
Received May 24, 2019, accepted June 11, 2019, date of publication June 14, 2019, date of current version July 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2923021

Autonomous Cache Resource Slicing and Content
Placement at Virtualized Mobile Edge Network
GUOLIN SUN 1, HISHAM AL-WARD1, GORDON OWUSU BOATENG 1, AND GUISONG LIU 1,2
1School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2School of Computer Science, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China

Corresponding author: Guisong Liu (lgs@uestc.edu.cn)

This work was supported in part by the National Natural Science Research Foundation of China under Grant 61771098, in part by the
Fundamental Research Funds for the Central Universities under Grant ZYGX2018J068, in part by the fund from the Department of
Science and Technology of Sichuan Province under Grant 2017GFW0128, Grant 8ZDYF2268, Grant 2018JY0578, and Grant
2017JY0007, and in part by the ZTE Innovation Research Fund for Universities Program 2016.

ABSTRACT Nowadays, the unprecedented growth of mobile traffic is only rivaled by the demands for a
better quality of service and faster data delivery. Caching the content closer to the end users is one solution to
cope with these demands, but when service providers share a common physical infrastructure, managing the
limited cache resources becomes more challenging. With this increased complexity, the deep reinforcement
learning (DRL) presents itself as an optimal solution. In this work, we propose a dynamic DRL-based
management framework for virtual cache slicing and customized content placement. The virtualization
problem is formulated as a Markov decision process, and it utilizes a deep Q-network to autonomously
make network-wide slicing decisions and optimize the cache resource allocation. These global decisions are
then mapped to the small cell stations with a dynamic resource provisioning algorithm. Lastly, a customized
content placement algorithm is used to find the optimal content placement policy for each service provider.
The content placement problem is first formulated as a convex optimization problem and is then solved
with a distributed alternating direction method of multipliers (ADMM). Finally, the simulation results are
presented to show the effectiveness of the proposed solution.

INDEX TERMS Content placement, deep reinforcement learning, deep Q-networks, network virtualization,
resource provisioning, resource slicing.

I. INTRODUCTION
The world today is witnessing a skyrocketing growth of
mobile traffic. This unprecedented development is accom-
panied by an ever-increasing demand from the end user for
an improved quality of experience (QoE) and faster data
delivery. The Cisco visual networking index in [1] reports
that mobile data traffic has grown 18-fold between 2011 and
2016 and predicts the global mobile data traffic to increase
sevenfold and reach 49.0 exabytes per month by 2021. This
dramatic rise in mobile traffic inevitably leads to congestion
of backhaul networks, which in turn results in higher costs of
operation and maintenance, lower quality of service (QoS),
and slower data delivery. The gaps between the expected
and the feasible performances are too big for the fourth
generation (4G) technologies and the traditional internet

The associate editor coordinating the review of this manuscript and
approving it for publication was Antonino Orsino.

pconrotocol (IP) networks to fill on their own, and thus new
solutions need to be sought.

One major challenge facing traditional IP networks is the
congestion of backhaul links due to the redundant transmis-
sions traveling for the original content provider. This prob-
lem can be effectively solved by caching the content. When
content replicas are distributed the network, the amount of
data traveling through the core network is reduced, and the
visiting time is proportionally decreased as well. And while
caching is sure to improve the QoS, placing content replicas
around the network is wasteful from a resource utilization
perspective. As such, the content placement problem should
be approached carefully as to balance between QoS satis-
faction and resource utilization. In this work, we consider
caching at the edge of the mobile network, within the radio
access network (RAN) and in close proximity to mobile
subscribers [2].

However, it is very difficult to implement a caching solu-
tion in traditional IP networks because each network provider

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

84727

https://orcid.org/0000-0001-9754-7261
https://orcid.org/0000-0002-7923-367X
https://orcid.org/0000-0003-2360-0466


G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

has to own its dedicated physical infrastructure (i.e. caching
storage). These hefty expenses make it difficult for network
providers to cache their content or scale their services [3].
A popular solution to this problem is found by adopting
network function virtualization (NFV). By means of NFV,
the physical infrastructure can be divided and abstracted into
isolated substrate resources called virtual network slices [4].
In a virtualized network, an infrastructure provider (InP)
owns the infrastructure physical equipment and leases them
out to mobile virtual network providers (MVNOs). Similarly,
if the InP owns a wireless network infrastructure, the scheme
can be referred to as wireless network virtualization [5]. With
network virtualization, differentiated services thrive since the
MVNOs can serve diverse applications according to their
own QoS requirements. In addition, the InPs can maximize
their resource utilization by leasing their physical resources to
multiple MVNOs. In this paper, our objective is to develop a
framework to provide a balance between the QoS satisfaction
of MVNOs and the resource utilization of InPs.

The resource slicing and content placement problems are
very promising in the field of wireless mobile telecommuni-
cation, and they have received considerable attention in recent
years. However, most current research efforts fall short in
the following accounts. First, most of the current works that
address both the cache slicing and content placement prob-
lems fail to support MVNO customization. Authors in [6],
for example, formulate the cache resource slicing and
in-network caching strategy as a cost-based optimization
problem and solve it with a distributed ADMM, but they
assume that all the MVNOs have one objective function,
which is not quite realistic. Second, most reinforcement
learning (RL)-based caching solutions focus only on the con-
tent placement problem. For example, authors in [7] develop a
Q-learning algorithm to find the optimal caching policy with
unknown transitional probabilities by considering both the
global and local popularity demands, but they do not consider
virtualization or cache slicing. Third, RL-based solutions that
address both resource slicing and support MVNO customiza-
tion choose a different resource than cache. Authors in [8],
for example, develop a novel radio resource slicing frame-
work for 5G networks. They find the optimal slicing strategy
with an RL method, then they customize the radio resource
for haptic communications using a low-complexity heuristic
algorithm. Our motivation in this paper is to develop a cache
management framework for virtualized wireless networks
that optimizes both the slicing of the cache resource and
the actual content placement for providers with differentiated
services.

Considering differentiated services makes developing
a model and handcrafting clever heuristics considerably
more complicated. As such, we propose a DRL-based
cache management framework. In a DRL system, an agent
observes the environment and accordingly makes deci-
sions. The agent learns from experience and continues
to improve its decision-making policy by reinforcement-
a reward that reflects how good its decisions are [9].

The deep Q-network (DQN) algorithm is chosen in our solu-
tion for the following reasons: 1) it is a model-free algorithm,
which allows us to model such a complex problem that would
otherwise be very challenging to build with handcrafted
features, 2) DQN can be adaptive to varying conditions as
long as it is allowed to continue to learn [10], and 3) in a
real-time scenario, the changing demand of the users with
the large state space will make finding an optimal solution
incredibly difficult. In this context, a DQN algorithm has
lower complexity than other traditional approaches such as
dynamic programming. Our contributions in this paper can
be summarized as follows:
• We propose a novel cache resource management frame-
work that handles both cache resource slicing and the
content placement for MVNOs with differentiated ser-
vices in virtualized wireless networks. This framework
incorporates both DRL-based and distributed convex
optimization methods [11].

• We first introduce a DRL-based virtual cache resource
slicing strategy with two components: a DQN algorithm
is responsible for making network-wide cache slicing
decisions, and a dynamic resource provisioning algo-
rithm to update the allocation and map the physical
resources at the small cell stations to the MVNOs.

• Using the resource allocation from the DRL solution as
an input, we use a distributed ADMM to find the opti-
mal cache placement for the MVNOs. Unlike previous
schemes where all the virtual slices are assumed to have
the same objective function, our proposal allows for the
customization of virtual slices: that is, each operator
can optimize their cache placement independently and
according to their own unique QoS metrics and objec-
tives.

• Extensive simulations are conducted to verify the signif-
icance of the proposed work. Our results are compared
to two algorithms: ADMM and popularity-aware cache
provisioning (PACP).

II. RELATED WORKS
Content placement and cache resource slicing have been
investigated in the recent past. In [12], the authors aim at
maximizing the effective capacity for the end-users by uti-
lizing information-centric networks (ICN) to cache popular
contents near mobile users rather than the remote, origi-
nal providers. That is, when requests arrive at the network
controller, it finds where the closest copy of the content
is and creates a delivery path for the requesting user. The
delay-bounded QoS for the multimedia transmissions is cal-
culated with the effective capacity theory, while the delivery
path is created on flexible network architecture. The work in
[13] presents a novel information-centric HetNets framework
aiming at enabling content caching and computing in a virtu-
alized architecture. The virtual resource allocation strategy is
formulated as a joint optimization problem where the gains
of virtualization, caching, and computing are considered,
and a distributed ADMM is used to reduce complexities

84728 VOLUME 7, 2019



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

and signaling. The authors in [14] solve the difficult problem
jointly optimizing resource allocation and content caching by
proposing a bisection-search-based algorithm that iteratively
optimizes the resource allocation and content caching place-
ment. They further develop a low-complexity heuristic algo-
rithm which achieves moderate performance loss compared
to the bisection-search based algorithm. Kyi et al. [15] apply
the hierarchical business model for resource allocation and
hybridmodel for the physical resources sharing and formulate
the virtual resource allocation and in-network caching strat-
egy as an optimization problem, which maximizes the profit
of MVNOs and improves the user’s QoS.

Furthermore, Jia et al. [16] maximize the utilization of
physical caching resource for network slicing via price mech-
anism, then formulate the caching resource allocation issue as
an integer linear programming (ILP) model. Particularly, they
also take the caching energy consumption into account and
propose a chemical reaction optimization (CRO)-based algo-
rithm to maximize caching resource utilization. The authors
in [17] propose a joint user association, caching, spectrum,
and power problem in an effort to maximize the utility
for all network operators. The problem is formulated as a
cost-driven virtual user association and resource allocation
problem with stringent energy harvesting constraints. The
problem is later reformulated as two sub-problems and solved
with an ADMM-based distributed algorithm to reduce com-
plexity and improve efficiency.

