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ABSTRACT In this paper, we investigate the superimposed trainingmatrix designs for the channel estimation
of amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems under general power
constraints. Furthermore, the imperfect channel and colored noise statistical information models with the
corresponding nominal terms being Kronecker structure and the corresponding statistical errors belonging
to the unitarily-invariant uncertainty sets are adopted. Based on the above analysis, the linear minimum
mean-squared-error (LMMSE)-based robust training optimization problem is formulated, which is generally
nonconvex and intractable. In order to effectively address this problem, we propose an iterative semidefinite
programming (SDP) algorithm and two low-complexity upper bound optimization schemes. Particularly, for
the proposed two upper bound optimization schemes, the diagonal structured optimal solutions of the relaxed
robust training problems can be verified. Besides, the low-complexity iterative bisection search (IBS) can
also be applied to derive the diagonal trainingmatrix. Furthermore, we extend our work into the robust mutual
information maximization of the AF MIMO relaying channel and demonstrate that all proposed robust
training designs are still applicable. Finally, the numerical simulations illustrate the excellent performance
of the proposed robust training designs in terms of the channel estimation MSE minimization and mutual
information maximization.

INDEX TERMS AFMIMO relaying systems, LMMSE channel estimation, robust training designs, general
power constraints, unitarily-invariant uncertainty sets.

I. INTRODUCTION
Shortening the distances between source and destination
is one of the most effective way to increase network
capacities. Deploying relay node between source and des-
tination can greatly reduce the communication distances
to improve the communication quality between source
and destination [1]–[10]. In addition, the deployment of
multi-antenna arrays at communication terminals is a widely
accepted and also a promising way to improve commu-
nication quality of cooperative networks [11]–[18]. As a
result, multiple-input multiple-output (MIMO) cooperative
communications receive lots of attention from academic
society [12]. The three most widely used relaying strategies
are amplify-and-forward (AF), decode-and-forward (DF)
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and compress-and-forward (CF) [6], [19]–[22]. Among these
protocols, AF MIMO relaying is the most promising tech-
nique due to its simplicity, which means that only linear
transformation is required at relay to forward the received
signals. Therefore, the AF MIMO relaying strategy is widely
adopted and has been investigated in depth among a series of
existing works e.g., [6], [22]–[28].

Based on different performance metrics, e.g., channel
estimation mean square error (MSE) minimization [29]–[36],
and mutual information maximization [37]–[39], several
channel estimation methods have been proposed for
the spatially correlated MIMO with the aid of training
sequences [40]. In fact, the criteria of channel estimation
MSEminimization and mutual information maximization are
distinguished by considering different tradeoffs among the
elements of channel estimation MSE matrix [39]. Besides,
in most of these works, the kronecker structured channel
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and colored noise models are assumed due to its mathe-
matical tractability. However, compared with the channel
estimation for point-to-point MIMO systems, estimating
wireless channels in AF MIMO relaying networks is more
difficult because of the compound wireless channels from
source to relay and relay to destination, especially when
they are correlated [33], [34], [41]. In fact, the literature [33]
has investigated the training design for spatially corre-
lated AF MIMO relaying networks without the direct link.
Specifically, in [33], the linear minimum mean-squared-
error (LMMSE) channel matrix estimation is conducted by
only considering the transmit correlation of MIMO chan-
nels, which does not fully exploit the complete channel
statistical information. In literature [34], both the direct
link and complete channel correlations are considered for
AF MIMO relaying networks. The formulated training
optimization problem under the total power constraint is
proved to be convex, which can be efficiently solved with
the iterative bisection procedure. Further the literature [41]
extended both the minimum MSE and maximum SNR
based training designs to AF MIMO multi-relay channel
estimation.

Clearly, for most of the existing MIMO training designs,
only total power constraint is considered [42]–[44]. How-
ever, considering the distributed nature of wireless systems,
the power threshold for each communication node may be
significantly different [45], [46]. Therefore, in practical com-
munication systems, the general power constraints consisting
of a series of linear weighted power constraints are more
suitable to promote the highly flexible MIMO configuration.
Particularly, the general power constraints contain the total
power constraint and individual power constraints as special
cases.

