
F-scores of these two combinations and their averages over
ten times. Table 5 presents the detailed results.

In Figure 3, we can see that the performance of all the clas-
sifiers deteriorates after removing barometer. For example,
the recognition F-score of XGBoost degrades from 84.41%
to 76.98%, but XGBoost still outperforms the other classi-
fiers. Thus, we can conclude that barometer is indispensable
for indoor activity recognition. The reason is that some of
the indoor activities, e.g., stillness and elevator taking, are
difficult to be recognized only by accelerometer and gyro-
scope, while they can be distinguished by the altitude changes
measured by barometer.

VOLUME 7, 2019 80035



W. Zhang et al.: Comprehensive Study of Smartphone-Based Indoor Activity Recognition via Xgboost

TABLE 4. Recognition performance of various classifiers.

TABLE 5. Recognition performance without barometer.

FIGURE 3. Average F-scores with or without barometer.

FIGURE 4. Average F-scores v.s. various features.

3) IMPACT OF FEATURE SELECTION
In Section IV-A, we introduce some specific features in fre-
quency domain and wavelet domain, i.e., the top and sec-
ond peak values and indexes, the spectrum entropy and the
wavelet energy, to improve recognition F-score of the indoor
activities. In order to find the effects, we compare the perfor-
mance of the classifiers with and without these features. The
experimental results are shown in Figure 4 and Table 6.

The recognitionF-score clearly deteriorates after removing
the frequency domain and wavelet domain features. Con-
sidering the XGBoost classifier, we find that the F-score
degrades by 2%. Therefore, for the indoor activities in this
work, our selected features are applicable, especially the
specific features in frequency domain andwavelet domain are
beneficial to improve the recognition performance.

4) PARAMETER TUNING
In order to acquire higher recognition F-score, it is necessary
to tune parameters for an algorithm. Since XGBoost has more
than thirty hyper-parameters, we only select the following
seven parameters with higher impact on the optimization
performance, i.e., learning rate, number of subtrees, gamma,
L1 regularization, L2 regularization, maximum depth of a
tree and minimum weight sum of leaf node sample, which
are introduced in Section IV-B. Table 7-Table 11 show the
detailed results of the parameters tuned by ten-fold cross
validation.

Figure 5 gives the confusion matrix for the XGBoost clas-
sifier. According to Figure 5, the indoor activities of stillness,
escalator or elevator taking are most difficult to distinguish,
whose the average F-scores are all below 80%, resulting
in a lower overall F-score. The reason is that the moving
styles of these activities are very similar, and correspondingly
their features are with high similarity. Compared with these
activities, the recognition accuracy of stair climbing (96.2%)
is much higher.

5) IMPACT OF SMARTPHONE PLACEMENT LOCATIONS
In daily life, people normally place their smartphone vari-
ously, so that we need to study the impact of phone place-
ment locations on the recognition results. For same activity,
the sensor data collected from different locations may be very
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TABLE 6. Recognition performance without frequency and wavelet domain features.

TABLE 7. Fmean result v.s. learning rate.

TABLE 8. Fmean result v.s. number of subtree.

TABLE 9. Fmean result v.s. gamma.

different. Taking stair climbing as an instance, a smartphone
in a bag may have wide shaking or rotation compared with
in hands. Hence, it is necessary to study the recognition
performance of the activities regarding diverse locations of
smartphone placement. Here, we investigate different clas-
sifiers on four different locations of smartphone placement,
i.e., in trouser pocket, in bag, hand, and holding horizontally.
The results are shown in Figure 6 and Table 12-Table 15.

From Figure 6, we can see that the locations of smart-
phone placement have an impact on HAR. The recognition
algorithm achieves the best F-score when a smartphone is
placed in trouser pocket, because the smartphone is fixedwith
human body and can better represent the body movement.
On the other hand, the leg movement is the most significant

TABLE 10. Fmean result v.s. L1 regularization and L2 regularization.

FIGURE 5. Confusion matrix for XGBoost classifier.

in human body for the analysis of indoor activities. For
example, during walking and stair climbing, the degree of leg
bending is quite different. For smartphone held horizontally,
the smartphone can also well represent human movement but
the obtained features are not as significant as those when
a smartphone is in trouser pocket. For the other locations,
i.e., in bags and hands, a smartphonemay be flipped or moved
at random, which results in that the collected data contains
the noise not related to the human activities. Therefore, the
F-score with these two smartphone placement locations are
lower.