Some other works have been done in the virtualiza-
tion of the wireless network while imploring learning tech-
niques to help in the optimization problem. Authors in [7]
introduce a novel RL framework for finding the optimal
caching policy with unknown transition probability. This
caching approach considers content popularity as well as
cache-refreshing costs and is based on Q-learning imple-
mented in an online fashion. A linear function approxima-
tion that allowed better scalability, faster convergence, and
reduced complexity is also proposed. The work in [18] deals
with an information-centric virtualized network for smart
cities with a deep Q-learning approach. He et al. [19] formu-
late an optimization problem to maximize the network opera-
tor’s utility while considering the trust-based social networks
specifically with mobile edge computing (MEC), in-network
caching, and device-to-device (D2D) communications using
a DRL approach. Finally, an integrated framework that can
enable dynamic orchestration of networking, caching and
computing resources to improve the performance of next
generation vehicular networks is studied in [20]. In this
framework, the resource allocation strategy is formulated as
a joint optimization problem and DRL is used to solve it.

Our work differs from [12]–[17] in that we implore DRL
strategies to solve the problem of cache resource slicing
and allow the system to support differentiated services.
We believe that a DRL-based solution, in principle, is a more
effective approach to solve the slicing problem, and we put
this assumption to test in section V.D. The authors in [7] use

Q-leaning in their solution, but in section IV.B of this paper,
we explain the shortcomings of this method and how they are
overcome with DQN. Lastly, our work differs from [18]–[20]
in that it considers the content placement problem and also
supports differentiated services.

III. SYSTEM MODEL
The system model is described in four entities: business
model, virtualization model, network model, and utility mod-
els. In the business model, we explain the business entities
governing our network and how they interact with one another
as well as the objective from a business point of view. In the
virtualization model, we provide a brief explanation of how
the slicing decisions in our solution are executed and updated,
and we also define a crucial element of our virtualization
scheme: cache resource reservation. In the network model,
we mathematically define every variable in our network and
establish the user association and content caching principles.
We also provide the calculations for a user’s transmission rate
in our network model, which are essential for developing the
utility models. In the utility models sub-section, we formulate
two utility functions: one for the QoS satisfaction, and one
for the resource utilization. The QoS satisfaction calculation
differs according to the type of the slice, whereas the resource
utilization calculation is universal across the different slices.

A. BUSINESS MODEL
In this work, we adopt a two-tier business model consist-
ing of InPs and MVNOs. The mobile edge network in our
scenario consists of macro base stations (BSs), small cell
stations (SBS’s) and cache storage at the SBS’s. An SDN
controller separates the control and the data planes in our
network. The SBS’s and their caching capabilities form our
data layer, while the macro base station will have control
capabilities. As we can see in the system framework in Fig. 1,
ourmanagement system uses two control units: ADRL-based
controller for cache slicing, and an ADMM controller for
customized content placement.

FIGURE 1. System framework.

VOLUME 7, 2019 84729



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

In our business model, the network resources owned by
the InPs are the macro base stations, small cell stations,
and the caching storage. The MVNOs, on the other hand,
own and manage unique types of content and/or have dif-
ferent QoS requirements. In this work, we consider four
MVNOs with two objective functions. All the MVNOs
are delay-constrained, but the first two provide guaranteed
bit rate (GBR) services (i.e. live video streaming), while
the last two provide non-GBR services (i.e. buffered video
streaming) [21].

An MVNO leases network and cache infrastructure from
the InP and makes a profit by charging the end users on
a QoE-conditioned charge-by-use basis. The InP’s income
comes from theMVNO; however, as anMVNO only pays for
the resources it uses, the InP needs tomaximize the utilization
of its resource pool. After all, idol resources mean a loss of
potential profit. The ability to deliver the agreed upon service
level agreement (SLA) is how we measure the success of this
scheme.

B. VIRTUALIZATION MODEL
Network virtualization is the partitioning of the physical
network into virtual networks. This means that the physical
resource belonging to one InP can be shared by a number
of MVNOs offering different services with different QoS
requirements. The virtualization needs to a) fulfill the QoS
requirements of the MVNOs, b) ensure the maximum utiliza-
tion of the InP physical resources, and c) provide complete
isolation between MVNOs. As such, our aim is to develop
a dynamic slicing strategy that provides the optimal slicing,
isolation, and mapping of physical cache resources in differ-
ent small cells to MVNOs.

Resource Reservation: Resource reservation is essential
in our work because it guarantees the isolation between
MNVOs and swift adaptation to sudden increases in demand
from the end users. To start, each SBS b has a defined cache
capacity of Cb. In the initial resource provisioning, a portion
of each SBS is reserved for each MVNO and is denoted as
Cres,v
b . These portions differ from one SBS to another based

on the slice’s unique QoS requirement and user demand for
this slice at the SBS. However, the total reserved resource on
each SBS must always be equal to the total capacity of the
small cell. ∑

v∈V

Cres,v
b = Cb, ∀b (1)

Once the DQN algorithm runs, a portion of the SBS cache
resource is allocated, Calloc,v

b , to the MVNO. This is the
portion of caching resource that the DQN algorithm thinks
is needed for a given MVNO. As with the reserved cache,
the portions differ on each SBS, but the total allocated cache
for each SBS should be equal to or less than the actual
capacity of the small cell.∑

v∈V

Calloc,v
b ≤ Cb, ∀b (2)

FIGURE 2. Virtualization model.

If the total allocated storage is less than the total
caching capacity, then the unused cache resource Cunused

b
is re-calculated and re-reserved for the MVNOs in accor-
dance with their weights, which we cover in details in
subsection IV.B.

The benefits of this scheme are as follow: 1) it guarantees
performance isolation as each MVNO has its own reserved
storage space that cannot be used by any other slice, and 2) if
the user demand for one slice suddenly increases, the MVNO
can use more than its allocated resource as long as it has a
dedicated reserved resource. This results in faster adaptability
to sudden environmental changes.

In this work, we propose a DRL-based solution imple-
mented at the SDN controller at the mobile edge network
and managed by the InP. Our virtualization model, in brief,
consists of two algorithms: DRL and dynamic resource pro-
visioning. These two algorithms cooperate to perform reser-
vation and allocation duties, as illustrated in Fig. 2.

1) Initial cache resource reservation: By considering the
QoS requirement of each slice and request demand
for each MVNO, the dynamic resource provisioning
algorithm develops certain weights and uses them to
calculate the initial cache reservation; that is to reserve
a certain percentage of the small cells’ caching storage
for each MVNO.

2) Cache resource allocation: The DRL algorithm makes
the slicing decisions (actions) for all MVNOs. These
actions either increase or decrease the total allocation
for a slice. The resource provisioning algorithm takes
these actions to (a) calculate the global allocation for
each slice Calloc,v, which is then fed back to the DRL
algorithm, and (b) map these global allocation values
to the SBS-level, making each SBS know how much of
its resource to allocate to each slice Calloc,v

b .
3) Reservation refinement: If the total allocation for all

the slices at one SBS is less than its full capac-
ity, the dynamic resource provisioning algorithm will
recalculate its unused cache resource and reserve it
back for the different slices. This also happens when
the statistical information scouted from the network
changes.

84730 VOLUME 7, 2019



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

C. NETWORK MODEL
In our scenario, we consider a set of virtual slices (MVNOs)
V = {1, .., v, ..,V } and a set of small cell stations B =
{1, .., b, ..,B} in a given geographical area. Please note that an
MVNO and a virtual slice in this work mean the same thing:
the entity that owns and manages the content, and for the rest
of this work, we will use these two terms interchangeably.
In this paper, we assume that the entire infrastructure is owned
by a single InP; however, the principles can be extended and
applied to scenarios with multiple InPs. Each MVNO has its
own unique set of content objectsOv

= {1, .., ov, ..,Ov}with
a content library size of Lv. Objects across all MVNOs have
the same size Os. Small cell stations, on the other hand, have
the same caching capacity of Cb. This capacity is divided
into equal-sized segments called slots. The size of a slot is
equal to the size of an object. The aggregated sum of all the
cache resources in the network is referred to as Ctotal (slots).
Users in our scenario can only request content from one
MVNO, so we define the users in relation to the MVNO they
belong to as Uv

= {1, .., uv, ..,U v
}. The slice users Uv in the

coverage area of a small cell station b are assumed to request
the content following a Poisson process with an average rate
of µbv (requests/s). The Poisson process is commonly used
in the field of telecommunications and computer systems to
model random arrival rates.

Content placement (aka caching) occurs when a content
object of an MVNO occupies a slot in a small cell. The
caching can be controlled by a binary parameter, Z vob, such
that Z vob = 1 indicates that object o of virtual slice v is cached
on small station b, and 0 otherwise. This variable can be used
to mathematically formulate the following constraints:∑

o∈Ov

Z vob · Os ≤ Cres,v
b , ∀b, v (3)∑

v∈V

∑
o∈Ov

Z vob · Os ≤ Cb, ∀b (4)

The constraint in (3) ensures that the total content cached at
any small cell b for anyMVNO v does not exceed its reserved
caching space, while the constraint in (4) guarantees that the
total content cached at any one small cell b for all MVNOs
does not exceed its total physical caching storage.