Another critical issue is that all aforementioned works
assume that the channel and noise spatial correlations are
perfect for channel estimation. However, such an assumption
is not practical in most wireless systems especially when
the highly mobile communication nodes exist [23], [47].
As a result, providing robustness against the channel and
noise statistical errors is important for channel estimation
of different MIMO systems, so that various communica-
tion techniques utilizing the channel information becomes
practical [48]–[51]. Besides, as is pointed out in previous
work [48], [49], the long-term statistics of channel and noise
are generally subject to estimation or quantization errors.
Thus, the robust training sequence was proposed for spa-
tially correlated MIMO channels according to different trans-
mission protocols [48], [49]. In particular, the literature [48]
considered adding the superimposed training matrix into
the precoded transmit signals, which, thus enables the sys-
tem to release valuable time slots previously occupied by
the time-multiplexed pilot sequences. It has been demon-
strated that this approach performed well in terms of chan-
nel estimation performance. Nevertheless, in literature [49],
the conventional time-multiplexed training and signal trans-
mission strategy was adopted for MIMO channel estimation.

Moreover, both the arbitrarily correlatedMIMO channels and
the unitarily-invariant uncertainty set are considered.

To the best of author’s knowledge, the robust training
designs for AF MIMO relaying systems still remains largely
open. Compared with most existing literature, we consider
the general power constraints instead of the total power con-
straints. Statistical errors of both the correlation matrices of
channel and noise are taken into account. Moreover, in the
considered superimposed training scheme, the training sig-
nal is arithmetically added to the transmitted signal, which
is effective for improving channel estimation performance.
Regarding the importance of this issue, in this paper, we will
provide an preliminary and comprehensivework on this topic.
The main contributions of our work are briefly summarized
in the following.
• Firstly, in our work, we investigate the superimposed
training designs for AF MIMO relaying systems, which
are characterized by high efficiency and low over-
head. During the considered training designs, both the
kronecker structured correlated MIMO channels and
the colored noises are taken into account. Moreover,
the training designs are under more general power
constraints including both sum power constraint and
per-antenna power constraints as its special cases.
In other words, our designs are more general than the
traditional designs with only sum power constraint.

• Secondly, instead of assuming statistical information is
perfectly known, the statistical information errors of
both the correlation matrices of channels and noises are
taken into consideration. The robust training optimiza-
tion problems are formulated following the worst-case
robust philosophy. Then, the underlying optimal struc-
tures of the optimal solutions are derived, which can
greatly simplify the corresponding robust training opti-
mization problems.

• Thirdly, to overcome the non-convexity and intractabil-
ity of the dimension-reduced robust training optimiza-
tion problem, we propose an iterative SDP optimization
algorithm and two low-complexity upper bound opti-
mization schemes, respectively. Specifically, based on
the proposed iterative optimization algorithm, the robust
training problem is decomposed into a series of convex
sub-problems, and can be solved using linear matrix
inequality (LMI) to construct SDP solvers. With the pro-
posed two upper-bound optimization schemes, the diag-
onal structured optimal solutions are proved, and the
iterative bisection search (IBS) can also be applied to
obtain the suboptimal diagonal training matrix.

• Finally, we extend our work into the robust mutual infor-
mation maximization for AFMIMO relaying systems. It
is found that all the proposed robust training designs can
still work well under new performance metric.