6) SUBJECT COMPOSITION
The movement styles are normally personalized due to dif-
ferent age, height, weight, gender, sports habits, health status,
and motion frequency. Hence, the values of features extracted
from different personsmay also be different even for the same
activities. If we only apply a dataset with a limited number
of subjects for training, the result classifier may be very
personalized. Therefore, we further analyze the performance
of the recognition algorithms with different composition of
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TABLE 11. Fmean result v.s. maximum depth of tree and minimum weight sum of leaf node sample.

FIGURE 6. Average F-scores for diverse settings of
smartphone-position.The x-axis labels are ’P’ - trouser pocket, ’B’ - bag,
’H’- hand, and ’HH’- hold smartphone horizontally, respectively.

subjects. We set the number of subjects in the dataset to 1,
10 and 40 respectively. Figure 7 reports the F-scores and their
averages over ten times. In Figure 7, three fold lines represent
different sizes of dataset, i.e., 40 subjects, 10 subjects and
1 subject. Among them, the dark blue solid line indicates the
recognition results using the dataset of 40 subjects, the cyan
dotted line is the recognition results of 10 subjects, and the red
dot dash line indicates the results of training and prediction
using single subject’s data. The detailed results are shown
in Table 16 and Table 17.

According to Figure 7, it is evident that as the number of
subjects increases, the F-score decreases. Taking XGBoost
classifier as an instance, the average F-scores are 99.63%,
90.03% and 84.41% with the number of subjects being 1,
10 and 40 respectively. The reason is that, due to various
characteristics and behavioral habits of subjects, the behav-
iors even for the same activity are also different. This may

FIGURE 7. Average F-scores v.s. various subjects.

make the data collected by the sensors vary greatly. If the
classifier is trained only based on the data from a single
subject, its F-score is the highest with its own data for pre-
diction, because all the personalized data are included in
both training and prediction. Moreover, for a single subject,
the performances of all the six classifiers are very similar and
with F-scores higher than 98%. Nevertheless, in this case,
the number of subjects is too small, leading to low gener-
alization ability of the model, which is prone to overfitting.
Although the F-score decreases with the increasing number
of subjects, the performance of the ensemble learning classi-
fiers, especially XGBoost, is more robust compared with the
single classifiers.

7) CONSISTENCE AND SCALABILITY OF THE ALGORITHM
The aforementioned evaluation is conducted based on the
dataset whose data are collected by a self-designed data
collection application running on smartphones. Moreover,
in order to verify the consistence and scalability of our pro-
posed model, we further conduct evaluations on a publicly
available dataset. To best of our knowledge, there is cur-
rently no comprehensive indoor activity dataset related to
indoor positioning, we choose a publicly available dataset
Smartphone-Based Recognition of Human Activities and
Postural Transitions dataset (HAPT) from the UCI Machine
Learning Repository [51], in which the physical activities
are similar to the activities that we recognize. The dataset
includes 30 volunteers between ages of 19 and 48, and
they perform a protocol of activities composed of six basic
activities including standing, sitting, lying, walking, walking
downstairs and walking upstairs. During the experiments,
data are collected by wearing a smartphone (Samsung
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TABLE 12. Recognition performance when smartphone in trouser pocket.

TABLE 13. Recognition performance when smartphone in bag.

TABLE 14. Recognition performance when smartphone in hand.

TABLE 15. Recognition performance when holding smartphone horizontally.

TABLE 16. Recognition performance of 10 subjects.

Galaxy S II) on waist, and they capture the embedded
accelerometer and gyroscope of the smartphone as sensor
data. In order to better apply the dataset to our proposed
model, the original raw data instead of pre-processed data are
utilized as the input data of our framework because the pre-
processed data have already been de-noised, sampled within

sliding windows and extracted from specified feature, which
is repeated with our data processing. Figure 8 shows F-scores
of our dataset and HAPT and their averages over ten times.
The detailed results are presented in Table 18.