Let X vub ∈ {0, 1} be the association binary variable, where
X vub = 1 denotes that the user u ofMVNO v is associated with
the small cell b, and 0 otherwise. We also assume that each
small cell has a nominated spectrum bandwidth allocation of
Wb (Hz) and the total spectrum bandwidth for the cellular
network is noted as WB. Let Y vub ∈ [0, 1] be the fraction of
bandwidth allocated to the requesting user u of MVNO v that
is associated with small cell b. The constraint in (5) ensures
that the total channel bandwidth used by users to connect
to one small cell b does not exceed the nominal spectrum
allocation for said small cell∑

v∈V

∑
u∈Uv

X vubY
v
ubWb ≤ Wb, ∀b (5)

A user’s effective transmission rate R can be expressed as

Rub =
∑
b∈B

X vubY
v
ubWbshub (6)

where shub is Shannon’s achievable spectrum efficiency,
which can be calculated as shub = log2(1 + SINRub), and
SINRub is the SINR model which can be obtained from the
expression

SINRub =
gubPb∑

k,k 6=b gukPk + σ
(7)

where gub is the large-scale channel gain, σ is the power
spectrum density of AWGN and Pb is the received signal
power of user u from small cell b. The channel gain can be
obtained by considering the path loss as

PL = 20 log10(dist)+ 20 log10(F)+ 32.4 (8)

where dist is the distance between the receiver and transmitter
in (km) andF is the frequency band in (MHz). The shadowing
small-scale fading effect is assumed to be a Gaussian ran-
dom variable with zero mean and a standard deviation equal
to 8dB.

D. UTILITY MODELS
In this sub-section, we formulate two utility models, one for
QoS satisfaction and one for resource utilization. This is the
case because our objective in this work is to maximize a bal-
ance between satisfaction and resource utilization. The QoS
utility model measures the level of satisfaction in an MVNO,
which obviously depends on the slice’s unique QoS require-
ment. The resource utilization model, on the other hand,
measures the extent to which the physical cache resources
are utilized. One assumption we are operating under is that
the MVNOs will have different objective functions and/or
QoS requirements, so in developing these models, we make
sure that all the results are normalized and in the range of
[0,1]. This normalization allows for a more fair comparison
between the MVNOs.

1) QOS SATISFACTION
The overall QoS satisfaction utility function of one MVNO,
Satv is the average sum of satisfaction at all the SBS’s, which
can be calculated as

Satv =
1
B

∑
b∈B

Satvb (9)

where B is the total number of small cell stations and Satvb
is the satisfaction at one small cell, which is defined as the
averaged satisfaction of all the users belonging to the slice v
and requesting content from small cell b

Satvb =
1

U v
b × O

v
b

∑
u∈Uv

∑
o∈Ov

Satvuo (10)

where U v
b is the total number of users in slice v that are

associated with small cell b, Ovb is the total number of objects
that are cached in small cell b, and Satvuo is the satisfaction of

VOLUME 7, 2019 84731



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

user u requesting content object o. The calculations of Satvuo
vary depending on the type of the MVNO.

a: SLICES THAT PROVIDE NON-GUARANTEED
RATE SERVICES
As MVNO3 and MVNO4 provide non-GBR, delay-sensitive
services, their QoS requirement in terms of delay is denoted
as qd , which indicates the maximum allowed delay.

The download time depends on whether the content object
is cached at a small cell b. So, let’s first break down the down-
load time needed for the content to reach the requesting user
into two phases: 1) In-network downloading delay: the time
it takes for the data to travel through the backhaul network
before reaching the small cell closest to the requesting user,
and 2) wireless content delivery delay: the time needed to
offload the content from the closest small cell to the request-
ing user. We tackle each type of delay and finally formulate
a universal delay expression.

The in-network download delay is a function proportion-
ally related to the number of wired backhaul network hops
the data travels through. Assuming the number of hops to be
h and the delay time for each hop to be fixed as T , we obtain
the in-network delay as dI = (T × huo); where huo is the
number of hops between the user u and the original object o.

As for the wireless content delivery time, the user transmis-
sion rate we found in (6) can be translated into an equivalent
downloading time metric, dub = Os/Rub, where dub is the
time for user u to download content from small cell b. When
an object o is cached in small cell b (that is Z vob = 1), duo
which is the time for user u to download content object o is
identical to dub. Finally, the overall download delay time is
formally calculated as follows:

duo =

{
Os/Rub, if Z vob = 1
(Os/Rub)+ (T × huo), otherwise

(11)

Now that we have the download time, we formulate the
delay satisfaction function, ξ (duo), as

ξ (duo) =
1

1+ exp (−β(qd − duo))
(12)

whereβ is the steepness constant. As such, the delay-sensitive
QoS satisfaction function that will be used as our primary
QoE metric for this type of slice is

Satvuo = ξ (duo) (13)

b: SLICES THAT PROVIDE GUARANTEED RATE SERVICES
As MVNO1 and MVNO2 provide GBR, delay-sensitive ser-
vices, their QoS requirement in terms of delay is denoted as
qd as well, while their QoS requirement in terms of trans-
mission rate is denoted as qr , which indicates the minimum
required transmission rate.

The delay satisfaction ξ (duo) is calculated with (12), while
the rate satisfaction ξ (Ruo) is found by considering the user

transmission rate Ruo in (6) in a sigmoid function as follows:

ξ (Ruo) =
1

1+ exp (−β(Ruo − qr ))
(14)

where β is the steepness constant. Now that we have both
elements, we create a combined rate and delay-sensitive QoS
satisfaction function as our primary QoE metric, which is
defined as the average satisfaction achieved for both rate and
delay requirements, or as mathematically expressed as

Satvuo =
ξ (duo)+ ξ (Ruo)

2
(15)

2) RESOURCE UTILIZATION
Resource utilization is independent from the slice’s QoS
requirement, so its calculations for the different MVNOs are
the same. The overall resource utilization of a slice, denoted
as ϕv, is defined as the average sum of the utilization at each
small cell, ϕvb, which can be expressed as follows:

ϕv =
1
B

∑
b∈B

ϕvb (16)

ϕvb =
1

Calloc,v
b

∑
o∈Ov

Z vob (17)

where Calloc,v
b is the cache resource at small cell b that is

allocated to slice v, and Z vob is the binary caching variable.

IV. PROBLEM FORMULATION
A. DYNAMIC RESOURCE PROVISIONING
The dynamic resource provisioning algorithm is at the heart
of our virtualization scheme, and it handles two important
tasks: 1) cache resource reservation, and 2) cache alloca-
tion updates. In this subsection, we first develop two unique
weights then delve into how each task is executed in details.

Weights are calculated based on the number of users con-
necting to the small cell and the MVNO’s minimum required
resource for a single user. Theminimum required resource
is referred to as Reqmin,vub . This value is calculated for the
non-guaranteed rate MVNOs as

Reqmin,vub =
Os
qd

(18)

where Os is the object size and qd is the MVNO’s
delay requirement. For the guaranteed rate MVNOs, it is
calculated as

Reqmin,vub =
Os
qd
+ qr (19)

where qr is the MVNO’s rate requirement. It is important to
note thatReqmin,vub does not estimate howmuch cache resource
is needed for each MVNO, and it does not need to. This value
is developed for weight calculations only to give a normalized
indication of the relative importance of MVNOs and SBS to
one another given the MVNO unique characteristics.

The first weight we develop is called a slice weight,
denoted as ISliceb , and it defines the importance of a slice to a

84732 VOLUME 7, 2019



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

given SBS. That is to say, for all the MVNOs in the network,
the SBS will dedicate more of its cache resources to the
slices with higher I sliceb . This weight is used to determine how
much cache resource an SBS will reserve for each respec-
tive MVNO. For an SBS, this weight is the total minimum
resource required by one slice’s users to the total minimum
resource required by all the users connected to this SBS. This
can be expressed as:

ISliceb =

∑
u∈Uv Reqmin,vub∑

v∈V
∑

u∈Uv Reqmin,vub

(20)

The secondweight is an SBSweight, denoted as ISBSv , and it
defines the importance of the local SBS’s to any given slice.
That is to say, considering all the SBS’s that can serve the
slice, the ones with bigger weights are required to allocate
more of their cache resources to this slice in comparison to
other SBS’s. This weight is used to map the global allocation
decisions of a slice to the local SBS’s. For one SBS, this
weight is calculated by aggregating the minimum required
resource for the slice’s users that are connected to this SBS
by the total minimum required resource by all users of this
nominated slice in all the SBS’s. Mathematically, this can be
expressed as:

ISBSv =

∑
u∈Uv Reqmin,vub∑

b∈B
∑

u∈Uv Reqmin,vub

(21)

1) CACHE RESOURCE RESERVATION
Throughout the management period, the unused cache at any
SBS will be reserved for different slices based on various
network info and QoS demands. The dynamic resource pro-
visioning algorithm collects network data and calculates the
minimum required resource Reqmin,vub and slice weight ISliceb .
Using these weights, the cache resource is reserved in each
small cell with this expression:

Cres,v
b = ISliceb Cunused

b (22)

At the very beginning of the running time, we call this
initial cache resource reservation. At this stage, the DRL
algorithm has not run yet, so no slicing decisions have been
made and caching resources at the SBS’s are untouched.
As such, the unused cache resource is Cunused

b = Cb.
At any other time, we can refer to the same task as

resource reservation refinement. This can be triggered by
an environmental change (e.g. a change in user distribution
or request demands) or when the total allocation at one
SBS is less than its full capacity. Either way, the remain-
ing unused cache resource at each SBS is calculated
as Cunused

b = Cb −
∑

v C
alloc,v
b .

2) CACHE ALLOCATION UPDATES
When the DRL algorithm makes a slicing decision, it basi-
cally takes an action, av, that changes the overall amount of
cache resource that is allocated to the MVNO. The dynamic
resource provisioning takes this action and translates it into

two allocation values, one for the slice-level, and one for
the SBS-level. Let the overall allocation of cache resource
to a slice v before taking an action be Calloc,v, while after it
is C∗alloc,v. The slice-level resource allocation is updated as
follows:

C∗alloc,v =


Calloc,v, if av = 0
(1+ av)× Calloc,v, if av < 0
Calloc,v

+ (av × Cres,v), if av > 0

(23)

Now, this global allocation needs to be mapped to the
SBS. Each small cell needs to know how to allocate its
cache resources to the slices accordingly, and this is done by
applying the SBS weight ISBSv in the following equation:

Calloc,v
b = ISBSv Calloc,v (24)

The algorithm is summarized in Algorithm 1.