Notations: Throughout this paper, without other specifica-
tions, vectors and matrices are denoted by bold-faced lower-
case and uppercase letters, respectively. Besides, AT , A∗, AH

and A−1 denote transpose, conjugate, Hermitian transpose
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FIGURE 1. The diagram of the investigated AF MIMO relaying systems.

and inverse of matrix A, respectively. The symbols Tr(A)
and rank(A) represent the trace and rank of A. In addition,
the operation vec(·) denotes the vector formed by stacking the
columns of a matrix. On the other hand, the operation diag(·)
represents a vector consisting of the main diagonal elements
of a matrix or a diagonal matrix constructed from a vector.
The symbol Id denotes a d-dimensional identity matrix. For
a positive semi-definite matrix X , its Gaussian square root is
denoted as X

1
2 which is also a Hermitian matrix.

A. THE AF MIMO RELAYING CHANNEL
In this paper, we consider a AF MIMO relaying system
consisting of one NS -antenna source S, one NR-antenna relay
R and one ND-antenna destination, which is depicted in
FIGURE 1. The destination receives the signals transmitted
in two consecutive phases. Specifically, in the first phase,
both the relay and destination receive the signal transmitted
from the source. In the second phase, the relay forwards
the received signal from the source to the destination after
multiplying an amplifying matrix. The destination recovers
its desired signals by jointly processing the two observed
signals.

In the considered cooperative network, the channel matri-
ces from source S to destination D, source S to relay R
and relay R destination D are denoted by HSD ∈ CND×NS ,
HSR ∈ CNR×NS and HRD ∈ CND×NR , respectively. The
transmit signal s is firstly processed by the space-time block
coding (STBC) at source, i.e., D = [d1, d2, · · · , dNS ]

T
∈

CNS×K , in which d i ∈ CK , ∀i = 1, 2, · · · ,NS is the K -
dimensional time-domain symbols of ith antenna [52]. Gen-
erally, E(DDH )=Kσ 2

d INS is assumed, which means the vari-
ance of each symbol of D is σ 2

d . Then the information matrix
D is time-domain precoded by the matrix P ∈ CK×K+L ,
where L ≥ NS denotes the length of the introduced redundant
vectors to promote the reliable communications [52]. After
the time-domain precoding, the new transmit signal X =
[x1, x2,· · ·, xNS ]

T
=DP ∈ CNS×(K+L) is obtained, where the

precoder P satisfies Tr(PPH ) = K + L for guaranteing the

constant transmit power of the transmit signal D.1 Besides,
as seen in most literature, by combining with the superim-
posed training technique, the precoder P can also be utilized
to estimate channel by eliminating the information term at
the receiver, thus leaving the intact superimposed training
sequence for channel estimation [48], [52], [53]. Therefore,
in our work, we also consider the joint transmission of the
superimposed training matrix C ∈ CNS×(K+L) and the trans-
mit signal X to effectively estimate the MIMO AF relaying
channel. Based on this technique, the compound signal X+
C = DP+C is actually transmitted by the transmitter S, and
the total transmit power equals

Tr((X + C)(X + C)H ) = E[Tr(DP(DP)H )]+ Tr(CCH )

= Tr(σ 2
dNSPP

H
+ CCH ). (1)

As discussed above, in our work the direct link between the
source and the destination is also taken into account. Thus the
received signals at the receiver and relay in the first phase can
be written in the following form

Y [1]
D = HSD(DP + C)+ N

[1]
D ,

YR = HSR(DP + C)+ NR. (2)

Without loss of generality, it is assumed that N [1]
D ∈

CND×(K+L) and NR ∈ CNR×(K+L) are temporally uncor-
related but spatially correlated colored noise. Furthermore,
in the second phase the relay forwards the received signal
YR by pre-multiplying a matrix FR ∈ CNR×NR . Particularly,
as indicated in [34], considering that fact that in the first phase
relay is the receiver, the channel statistical information (CSI)
of the first hop, i.e., E[HSRHH

SR] = 6SR, can be perfectly
estimated at the relay. Then a diagonal relay forwarding
matrix is designed subject to the individual relay antenna
power constraints. For example, in [34], FR is defined as