As shown in Figure 8, for HAPT, the ensemble learning
classifiers, XGBoost, random forest and GBDT outperforms
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TABLE 17. Recognition performance of 1 subject.

TABLE 18. Recognition performance of using HAPT.

FIGURE 8. Average F-scores v.s. various datasets.

the single classifiers of MLP, SVM and KNN, in which
F-scores improve by 3%. This finding is consistent with our
evaluation conducted on our dataset. Moreover, comparing
with other two ensemble learning classifiers, XGBoost also
performs best, whose F-score reaches 84.19%, while random
forest and GBDT reach 82.64% and 83.85%, respectively.
For the computational cost reflected by training time and
prediction time, according to Table 18, we can see that
among the three ensemble learning classifiers, the training
time of GBDT is also the longest, whose average training
time reach 216.351 seconds, while XGBoost and random
forest are 208.377 seconds and 76.750 seconds, respectively.
Although the training time of random forest is shorter than
that of XGBoost, the average F-score reduces by nearly 2%
compared to that of XGBoost. For the single classifiers,
the prediction times are all longer than those of the ensem-
ble learning classifiers, especially SVM and KNN require
the longest time with prediction time of 1.159 seconds and
7.398 seconds, respectively. Therefore, we can conclude that
XGBoost achieves the best recognition performance not only
on our dataset but also the HAPT dataset, which proves the
consistence and scalability of the model.

Additionally, in contrast with the recognition results based
on our dataset, the performance of the single classifiers,

MLP, KNN and SVN, gets better in the HAPT dataset, which
approaches that of the ensemble learning classifiers. All the
six classifiers are almost similar, whose F-scores range from
80.80% to 84.19%. For MLP, KNN and SVM, they are prone
to the overfitting problems. Even if the training errors on the
training set reduce, it is probable to result in large predicting
errors on the testing set because of the overfitting. There
are two reasons that for the similiar recognition performance
of these six classifiers. First, in the HAPT dataset, the data
collection is conducted in a more standardized way and all
participants complete all activities in same order. In contrast,
in the data collection process, we give every subject enough
freedom to ensure his natural movement, whichmaymake the
data vary greatly. Hence the single classifiers prone to overfit-
ting problem performs better in the HAPT dataset than in our
dataset. This finding further demonstrate that the ensemble
learning approaches are robust to the overfitting problem.
Second, in the HAPT dataset, all participants wear their own
smartphone on the waist durning data collection which offers
more significant features for recognizing different activities.
However, in our dataset, the phone placement locations are
more diverse. The features may not be as significant as those
on the waist. Therefore, for the single classifiers, it is more
challenging to achieve high accuracy using our dataset.

VII. CONCLUSION
In this work, we propose an approach based on XGBoost
to recognize five kinds of indoor activities related to indoor
positioning, i.e., walking, stillness, stair climbing, escalator
or elevator taking. Moreover, besides some commonly used
features in time domains, we analyze some specific features
in frequency domain and wavelet domain extracted from the
data of accelerometer, gyroscope and barometer to improve
recognition accuracy. Based on a dataset created by 40 volun-
teers, we conduct comprehensive analysis of our recognition
algorithms on the indoor activities. We achieve a recognition
accuracy of 84.41% based on XGBoost. In consideration of
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both the accuracy and computation cost, the results show that
the model based on XGBoost outperforms the other classi-
fiers. Moreover, our proposed specific features in frequency
and wavelet domains can well represent the characteristic of
these indoor activities and help us to improve the recognition
accuracy. We also study the impact of subject composition
and the different smartphone placement locations on the
recognition results, and find that less subjects may cause
overfitting and the best location of smartphone placement is
in trouser pocket for the recognized activities.

In this work, we observe that the placement of smartphone
has an impact on the recognition performance. A two-step
activity recognition algorithm, i.e., placement recognition
and then activity recognition, is considered as an effective
solution to this problem in our future work. In this way, each
activity on each placement location is trained by a classifica-
tion model. After recognizing the placement of smartphone,
a corresponding model can be selected for activity recogni-
tion. Moreover, deep learning has become a powerful tool in
manyfields, we plan to conduct our research in indoor activity
recognition via deep learning methods in the near future.
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