Algorithm 1 Dynamic Cache Resource Provisioning
1: Initialize resource reservation and allocation to zeros
2: if t = 0 then
3: Calculate Reqmin,vub
4: Calculate the slice weight ISliceb with (20)
5: Reserve resource at local SBS’s with (22)
6: else
7: Import the slice action from Algorithm 2
8: Calculate Reqmin,vub
9: Calculate the slice weight ISliceb with (20)

10: Calculate the SBS weight ISBSb with (21)
11: Update the slice’s overall resource allocation

Calloc,v(t + 1) with (23)
12: Map the overall resource allocation to the local SBS’s

with (24)
13: UpdateCunused

b on each SBS and calculate new reser-
vation with (22)

14: end if

B. CACHE RESOURCE SLICING (DQN)
Right after the initial resource reservation, the DRL con-
troller dynamically and autonomously attempts to optimize
the cache resource allocation in order to maximize the QoS
satisfaction and the resource utilization for all the MVNOs.

1) DEEP Q-LEARNING
Reinforcement Learning is a very successful branch of
machine learning where an agent interacts with an environ-
ment and independently learns how to find the best actions to
perform through trial and error. The agent observes the state
of the environment (s) and takes an action (a) to change the
environment to its advantage. If successful, it earns a reward
(r), but if not, it will be penalized (in the form of a negative
reward). The objective of the agent is to find the optimal
policy π∗(s, a), which defines what action should be taken
in any given state.

VOLUME 7, 2019 84733



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

The objective function of our slicing controller is to find
the optimal policy that maximizes the expected cumulative
reward.

π∗ = argmaxπE[
∞∑
t=0

γ tr(t)] (25)

where γ is the reward discount function. Of the many avail-
able RL algorithms, we find Q-learning the most appealing
because 1) it is a model-free algorithm that does not require
known transition probabilities, which is perfect for real-life
complex problems like ours [22], and 2) it is proven that with
the use of a proper learning rate, the Q-function will always
converge [23]. According to the Bellman equation, there exits
at least one strategy that satisfies the optimality conditions,
and it is defined as

Q(s, a) = r + γmaxa′ (s
′, a′) (26)

where a′ and s′ are future actions and states, respectively.
However, since the state-action space in our case is large,
estimating each Q value is computationally infeasible, so we
use function approximators such that Q(s, a; θ ) ≈ Q∗(s, a),
where θ is a function parameter.

While there are quite a few options for a function approx-
imator, we use deep neural networks (DNNs) [24] as they
have the advantage of not requiring hand-crafted features.
They also have proven successful in solving large RL tasks
[22], [25]. We use the Least Square algorithm to optimize
the function parameter by minimizing the sum-squared error
between the approximation (prediction) and target value.

loss = (r + γmaxa′ (s
′, a′)− Q(s, a)) (27)

When choosing a neural network as an estimator, the new
network is called Q-network. In a Q-network, the parameter
θ is a network parameter, and the network is trained by
adjusting these parameters.

That said, the Q-network is not perfect. First, it was
observed that the Q-network quickly learns the patterns of
a training period set, and as a result, has a tendency to
reach a local minimum instead of a global one. Additionally,
the Q-network is quite unstable because the same neural
network is used to calculate the prediction and target values.

Fortunately, these shortcomings can be overcome with the
use of a DQN. A DQN significantly improves the perfor-
mance of a Q-network by using experience replay and adding
a target network. First, with experience replay, random sets of
the training data are chosen to train the network every once
in a while. This breaks the patterns in a limited data set and
prevents the network from reaching a local minimum. Sec-
ond, by adding a second NN to calculate the target Q-values
with independent network parameters θ that are only updated
every few steps instead of every single step, the network
becomes more stable. Fig. 3 illustrates how our proposed
DQN works.

FIGURE 3. Deep Q-Network.

2) OUR MDP MODEL
The environment in our work is defined using Markov deci-
sion process (MDP) as follows:

a: STATES (s)
Let the state of the system for a particular MVNO v at time t
be represented with

sv(t) = [ϕv(t), Satv(t),Cres,v(t),Calloc,v(t)] (28)

where ϕv(t) is the resource utilization of a slice v at time t ,
Satv(t) is the QoS satisfaction utility function, Cres,v(t) is the
total reserved cache resource for the slice, and Calloc,v(t) is
the total allocated cache resource.

b: ACTIONS (a)
At each time step, the learning agent needs to take an action
to win a reward. The actions that the system as a whole takes
at time t can be represented as

a(t) = {av1(t), av2(t), av3(t), av4(t)} (29)

Which means that our DQN algorithm makes a total of
four actions at each time step, one action per MVNO. The
action for each slice is either to increase or decrease the
current total cache resource allocation. We define the set
of possible actions for any slice as av(t) = {−50%,
−40%,−30%,−20%,−10%, 0%, 10%, 20%, 30%, 40%,
50%}. As the neural network does not understand percent-
ages, we change this set into fractional values as av(t) =
{−0.5,−0.4,−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5},
and each action is identified by its index in the NN
as {a−5, a−4, a−3, a−2, a−1, a0, a1, a2, a3, a4, a5}, where
a−5 = −0.5 and a5 = 0.5. There are two conditions here
though:

1) Physical cache limitation: The total cache resource
allocated for all the MVNOs in one small cell
must not exceed its actual cache capacity. That is∑

v∈V C
alloc,v
b ≤ Cb.

84734 VOLUME 7, 2019



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

2) System resource limitation: The total cache allocated
for all the MVNOs in all the small cells must not
exceed the total capacity of the system. That is∑

b∈B
∑

v∈V C
alloc,v
b ≤ Ctotal .

c: REWARDS (r)
As the objective of the system is to maximize a balance
between the QoS satisfaction and the utilization of resources,
the overall reward function for the system is the accumulative
reward achieved for each MVNO, and it is formulated as
follows

r(t) =
∑
v∈V

ωSatv(t)+ (ω − 1)ϕv(t) (30)

where ω is the satisfaction weight, and it controls which util-
ity function is given more priority. We prioritize satisfaction
in this work, and as such ω > 0.5 is always used.

d: NEXT STATE (s’)
After the reward is gained from taking a particular action,
the agent enters into the next state, and the original state
information tuple is changed. The new QoS satisfaction and
resource utilization that were computed to get the reward will
be used in the new state’s tuple as well as the updated cache
allocation and reservation values.

e: NEURAL NETWORK CONFIGURATION
We configure a feed-forward neural network with 4 inputs
and 11 outputs because the state has 4 variables and there
is a total of 11 actions. There is no known rule for deter-
mining the number of hidden layers and neurons, and it is
far more efficient to choose the size by trial and error while
considering the computational cost against the performance.
We use two hidden layers with 18 neurons each. We arbitrar-
ily set the activation function in the hidden layers to be a sig-
moid function. Algorithm 2 illustrates how our DQN-based
cache slicing scheme works. The computational complexity
of Algorithm 2 is of O(HN ), where H denotes the number of
hidden layers and N represents the number of neurons in the
artificial neural network.

C. CUSTOMIZED CONTENT PLACEMENT (ADMM)
After the cache resource has been sliced and allocated to the
different MVNOs, a customized content placement algorithm
is carried out for eachMVNO based on its QoS requirements.
This intra-slice content placement is formulated as a con-
vex optimization problem to maximize the QoS satisfaction
of each MVNO and is solved with a distributed ADMM.
ADMM is commonly used in the field of wireless communi-
cations because it reaches decent optimality in a reasonable
number of iterations [11], [26], [27].

In this work, we make the assumption that one user can
associate with multiple small cells. We assume that the pop-
ularity profile of the files is characterized by a Zipf-like
distribution with a parameter δ which is commonly used to

Algorithm 2 Cache Resource Slicing With DQN Algorithm
1: Initialize learning parameters
2: Initialize replay memory D
3: Initialize the Q-network with random network parame-

ters θ
4: Initialize the target Q-network with network parameters
θ− = θ

5: for episode = 1, . . . , E do
6: while learning period do
7: Observe state s(t)
8: With a probability ε, select a random action a(t)
9: Otherwise, use Q-network and select a(t) =

maxaQ(s, a; θ )
10: Export a(t) to Algorithm 1 and update resource

allocation and reservation
11: Observe the reward r(t) and next state s(t + 1)
12: Store transaction < (s(t), a(t), r(t), s(t + 1) > in

D
13: if (timer activated) then
14: Sample random mini-batch of transactions <

(s(j), a(j), r(j), s(j+ 1) > from memory D
15: yj = r + γmaxa(j+1)(s(j+ 1), a(j+ 1))
16: Train the function parameter with a loss func-

tion as themean square error of the output and
target, loss = (yj − Q(s, a))

17: Update target parameters every C steps θ−←
θ

18: end if
19: end while
20: end for

model content popularity in networks. Hence, the popularity
of a content object of a certainMVNO’s object, ov, in period t ,
is po = 1/(oδ

∑O
t=1 1/t

δ). To formulate the optimization
problem, the general objective function for any MVNO is
written as follows

max
∑
b∈B

∑
u∈Uv

∑
o∈Ov

po · Satvuo · X
v
ub · Z

v
ob (31)

1) MVNO CUSTOMIZATION
We use (13) in (31) to express the customized objective
function for non-guaranteed rate slices (MVNO3-4) as

max
∑
b∈B

∑
u∈Uv

∑
o∈Ov

po · ξ (duo) · X vub · Z
v
ob (32)

s.t.
∑
o∈Ov

Z vob · Os ≤ C
res
b , ∀b (32.a)∑

b∈B

∑
u∈Uv

∑
o∈Ov

Z vob · duo ≤ qd , ∀b, u, o (32.b)∑
b∈B

Z vob ≤ ϒ, ∀o (32.c)

where constraint (32.a) ensures that the number of placed
objects of an MVNO does not exceed its reserved value
in a small cell, constraint (32.b) ensures that the delay

VOLUME 7, 2019 84735



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

requirements are met, and constraint (32.c) allows the net-
work to make more than one copy of each content object.