FR = diag
[√

PR1
PS6SR[1, 1]+ σ 2

n
,

√
PR2

PS6SR[2, 2]+ σ 2
n
,

· · · ,

√
PRNR

PS6SR[NR,NR]+ σ 2
n

]
, (3)

where PRi ∀i = 1, 2, · · · ,NR is the maximum transmit power
of ith relay antenna and 6SR[i, i] denotes the ith diagonal
element of 6SR. Further, the relay forwards the signal FRYR
to the receiver via channel HRD and then the received signal
at the receiver is given by

Y [2]
D = HRDFRYR + N

[2]
D

= HRDFRHSR(DP + C)+HRDFRNR + N
[2]
D , (4)

It is noteworthy that the colored noise N [2]
D ∈ CND×(K+L)

is also temporally uncorrelated and spatially correlated. Fur-
ther by combining (2) and (4), the received signals at the

1 Specifically, by assuming the variance of each symbol of X as σ 2x ,

we have σ 2x =
Tr
(
E(XXH )

)
NS (K+L)

=
σ2d NSTr(PP

H )
NS (K+L)

= σ 2d , which indicates that
transmit signal power of transmitter S keeps invariant after time-domain
precoding.
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[
Y [1]
D

Y [2]
D

]
︸ ︷︷ ︸

Y

=

[
HSD

HRDFRHSR

]
︸ ︷︷ ︸

H

(DP + C)+
[

IND 0ND×NR 0ND×ND
0ND×ND HRDFR IND

]N [1]
D

NR

N [2]
D


︸ ︷︷ ︸

N

(5)

[
vec(Y [1]

D QH )
vec(Y [2]

D QH )

]
︸ ︷︷ ︸

y

= (I2 ⊗ (CQH )
T
⊗ IND )︸ ︷︷ ︸

C̄

[
vec(HSD)

vec(HRDFRHSR)

]
︸ ︷︷ ︸

h

+ (I2 ⊗ QTH ⊗ IND )︸ ︷︷ ︸
Q̄H

[
vec(N [1]

D )
vec(HRDFRNR + N

[2]
D )

]
︸ ︷︷ ︸

n

(7)

R̃h =

[
σ 2
h (6̂

T
S + E

T
S )⊗ (6̂D + ED) 0

0 (σ̂ 2
h 6̂

T
S + Ẽ

T
S )⊗ (6̂D + ED)

]
(10)

R̃n =
[
σ 2
n IK+L ⊗ (9̂D + END) 0

0 σ 2
n IK+L ⊗ (σ̂ 2

r 6̂D + 9̂D + ẼND)

]
(12)

receiver through two phases are ultimately expressed as the
formulation (5), as shown at the top of this page. Particularly,
we simplify the formulation (5) as Y = H(DP + C) + N .
Then at the receiver, in order to extract the superimposed
training C from the received signal Y to perform channel
estimation, we post-multiplyY by a proper decouplingmatrix
QH satisfyingPQH =0. As a result, the received signalmodel
is ultimately simplified as

YQH = HCQH + NQH . (6)

Remark 1: From the formulation (6), it can be found that
in the context of PQH = 0, if QH = IK+L , then we
have P = 0K×(K+L). In this case, our work can be reduced
to the conventional training designs for MIMO wireless
channels [30]–[34]. However, for the case of QH 6= IK+L ,
we can define QH ∈ C(K+L)×L as an arbitrary orthogonal
subspace of P to guarantee PQH =0. Then we naturally have
(QH )

HQH =INS .

B. THE ROBUST TRAINING OPTIMIZATION PROBLEM
In order to simplify the following derivations, some vector-
ization operations are adopted to reformulate (6). Specifi-
cally, based on the identity vec(ABC) = (CT

⊗ A)vec(B),
we can vectorize (6) to obtain the formulation (7), as shown at
the top of this page, i.e., y= C̄h+Q̄Hn, at the top of this page,
in which the equivalent channel vector h ∈ C2NSND×1 is to be
estimated. Based on (7), the LMMSE based channel estima-
tion can be expressed as ĥ = Ghy, with Gh ∈ C2NSND×2NDL

being the LMMSE channel estimator. The estimated channel
ĥ equals [54]

ĥ = Ghy

= (R̃−1h + C̄
H
Q̄H R̃

−1
n Q̄

H
H C̄)

−1C̄
H
Q̄H R̃

−1
n Q̄

H
Hy, (8)

where R̃h = E[hhH ] and R̃n = E[nnH ] are the covariance
matrices of the equivalent channel h and colored noise n,
respectively.

In this work, the widely used Kronecker structured channel
models are used i.e.,2

HSD = 6
1
2
DH̄SD6

1
2
S ,

HSR = 6
1
2
R H̄SR6

1
2
S ,

HRD = 6
1
2
DH̄RD6

1
2
R , (9)

where the elements of {6S ,6R,6D} can be determined by
the exponential model or the one-ring model [54]. The inner
matrices H̄SD, H̄SR and H̄RD have i.i.d. Gaussian distributed
entries with zero mean and variance σ 2

h .

1) THE MODELING OF R̃h
In our work, the more realistic situation is considered,
in which all the spatial correlation matrices {6S ,6R,6D}

are imperfect due to inevitable estimation errors and quan-
tization errors. As derived in Appendix A, the imperfect
channel covariance matrix R̃h in (8) can be modeled as the
formulation (10), as shown at the top of this page.

In (10), σ̂ 2
h = σ 4

hTr(6̂RFR6̂RFHR ), and {6̂S , 6̂R 6̂D}

are the estimated channel correlation matrices at transmitter,
relay and destination, respectively. Besides, the Hermitian
matrices ES , ẼS and ED are the statistical errors of6S , σ̄ 2

h6S
and 6D, respectively.

2 This channel model is adopted because of the two reasons: 1) This model
completely shows the correlation introduced by limited antenna spacings at
both communication ends. 2) It is a tractable mathematical model to develop
the convenient and meaningful communication techniques for spatially cor-
related MIMO systems [55].
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2) THE MODELING OF R̃n

Similarly to model R̃h, we firstly define the temporally uncor-
related and spatially correlated colored noise as

N [1]
D = 9

1
2
DN̄

[1]
D , NR = 9

1
2
R N̄R, N

[2]
D = 9

1
2
DN̄

[2]
D . (11)

The Gaussian elements of {N̄
[1]
D , N̄R, N̄

[2]
D } are also i.i.d. with

zero mean and variance σ 2
n . Then according to Appendix A,

the imperfect noise covariance matrix R̃n is modeled as for-
mulation (12), as shown at the top of the previous page,
where σ̂ 2

r = σ
2
hTr(9̂

T
RF

T
R 6̂

T
RF
∗
R). {9̂R, 9̂D} are the estimated

noise spatial correlation matrices at relay and destination,
respectively. The Hermitian matrices END and ẼND denote
the statistical errors of 9D and σ̄ 2

r 6D +9D, respectively.

3) THE ROBUST TRAINING OPTIMIZATION PROBLEM
In our work, the channel uncertainty is unitarily-invariant
{ES , ẼS ,ED,END, ẼND}, which means that for the arbitrary
compact and convex uncertainty set ξ , if E∈ξ , thenUEUH

∈

ξ also holds for any unitary matrix U [49]. Generally, this
model includes themost popular three types of channel uncer-
tainty sets as its special cases [50]. Such as, the Frobenius
norm constrained channel uncertainty [48]–[50], the Spec-
tral norm constrained channel uncertainty [49], [56], and the
Nuclear norm constrained channel uncertainty [49]. After
substituting (8) into E[(h− Ghy)(h− Ghy)H ], the channel
estimation MSE matrix can be written as follows

9M = (̃R−1h + C̄
H
Q̄H R̃

−1
n Q̄

H
H C̄)