As for the guaranteed rate slices (MVNO1-2), we use (15)
in (31), and write their customized objective function as

max
∑
b∈B

∑
u∈Uv

∑
o∈Ov

po ·
ξ (duo)+ ξ (Ruo)

2
· X vub · Z

v
ob (33)

s.t.
∑
o∈Ov

Z vob × Os ≤ C
res
b , ∀b (33.a)∑

b∈B

∑
u∈Uv

∑
o∈Ov

Z vob · duo ≤ qd , ∀b, u, o (33.b)∑
b∈B

∑
u∈Uv

∑
o∈Ov

Z vob · Ruo ≤ qr , ∀b, u, o (33.c)∑
b∈B

Z vob ≤ ϒ, ∀o (33.d)

where constraint (33.a) ensures that the number of placed
objects of an MVNO does not exceed its reserved value in a
small cell, constraints (33.b) and (33.c) ensure that the delay
and rate requirements are met, and constraint (33.d) allows
the network to make more than a copy of each content object.

2) PROBLEM REFORMULATION
We look to implement a distributed solution with a global
consensus problem, so we note that {Y vub} and {Z

v
ob} are

separable and thus can be solved locally at different small
base stations, but the association variable {X vub} needs to use
a central controller. So, we introduce the local variables {yvub}
and {zvob} as direct maps from the global ones. These two
variables are not only separable across each base station, but
also only affect said node. As for the association variable,
we introduce X as the matrix of association variables, where
the local opinion of the association indicator between the
local small cell l and user u is represented as x lub.

For the lack of space, we reformulate the problem for
the guaranteed rate slices only. The same can be applied
for the non-guaranteed rate slices by simply removing the
rate-related terms, when applicable.

First, the global objective and constraints are split into B
terms, each term can also encode constraints by assigning
+∞ when a constraint is violated.

Sat lb =


∑
U

∑
O

po · x lub · zob, xb, yb, zb ∈ 2b

∞, otherwise
(34)

where Sat lb is the local utility function at small cell b,
{xb, yb, zb} are the local opinion of a small cell on the associa-
tion, the friction of radio resource, and caching, respectively,
and 2b is the feasible local set variable at each SBS.

The reformulated problem can now be written as

min
∑
b∈B

Sat lb(xb, yb, zb)

Subject to x lub = χ
l
u, ∀b, u, l (35)

with the constraint imposed to allow parallelism, where each
local opinion of the association variable needs to agree with
the noted χ lu.
The ADMM for the reformulated problem can be derived

directly from the augmented Lagrangian

Lρ
(
{xb, yb, zb}b∈B, {X}{λb}

)
=

∑
b∈B

Sat lb(xb, yb, zb)

+

∑
l∈B
u∈U

λ
b[t]T
ul (x lub − χ

l[t]
u )+

1
B

∑
l∈B
u∈U

(x lub − χ
l[t]
u ) (36)

where λbul is the Lagrange multiplier corresponding to the
consensus constraint and ρ is a constant penalty parameter.
The distributed ADMM iterations are as follows. First, local
variables are updated at each small cell station:

{xb, yb, zb}
[t+1]
b∈B

= argmax
{
Sat lb(xb, yb, zb)

+

∑
l∈B
u∈U

λ
b[t]T
ul (x lub − χ

l[t]
u )+

ρ

2

∑
l∈B
u∈U

(x lub − χ
l[t]
u )2

}
(37)

Second, the global association matrix is aggregated and
updated at the ADMM controller:

{X}[t+1] =
1
B

∑
b∈B

∑
l∈B
u∈U

(
(x l[t+1]ub + λ

b[t]
ul /ρ)

)
(38)

Third, the Lagrangianmultipliers are updated on each SBS:

{λ
b[t+1]
ul }l∈B

b∈B
= λ

b[t]
ul + ρ(x

l[t+1]
ub − λl[t+1]u ) (39)

The first and third Iterations in (37) and (39), respectively,
can be done separately on each SBS while the second iter-
ation in (38) takes place at the ADMM controller. Iteration
(37) yields the optimal cache placement, and it also gives
the SBS’s opinion of the global association variable. At the
controller, the local opinions of x are collected, and then the
global association variable is retrieved. After the controller
updates the x values, it broadcasts them back to base stations,
which then will update their Lagrange multipliers. These
iterations keep happening until the stoppage criteria are met,
which is decided by the controller.

Termination Criteria: The algorithm terminates when the
primal residual ‖pri[t]‖2 and the dual residual ‖dual[t]‖2 are
smaller than τ values. This value determines the optimality
of the solution as well as the number of iterations it will take
to find it. The termination criteria are formally expressed as:

‖pri[t]‖2 ≤ τ pri and ‖dual[t]‖2 ≤ τ dual (40)

where

‖pri[t]‖22 =
∑
b∈B
l∈B

‖x l[t]ub − χ
l[t]
u ‖

2
2 (41a)

‖dual[t]‖22 = Bρ2
∑
l∈B

‖χ l[t]u − χ
l[t−1]
u ‖

2
2 (41b)

84736 VOLUME 7, 2019



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

The customized intra-slice optimization algorithm is out-
lined in Algorithm 3. Since each SBS only solves its local
optimization subproblem, the computational complexity at
each SBS is O(U k ), where k = 1 denotes a linear algorithm
and k > 1 denotes a polynomial time algorithm. The ADMM
controller finds the global solutions with a computational
complexity of O((B + 1)U ) and updates the dual-variables
with a complexity of O((B + 1)U ) as well. As a result, for
a J number of iterations, the total computational complexity
for Algorithm 3 is J (O((B + 1) · U k ) + 2(B + 1)U ) =
J (O((B+ 1) · U k )).

Algorithm 3 Distributed ADMM for Intra-Slice Content
Placement
1: Initialize X0

∈ χ , λ0 > 0, ρ0 > 0, and τ
2: Import Calloc,v

b from the Algorithm 1
3: Broadcast X[t], λ[t], ρ[t], and Calloc,v

b to each SBS;
4: for t = 0,1,2,. . . do
5: Each SBS b solves problem (37) to update

(xb, yb, zb)
[t+1]
b∈B and sends results to the controller

6: The controller updates X[t+1] by computing (38)
7: if termination criteria (40) are met, do go to step 10
8: The controller broadcasts X[t+1] to all SBSs
9: Each SBS b updates λ[t+1] with (39)
10: end for
11: Calculate the slice’s QoS satisfaction with (9)
12: Output the optimal content allocation policy and QoS

Utility Function Satv

V. RESULTS AND EVALUATION
In this sub-section, we first detail the settings of our exper-
iment and then discuss the results we obtained. We evaluate
four types of results: The convergence of the DQN algorithm,
the cache resource provisioning, algorithm comparison, and
performance isolation.

A. SCENARIO CONFIGURATION
We use computer simulations to show the performance of the
proposed scheme. We run the simulations in an X86 GPU-
based server with 4 Nvidia GPUs. The CPU is Intel Xeno
E5-2630 v4 with 32G RAM, and the operating system is
Microsoft Windows 8.1. The software environment is Ten-
sorFlow 1.13.1 with Python 3.7. Themobile network scenario
is based on previous work in the field of cache allocation in
a wireless network [17]. In a given area of 1000m*1000m,
4 SBS’s belonging to one InP are uniformly scattered. Each
SBS has a transmit power of 30dBm and is equipped with
a caching capacity of Cb = 3000 slots. These slots are
equal in size and can host one content object. By using a
channel frequency of 2.4 GHz in (8), the path-loss (PL) is
then defined as PL = 100+ 20 log10(dist), with dist (in km)
denoting the distance between the user and the SBS. In our
simulation, we consider one InP and four MVNOs sharing

TABLE 1. Simulation parameters.

the common physical infrastructure. The requirements of the
different slices in our scenario are derived from the QCI index
in [21]. The first and second slices provide guaranteed rate,
delay-constrained services. According to the index, the bud-
get delay for such services is 150ms, so for our experiment,
we define the delay requirements as 120ms and 90ms and the
rate requirements as 100kpbs and 150kpbs for MVNO1 and
MVNO2, respectively. The third and fourth slices provide
non-guaranteed rate, delay-constrained services. According
to the index, the budget delay for such services is 300ms,
so we set the maximum allowed delay as 250ms and 200ms
for MVNO3 and MVNO4, respectively. The first two slices
will have a content library size of 500 objects each, while
the last two will have a content library size of 1,500 objects
each. Each object is 0.5 Mbytes in size. The first two slices
will also have fewer requesting users than the last two, with
the range of requesting users set as (5–50) for MVNO1 and
MVNO2 and (10–100) for MVNO3 and MVNO4. The aver-
age request rates for each MVNO are randomly chosen in
the range of [1, 15], and content popularity follows a Zipf
distribution with the Zipf parameter set as δ ∈ [0.3, 1.2].
The ADMM algorithm uses a constant penalty parameter
ρ = 1. As for the DQN algorithm, we define a learning rate
of 0.01, a discount factor of 0.9, an epsilon-greedy explo-
ration rate of 0.93, a replaymemory of size 10,000, and amini
batch size of 64. The simulation parameters are summarized
in Table. 1. Finally, unless explicitly stated otherwise, these
simulation parameters are used to obtain all the results in
this section.

VOLUME 7, 2019 84737



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

FIGURE 4. DQN reward convergence.