−1. (13)

based on which the LMMSE based robust training
optimization problem under the general power constraints is
formulated as

min
C

max
E∈ξ

Tr
{
(̃R−1h +C̄

H
Q̄H R̃

−1
n Q̄

H
H C̄)
−1
}
,

s.t. Tr
(
W l(X + C)(X + C)H

)
≤PSl , ∀ l = 1, · · · ,Lp,

(14)

where the set of statistical errors is defined as

E = {ES , ẼS ,ED,END, ẼND}. (15)

Besides, multiple positive semi-definite weighting matrices
W l, l = 1, · · · ,Lp are defined and PSl denotes the cor-
responding maximum transmit power. Clearly, the general
power constraints cover the total power constraint and the
individual power constraints as special cases. Particularly,
by setting W l = INS ,∀ l = 1, · · · ,Lp, this model is equiv-
alent to the total power constraint. However, by definingW l
as a diagonal matrix with the l-th diagonal element being 1,
this model is reduced to the individual power constraints.
In fact, the general power constraints are more suitable to the
distributed MIMO systems, where multiple single-antenna
sources are independently powered by its own battery. Tradi-
tionally, the widely adopted method for worst case robustness
optimization is S-procedure [57]. However, it is not applied to
the problem (14) due to the Tr(A−1) objective function.More-
over, the problem (14) is NP-hard difficult because of the

coupled training matrix and error matrices. The underlying
optimal structures of the optimal solution of the problem (14)
are firstly exploited to reduce the dimensionality. Then alter-
nating algorithms are proposed for the resulting simplified
optimization problem in the following section.

II. THE PROPOSED ALGORITHMS FOR THE ROBUST
SUPERIMPOSED TRAINING DESIGN
A. THE DIMENSION-REDUCED ROBUST TRAINING
DESIGN
Substituting (10) and (12) into the problem (14) and after
some tedious but straightforward derivations, we have the fol-
lowing formula for robust training optimization under general
power constraints

min
C

max
E∈ξ

Tr
{(
σ−2h (6̂T

S + E
T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n (C∗Q∗HQ
T
HC

T )⊗(9̂D+END)−1
)−1}

+Tr
{(

(σ̂ 2
h 6̂

T
S + Ẽ

T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n (C∗Q∗HQ
T
HC

T )⊗
(
σ̂ 2
r 6̂D+9̂D +ẼND

)−1)−1}
s.t. Tr(W lCCH ) ≤ P′Sl , , l = 1, · · · ,Lp, (16)

where

P′Sl = PSl − σ
2
dNSTr(W lPPH ). (17)

Then a dimension-reduced auxiliary variable C̃ = CQH ∈
CNS×L is defined and optimized instead of the original vari-
able C ∈ CNS×(K+L). According to Remark 1 in Section II,
we have PQH = 0K×L and QHHQH = IL , thus a reasonable
value of C = C̃QHH is readily observed. Moreover, we also
find that this choice ofC is optimal in terms ofminimizing the
transmit power. As a result, the robust training optimization
problem (16) can be equivalently reduced to

min
C̃

max
E∈ξ

Tr
{(
σ−2h (6̂T

S + E
T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n (C̃∗C̃T
)⊗ (9̂D + END)−1

)−1}
+Tr

{(
(σ̂ 2
h 6̂

T
S + Ẽ

T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n (C̃∗C̃T
)⊗

(
σ̂ 2
r 6̂D + 9̂D + ẼND

)−1)−1}
s.t. Tr(W lC̃C̃

H
) ≤ P′Sl , , l = 1, · · · ,Lp. (18)

It is worth highlighting that the problem (18) is still not jointly
convex w.r.t. {C̃,E}. Then in the following, two alternat-
ing algorithms are proposed: a) the numerical iterative SDP
algorithm; b) the low-complexity upper bound optimization
schemes. Particularly, for the low-complexity upper-bound
optimization schemes, the semi-closed-form training solu-
tions are available based on the equivalence transformation
proposed in [58].
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B. ITERATIVE SDP OPTIMIZATION
After defining RC̃ = C̃∗C̃T