B. THE CONVERGENCE OF THE DQN
In this experiment, we study the convergence of the proposed
DQN scheme and the effect of the learning rate parameter,
α, on it. We run the experiment for 500 episodes, and then
the results are smoothed by taking the maximum result from
every 50 episodes. The performance of the DQN algorithm is
measured in reward, which is computed for the entire system
by aggregating a balanced summation of resource utilization
andQoS utility function for allMVNOs as in (30).We can see
in Fig. 4 that the total rewards for all the learning rate param-
eters are very low at the beginning of the experiment. How-
ever, as the training continues and the number of episodes
increases, the total rewards increase until they saturate at a rel-
atively stable values. These values differ according to the used
learning rate parameter. When using a learning rate of 0.1,
the total reward stabilizes at around 0.25, which is the lowest
reward among the three parameters we tested. The remaining
two learning rates coverage to a total reward of 0.8, but they
do so at different speeds. A learning rate of 0.001 reaches this
value after only 270 training episodes, but this learning rate is
prohibitively costly to run. A learning rate of 0.01 reaches the
same saturation value of 0.8 after 370 episodes and is far more
affordable to run.

Taking the convergence and the computational cost into
consideration, we use the learning rate of 0.01 for the rest of
this simulation. Additionally, in order to draw more sensible
conclusions from our experiments and to better compare
our results to other benchmarks, we smooth our findings
by reporting the averaged values of the converged results
returned only in the 400-499th episodes.

C. THE CACHE RESOURCE PROVISIONING
In this subsection, we investigate the resource provision-
ing of our proposed solution. To smooth the results of this
experiment, we only consider the averaged results from the
last 100 episodes of training. We look at the cache resource
that the system reserves, how much of it is allocated by the
DQN-based solution, and how much is used by the slice for
an increasing number of requesting users. Initially, the cache
resource is reserved for each slice based on the user demand

FIGURE 5. The cache resource provisioning.

and its unique QoS requirements. Then, the DQN algorithm
makes allocation decisions, and these decisions are used to
update the system-level and SBS-level allocation as well as to
adjust the reservation values as discussed in subsection IV.A.
The sum of reserved resources for the four MVNOs is always
equal to 1, while the sum of allocated resource fractions is less
than or equal to 1. For MVNO1 and MVNO2, the number of
users increases from 5 to 50, and for MVNO3 and MVNO4,
the number of users increases from 10 to 100 users.

The first observation we can make by looking at Fig. 5
is that our DQN-based solution is able to closely follow
the increase in the demand for resources in each slice and
allocate cache resources efficiently. At the beginning of the
experiment, and when the number of requesting users is small
(i.e. 5 requesting users for MVNO1-2 and 10 requesting users
for MVNO3-4), the algorithm allocates a small but sufficient
amount of cache resources to theMVNOs. The allocation val-
ues in this instance are [MVNO1: 0.0742, MVNO2: 0.1121,
MVNO3: 0.1704, and MVNO4: 0.2223], and this takes the
total resource allocation for the system to 0.5790 of the
available cache resource. The remaining resource is reserved
for the different slices in accordance with (22). As the num-
ber of requesting users increases, our DQN-based solution
continues to follow this upward trend and allocates more
resources to meet the increasing demand. This continues until
the system allocates all of its available physical resources. For
MVNO1 and MVNO2, this happens with 50 and 45 users,
respectively, while forMVNO3 andMVNO4, it happens with
100 and 90 users, respectively. The values of the allocated
resources at these instances are [MVNO1: 0.1576, MVNO2:
0.2123, MVNO3: 0.2850, and MVNO4: 0.3451]. This totals
to 1, which is the total capacity of the system. This highlights
the fact that the allocated resource determined by our solution
is always able to adapt to and meet the increasing demands
of the users until all physical resources are depleted. We also
note that the gap between the reserved and allocated resource
gets smaller with the increasing number of users until the two

84738 VOLUME 7, 2019



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

completely merge when demand is in its highest points by the
end of the experiment.

This experiment also gives us insight as to how the cache
resources were distributed among the four slices. We can eas-
ily see in Fig. 5 that the non-guaranteed rate slices (MVNO3-
4) get a larger share of the available cache resources.
For example, in the last training instance, MVNO3-4 use
0.6301 of the system’s resources, while MVNO1-2 only use
0.3699. This is not surprising considering that they have a
content library triple the size of their counterparts in the first
two slices and twice as many requesting users. Furthermore,
we note that among the slices of the same type, MVNO
2 uses more resources than MVNO1 and MVNO4 uses more
resources thanMVNO3. This is the case because even though
each pair has the same objective function, MVNO2 and
MVNO4 have more stringent QoS requirements as illustrated
in Table. 1.

D. ALGORITHM COMPARISON
In this section, we evaluate the performance of our proposed
DQN-based solution against two benchmarks: ADMM and
PACP. This performance comparison is carried out in two
parts; first on a slice-level and then on a system-level.

1) ALTERNATING DIRECTION METHOD
OF MULTIPLIERS (ADMM)
For the first benchmark, we use a joint resource slicing
and in-network caching system with a distributed ADMM
as introduced in [6]. In this solution, the cache slicing and
content placement problems are intertwined, and the sys-
tem caches the content immediately into the sliced resource.
The objective function developed in the referenced work
is the maximization of a cost utility function. This objec-
tive function, without loss of generality, is defined as
max

∑
Xu(a−Y + b−Z ) where a− is the net revenue of

allocating radio resource, while b− is the expected saved cost
from the alleviation of backhaul bandwidth by caching the
content. The four slices we use in this experiment will retain
their different QoS requirements, but when solving for this
benchmark, this one cost function will apply to all of them.

2) POPULARITY-AWARE CACHE RESOURCE
PROVISIONING (PACP)
For this benchmark, we used a modified version of the algo-
rithm introduced in [28]. In this method, the ranks of slices on
each SBS is determined by calculating weights that consider
the popularity of the slice’s content objects and the number
of its users associated with each SBS. The rank of a slice at
one small cell is derived as rkvb =

∑
U v
∑

Ov poZ
v
ob/L

v where
po is the popularity of the object, Z vob is the binary caching
variable, and Lv is the content library size of slice v. The
portion of resources allocated to a slice on one SBS is then
found asCalloc,v

b = (rkvb/
∑

v rk
v
b)∗Cb, and the total allocated

resources in this case will always be equal to the full capacity
of a small cell. This method overwhelms the network with the

FIGURE 6. Slice QoS satisfaction.

most popular and in-demand objects in order to maximize the
user satisfaction, but it does not consider resource utilization.

3) PERFORMANCE ANALYSIS ON THE SLICE LEVEL
The performance is analyzed in terms of slice satisfaction and
slice resource utilization. Slice satisfaction is the average sum
of the satisfaction of all the users belonging to the slice that
request content objects from any SBS, and it is calculated
with (9) and (10). In Fig. 6, the y-axis represents the satisfac-
tion level, while the x-axis is the number of requesting users.
Slice resource utilization, on the other hand, is calculated by
considering how much of the allocated resource is actually
used by the slice with (16) and (17). In Fig. 7, the y-axis,
which is the resource utilization axis, represents the total
allocation of the cache resource for the respective MVNO,
while the x-axis is the number of requesting users. The two
performance metrics are evaluated for an increasing number
of users. In this subsection, we first look at each performance
metric independently before discussing how they impact one
another.

The first observation we can make from Fig. 6 is that
our DQN solution is the only one that is able to provide

FIGURE 7. Slice resource utilization.

VOLUME 7, 2019 84739



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

acceptable satisfaction levels for the four slices. The sat-
isfaction level for the DQN algorithm never drops below
0.72; however, both ADMM and PACP satisfaction results
plummet below 0.5 for both MVNO1 and MVNO2. This
demonstrates our system’s ability to account for different QoS
requirement and to react accordingly. We can also clearly see
that MVNO1 andMVNO3 have an overall higher satisfaction
than MVNO2 and MVNO4, which is due to the fact that they
have less demanding QoS requirements and thus are easier to
satisfy.

Taking a closer look at the satisfaction results for
MVNO1 and MVNO2 in Fig. 6, we also observe that the
DQN algorithm is obviously the best solution. And while
both ADMM and PACP have higher satisfaction results for
the first 2-3 instances (i.e. 5 – 15 users), their performance
sharply declines with the increase of demand, while the DQN
remains satisfactory. For MVNO1, ADMM goes below the
0.5 mark with 50 users, and PACP crosses this line with
40 users. For MVNO2, the ADMM and PACP fall below the
0.5 mark with 45 users and 35 users, respectively. On the
other hand, the DQN algorithm starts with satisfaction rates
of 0.94 and 0.88 with 5 users and ends with solid satisfaction
rates of 0.78 and 0.72 forMVNO1 andMVNO2, respectively.

As for MVNO3 and MVNO4, we see in Fig. 6 that the
three algorithms are able to maintain satisfactory levels for
any number of users. PACP is the one algorithm that performs
best because PACP is a popularity-oriented algorithm, and the
huge library size and a big number of requesting users for
these two slices lead it to prioritize them and subsequently
overwhelm the network with their content objects. The DQN
still maintains commendable satisfaction levels with a mini-
mum satisfaction of 0.8 for MVNO3 and 0.72 for MVNO4.

Looking at the four MVNOs together, we find that our
algorithm is the only one to register good satisfaction across
the different slices. It is not the best solution for every indi-
vidual slice, but it provides the best balance in terms of slice
satisfaction for all the slices, which satisfies our objective of
serving differentiated services.

Moving on to the slice resource utilization, the first thing
we see in Fig. 7 is that the ADMM algorithm always has
a resource utilization of 1 under all circumstances and for
all slices. This is the case because resource allocation and
cache placement are inseparable in the devised ADMM [6].
That is to say, the algorithm immediately and fully places
content objects into whatever resource that is sliced.With this
algorithm, there is no distinction between the allocated and
used resources as the resource slicing and cache placement
problems are intertwined. This makes it hard to evaluate the
efficiency of the slicing solution of this solution. Looking
at the PACP solution, we clearly see that it attempts to use
as much resource as possible. This is very typical of the
PACP algorithm since its main idea is to flood the network
by caching as many copies of the content objects as possible
with no consideration for resource utilization. This results
in the algorithm quickly using all of its allocated resources
as the number of users increases. This is most obvious with

MVNO1 andMVNO2where it starts by using 0.71 and 0.8 of
the slices’ resources, and the available cache resources are
fully utilized at 35 and 25 users, respectively. MVNO3 and
MVNO4witness a similar trend but on a slightly lighter level;
it initially uses 0.54 and 0.62 for 10 users, and the allocated
resources are fully used with 100 users for MVNO3 and with
95 users for MVNO4.

In contrast, our DQN-based solution demonstrates a more
balanced utilization of resources; it gradually increases the
utilization as demand requires it. For MVNO1 and MVNO2,
it is the one algorithm with the lowest resource utilization
and is the last one to reach full utilization. It starts by
using 0.54 and 0.58 of the allocated resource with 5 users,
and full utilization is realized with 50 users and 45 users,
respectively. Tying this back to Fig. 6, this means that the
DQN algorithm is able to achieve satisfying service levels
forMVNO1 andMVNO2with the lowest resource utilization
rates. ForMVNO3 andMVNO4, the DQN algorithm initially
uses 0.7 and 0.73 of its allocated resource with 10 users and
reaches full utilization of allocated resources with 100 and
90 users, respectively. This gradual increase in resource uti-
lization proves that our DQN-based solution balances the
ratio between the allocated to used resources quite well; it
matches the increase in demand, while still maintaining low
resource utilization.

Looking at the two performance metrics together,
we notice that rising resource utilization corresponds to a
falling rate of satisfaction. A low resource utilization level
means that the allocated resource is enough to comfortably
meet the demands of the requesting users, while a high
resource utilization rate means that the allocated resource is
not sufficient and that the system is struggling to satisfy the
demands of the users. This contrasting pattern between slice
satisfaction and resource utilization is most obvious with the
PACP algorithm servingMVNO2.We can see that for 5 users,
the system uses 0.8 of this slice’s dedicated resource and
registers a staggering 0.9 satisfaction score. As the number of
requesting users increases to 20, the utilization steadily grows
to 0.96 and the satisfaction gradually drops to 0.74. Starting
from the next instance (i.e. 25 users), the PACP algorithm
uses all of the resources dedicated to MVNO2. This means
that despite the continuous increase in the number of request-
ing users in the next 5 instances from 25 to 50, this algorithm
cannot allocate any more resources to meet this demand, and
as a result, the satisfaction plunges dramatically to a measly
0.24 for the 10th instance (i.e. 50 users). The same pattern
can be seen with other algorithms and MVNOs, albeit not
with the same sharp contrast. For example, in the case of our
DQN-based solution serving MVNO2, resource utilization
gradually increases from 0.58 with 5 users to full utilization
with 45 and 50 users. The slice satisfaction, conversely, drops
from 0.88 to 0.72. This proves that our algorithm is able
to strike a fine balance between slice satisfaction and slice
resource utilization, and it is thanks to the ability of our
algorithm to accurately gauge the needs of a slice and allocate
resources accordingly.

84740 VOLUME 7, 2019



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

4) PERFORMANCE ANALYSIS ON THE SYSTEM LEVEL
In this subsection, we investigate the system-level perfor-
mance of our solution and the introduced benchmarks. First,
we develop system-level performance metrics that mirror the
ones used in the slice-level subsection. For the satisfaction
case, we select the minimum satisfaction achieved by each
slice in the slice-level satisfaction experiment. Fortunately,
in the slice-level satisfaction experiment, the three bench-
marks tested for the same number of users, therefore we
continue with this normalized satisfaction value in our system
comparison. However, this is not the case with resource uti-
lization. In the slice-level experiment, each algorithm had its
considerations for allocating cache resources to the slices, and
these allocation values differed quite significantly. In other
words, while it is still correct to say that the three algorithms
utilized 100% of their allocated resources with 50 users for
MVNO1 in Fig. 7, this translates to the following values in
terms system’s cache resources: [ADMM = 0.1246, PACP
= 0.0740, DQN = 0.1576]. Therefore, for the purposes of
this experiment, we take maximum resource utilization of
the slice-level experiment and multiply that with the actual
resource provisioning of each slice for that specific instance.
This gives us the maximum used resource, which is consid-
ered the system-level equivalent of the slice-level resource
utilization. The total used resource by each algorithm for all
the slices is equal to the total capacity of the system (=1).

FIGURE 8. System level performance.

Looking at the maximum used resource first, we observe
in Fig. 8 that the three algorithms use more resources with
MVNO3-4 than with MVNO1-2. This is expected given that
MVNO3-4 have more requesting users and content objects.
As the PACP algorithm is popularity-oriented, it uses about
than 0.82 of the system resources to serve the last two slices.
ADMM has a cost objective function to consider, so it fol-
lows a more moderate distribution of the system resources,
but it still uses 0.7 of the system resources to serve the
non-guaranteed rate slices. However, what the PACP and
ADMM seem to overlook is the more stringent requirements
of MVNO1-2. Unlike MVNO3-4, the first two slices provide
guaranteed rate services and are more delay-sensitive. As our
DQN-based solution offers MVNO customization, it is able
to better understand the varying demands of the slices, and it
is the one algorithm that uses the most amount of its resources
(about 0.37) attending to the needs of MVNO1-2. As for
the satisfaction, we can also see in Fig. 8 that the ADMM

and PACP algorithm achieve very unsatisfying results for
MVNO1-2. This is a direct consequence of not being able
to consider its more demanding requirements accurately.
They do however outperform our solution for MVNO1-2 as
they obviously overwhelmed the network with their content
objects, but they do use more resources for this.

Looking at both the used resource and satisfaction, we can
make two observations. First, satisfaction is proportionately
related to the system’s used resources. This is pretty evident
for all the algorithms and all the slices; the algorithm with the
highest slice satisfaction level is the one that invests the most
resources into the slice. For example, the PACP algorithm
uses a maximum of 0.428 to serve MVNO4, and in return,
it towers over the rest of the algorithms with a minimum sat-
isfaction of 0.82. Second, in the realistic situation of limited
physical capacities and differentiated services, it is imper-
ative that the management framework is able to accurately
gauge the requirements of the slices and assign resources
accurately. In Fig. 8, the PACP and ADMM algorithms fail to
properly address the challenging requirements of MVNO1-2,
and this results in very low satisfaction levels. Our solution,
in contrast, provides a balance between slice satisfaction
and resource utilization for a number of MVNOs offering
differentiated services. The satisfaction levels it achieves are
not the highest for every slice, but this is a compromise that
must be made to guarantee the overall satisfaction of the
entire network.

E. PERFORMANCE ISOLATION
In this experiment, we try to verify the performance isolation
of our proposed solution. To that end, we initially run the
experiment for the user ranges specified in Table. 1 and
get the averaged satisfaction and resource utilization results
as usual. However, at the 300th episode, we increase the
range of requesting users for MVNO2 from 5 – 50 users
to 5 – 100 users. As we saw in Fig. 7, the slice’s allo-
cated resources are fully utilized starting from the 45th user.
As such, the slice’s dedicated cache resources are not going
to be enough to satisfy this scheduled increase in demand,
and the slice will be desperate to use cache resources that
belong to other MVNOs. In order for our isolation scheme
to succeed, the other three MVNOs must not witness any
disturbance to their normal performance.

In Fig. 9, we can see the four MVNOs and their respective
satisfaction and resource utilization levels returned from the
DQN algorithm from the 200th to the 400th episode. Start-
ing from the 200th episode, MVNO1 achieves an average
satisfaction of 0.87 and average resource utilization of 0.79.
MVNO3, on the other hand, has a satisfaction rate of 0.85 and
resource utilization of 0.82. In line with the previous results
in the algorithm comparison subsection, MVNO4 has a lower
average satisfaction of 0.79 and higher resource utilization
of 0.86 in comparison to MVNO3. Finally, from the 200th
to the 300th episode, MVNO2 return an average satisfac-
tion 0.81 and resource utilization of 0.83. After increasing
the demand, however, the satisfaction plummets to around

VOLUME 7, 2019 84741



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

FIGURE 9. Performance isolation.

0.2 and the resource is fully utilized. Despite this disturbance
to the performance of MVNO2, the remaining MVNOs seem
unaffected by this increase in demand, and they continue
to perform normally. As such, it can be concluded that the
resources of each slice are isolated and that an increase in the
demand for one specific slice does not affect the satisfaction
or utilization of other slices.

VI. CONCLUSION
In this work, we proposed a dynamic cache resource manage-
ment framework that considers cache resource virtualization
and content placement at the mobile edge network. This
framework incorporated a DQN-based algorithm for slicing
the cache resources, and a customized ADMM for placing the
content of the different MVNOs. We formulated the reward
of the DQN algorithm to maximize a balance between QoS
satisfaction and resource utilization and introducedweights to
prioritize one over the other if needed. In this work, we chose
to give more priority to satisfaction. The objective function of
the ADMM solution offered customized content placement
for the MVNOs based on their individual QoS requirements,
but the general objective function was formulated to always
maximize the QoS satisfaction. We conducted extensive sim-
ulations to test our framework and the results showed that
1) the cache resource allocation of our system properly cor-
responded to the increasing demands of the network and
consistently allocated sufficient resources, 2) in comparison
to other benchmarks, our framework was the only solution to
maintain satisfying service levels for ALL the slices, and it
did so with the lowest resource utilization rates, and 3) the
virtual cache resources of different slices are isolated and a
sudden spike in demand for one slice does not disturb the
performance of the other slices.

REFERENCES
[1] CISCO, ‘‘Cisco visual networking index: Global mobile data traffic

forecast update, 2016–2021,’’ White Paper c11-481360. [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.pdf

[2] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang,
‘‘A survey on mobile edge networks: Convergence of computing, caching
and communications,’’ IEEE Access, vol. 5, pp. 6757–6779, 2017.

[3] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, ‘‘Cache
in the air: Exploiting content caching and delivery techniques for 5G
systems,’’ IEEE Commun. Mag., vol. 52, no. 2, pp. 131–139, Feb. 2014.

[4] T. K. Forde, I. Macaluso, and L. E. Doyle, ‘‘Exclusive sharing & virtualiza-
tion of the cellular network,’’ in Proc. IEEE Int. Symp. Dyn. Spectr. Access
Netw. (DySPAN), Aachen, Germany, May 2011, pp. 337–348.

[5] C. Liang and F. R. Yu, ‘‘Wireless network virtualization: A survey, some
research issues and challenges,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 358–380, 3rd Quart., 2015.

[6] C. Liang, F. R. Yu, H. Yao, and Z. Han, ‘‘Virtual resource allocation in
information-centric wireless networks with virtualization,’’ IEEE Trans.
Veh. Technol., vol. 65, no. 12, pp. 9902–9914, Dec. 2016.

[7] A. Sadeghi, F. Sheikholeslami, andG. B. Giannakis, ‘‘Optimal and scalable
caching for 5g using reinforcement learning of space-time popularities,’’
IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 180–190, Feb. 2018.

[8] A. Aijaz, ‘‘Hap—SliceR: A radio resource slicing framework for 5G
networks with haptic communications,’’ IEEE Syst. J., vol. 12, no. 3,
pp. 2285–2296, Sep. 2018.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[10] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, ‘‘Resource manage-
ment with deep reinforcement learning,’’ in Proc. 15th ACMWorkshop Hot
Topics Netw., Atlanta, GA, USA, Nov. 2016, pp. 50–56.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘‘Distributed
optimization and statistical learning via the alternating direction method
of multipliers,’’ Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[12] X. Zhang and Q. Zhu, ‘‘Information-centric network virtualization for QoS
provisioning over software defined wireless networks,’’ in Proc. IEEE
Military Commun. Conf. (MILCOM), Baltimore, MD, USA, Nov. 2016,
pp. 1028–1033.

[13] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, ‘‘Resource allocation for
information-centric virtualized heterogeneous networks with in-network
caching and mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 66,
no. 12, pp. 11339–11351, Dec. 2017.

[14] T. D. Tran and L. B. Le, ‘‘Joint resource allocation and content caching
in virtualized content-centric wireless networks,’’ IEEE Access, vol. 6,
pp. 11329–11341, Feb. 2018.

[15] K. Thar, N. H. Tran, J. Son, and C. S. Hong, ‘‘Resources manage-
ment in virtualized information centric wireless network,’’ in Proc. 18th
Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Kanazawa, Japan,
Oct. 2016, pp. 1–4.

[16] Q. Jia, R. Xie, T. Huang, J. Liu, and Y. Liu, ‘‘Efficient caching resource
allocation for network slicing in 5G core network,’’ IET Commun., vol. 11,
no. 18, pp. 2792–2799, Dec. 2017.

[17] Z. Chang, C. Jing, X. Guo, Z. Han, and T. Ristaniemi, ‘‘Resource allocation
for wireless virtualized hetnet with caching and hybrid energy supply,’’ in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Barcelona, Spain,
Apr. 2018, pp. 1–6.

[18] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung, and H. Yin, ‘‘Software-defined
networks with mobile edge computing and caching for smart cities: A big
data deep reinforcement learning approach,’’ IEEECommun.Mag., vol. 55,
no. 12, pp. 31–37, Dec. 2017.

[19] Y. He, F. R. Yu, N. Zhao, and H. Yin, ‘‘Secure social networks in
5G systems with mobile edge computing, caching, and device-to-device
communications,’’ IEEE Wireless Commun., vol. 25, no. 3, pp. 103–109,
Jun. 2018.

[20] T. He, N. Zhao, and H. Yin, ‘‘Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,’’
IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44–55, Jan. 2018.

[21] M. Mamman, Z. M. Hanapi, A. Abdullah, and A. Muhammed, ‘‘Quality of
service class identifier (QCI) radio resource allocation algorithm for LTE
downlink,’’ PLoS ONE, vol. 14, no. 1, Jan. 2019, Art. no. e0210310.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[23] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[24] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús,Neural Network
Design, vol. 20. Boston, MA, USA: PWS Publishing, 1996.

84742 VOLUME 7, 2019



G. Sun et al.: Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network

[25] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[26] J. Eckstein and W. Yao, ‘‘Augmented Lagrangian and alternating direction
methods for convex optimization: A tutorial and some illustrative compu-
tational results,’’ RUTCOR, Rutgers Univ., Camden, NJ, USA, Res. Rep.
RRR-32-2012, Dec. 2012.

[27] M. Leinonen, M. Codreanu, and M. Juntti, ‘‘Distributed joint resource and
routing optimization in wireless sensor networks via alternating direction
method of multipliers,’’ IEEE Trans. Wireless Commun., vol. 12, no. 11,
pp. 5454–5467, Nov. 2013.

[28] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, ‘‘NVS: A substrate
for virtualizing wireless resources in cellular networks,’’ IEEE/ACMTrans.
Netw., vol. 20, no. 5, pp. 1333–1346, Oct. 2012.

GUOLIN SUN received the B.S., M.S., and Ph.D.
degrees in communication and information sys-
tems from theUniversity of Electronic Science and
Technology of China (UESTC), Chengdu, China,
in 2000, 2003, and 2005, respectively.

After his Ph.D. graduation, in 2005, he has got
eight years industrial work experience on wire-
less research and development for LTE, Wi-Fi,
the Internet of Things (ZIGBEE and RFID,
etc.), cognitive radio, localization, and navigation.

Before he joined the School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of China, as an Associate
Professor, in 2012, he was with Huawei Technologies Sweden. He has filed
over 40 patents, and published over 40 scientific conference and journal
papers, and acts as a TPC member of conferences. His general research
interests include software-defined networks, network function virtualization,
and radio resource management.

Dr. Sun currently serves as the Vice-Chair for the 5G oriented cog-
nitive radio SIG of the IEEE (Technical Committee on Cognitive Net-
works (TCCN)) of the IEEE Communication Society.

HISHAM AL-WARD received the bachelor’s
degree in electrical engineering (communications
and electronics) from Sana’a University, Yemen,
in 2011. He is currently pursuing the master’s
degree with the School of Computer Science and
Engineering, University of Electronic Science and
Technology of China (UESTC).

He is currently a Graduate Research Assistant
with the Mobile Cloud-Net Research Laboratory,
UESTC. His current research interests include net-

working technologies, mobile telecommunications, machine learning, and
the IoT.

GORDON OWUSU BOATENG received the
bachelor’s degree in telecommunications engi-
neering from the Kwame Nkrumah University of
Science and Technology, Kumasi-Ghana, West
Africa, in 2014. He is currently pursuing theM.Sc.
degree in computer science and engineering from
the University of Electronic Science and Technol-
ogy of China (UESTC).

From 2014 to 2016, he worked under
sub-contracts for Ericsson, Ghana, and TIGO,

Ghana. He is also a member of the Mobile Cloud-Net Research Team,
UESTC. His interests include mobile/cloud computing, 5G wireless net-
works, data mining, D2D communications, and SDN.

GUISONG LIU received the B.S. degree in
mechanics from Xi’an Jiao Tong University,
Xi’an, China, in 1995, and the M.S. degree in
automatics and the Ph.D. degree in computer
science from the University of Electronic Sci-
ence and Technology of China, Chengdu, China,
in 2000 and 2007, respectively.

He was a Visiting Scholar with the Humbolt
University of Berlin, in 2015. He is currently a Full
Professor with the School of Computer Science

and Engineering, University of Electronic Science and Technology of China,
Chengdu. He is also the Dean of the School of Computer Science, Zhongshan
Institute, UESTC, Zhongshan, China. His research interests include pattern
recognition, neural networks, and machine learning.

VOLUME 7, 2019 84743


	INTRODUCTION
	RELATED WORKS
	SYSTEM MODEL
	BUSINESS MODEL
	VIRTUALIZATION MODEL
	NETWORK MODEL
	UTILITY MODELS
	QOS SATISFACTION
	RESOURCE UTILIZATION


	PROBLEM FORMULATION
	DYNAMIC RESOURCE PROVISIONING
	CACHE RESOURCE RESERVATION
	CACHE ALLOCATION UPDATES

	CACHE RESOURCE SLICING (DQN)
	DEEP Q-LEARNING
	OUR MDP MODEL

	CUSTOMIZED CONTENT PLACEMENT (ADMM)
	MVNO CUSTOMIZATION
	PROBLEM REFORMULATION


	RESULTS AND EVALUATION
	SCENARIO CONFIGURATION
	THE CONVERGENCE OF THE DQN
	THE CACHE RESOURCE PROVISIONING
	ALGORITHM COMPARISON
	ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)
	POPULARITY-AWARE CACHE RESOURCE PROVISIONING (PACP)
	PERFORMANCE ANALYSIS ON THE SLICE LEVEL
	PERFORMANCE ANALYSIS ON THE SYSTEM LEVEL

	PERFORMANCE ISOLATION

	CONCLUSION
	REFERENCES
	Biographies
	GUOLIN SUN
	HISHAM AL-WARD
	GORDON OWUSU BOATENG
	GUISONG LIU