∈ CNS×NS , the problem (18) can
be further transferred into the following optimization problem

min
RC̃

max
E∈ξ

Tr
{(
σ−2h (6̂T

S + E
T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n RC̃ ⊗ (9̂D + END)−1
)−1}

+Tr
{(

(σ̂ 2
h 6̂

T
S + Ẽ

T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n RC̃ ⊗
(
σ̂ 2
r 6̂D + 9̂D + ẼND

)−1)−1}
s.t. Tr(W∗l RC̃ ) ≤ P

′
Sl , RC̃ � 0, l = 1, 2, · · · ,Lp. (19)

It is obvious that the optimization problem (19) is convex
w.r.t. RC̃ . On the other hand, it is concave w.r.t. the arbitrary
covariance matrix error in the set of E . Based on this fact
an alternating optimization algorithm is proposed to solve
the optimization problem (19). The details of the proposed
algorithm is given in the following.

1) THE OPTIMIZATION OF RC̃
Firstly, for any given channel covariance error, the prob-
lem (19) can be reformulated as a standard SDP problemw.r.t.
RC̃ by introducing two auxiliary variables P1 and P2, which
is

min
RC̃ ,P1,P2

Tr(P1)+ Tr(P2)

s.t.
(
σ−2h (6̂T

S + E
T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n RC̃ ⊗ (9̂D + END)−1
)−1
�P1

×

(
(σ̂ 2
h 6̂

T
S + Ẽ

T
S )
−1
⊗ (6̂D + ED)−1

+σ−2n RC̃⊗
(
σ̂ 2
r 6̂D + 9̂D + ẼND

)−1)−1
�P2,

Tr(W∗l RC̃ ) ≤ P
′
Sl , RC̃�0, l = 1, 2, · · · ,Lp. (20)

Based on theWoodburymatrix identity and S-Procedure [56],
the optimization problem (20) can be further transferred into
the following SDP problem

min
RC̃ ,P1,P2

Tr(P1)+ Tr(P2)

s.t.
[
P1 6SD
6SD 6SD+6SD(RC̃⊗9̃D)6SD

]
�0,[

P2 6SRD
6SRD 6SRD+6SRD

(
RC̃⊗9ND

)
6SRD

]
�0,

Tr(W∗l RC̃ ) ≤ P
′
Sl ,

RC̃�0, ∀ l = 1, 2, · · · ,Lp, (21)

where

6SD = σ
2
h (6̂

T
S + E

T
S )⊗ (6̂D + ED),

6SRD = (σ̂ 2
h 6̂

T
S + Ẽ

T
S )⊗ (6̂D + ED),

9̃D = σ
−2
n (9̂D + END)−1,

9ND = σ
−2
n
(
σ̂ 2
r 6̂D + 9̂D + ẼND

)−1
. (22)

Remark 2: Particularly, once the optimal RC̃ is derived from
problem (21) given the worst case E , we can utilize the eigen-
value decomposition to obtain C̃ as C̃ = [C̃1,0NS×(L−NS )],
where C̃1 ∈ CNS×NS and RC̃ = C̃∗1C̃

T
1 . Further according

to C = C̃QHH , the optimal training C is expressed as C =
C̃1(Q

[1:NS ]
H )H , where Q[1:NS ]

H denotes the 1-th column to the
NS -th column of matrix QH . More importantly, we observe
CPH = C̃1(Q

[1:NS ]
H )HPH = 0NS×K , which means that the

optimal robust superimposed training C of the problem (16)
is orthogonal to the time-precoder P.

2) THE OPTIMIZATION OF E
Similar to RC̃ , the robust optimization problem (19)
can also be formulated as a jointly concave one w.r.t.
{ES , ẼS} when {RC̃ ,END, ẼND,ED} is fixed, ED when
{RC̃ ,ES , ẼS ,END, ẼND} is fixed or {END, ẼND} when
{RC̃ ,ES , ẼS ,ED} is fixed. Here, we take the optimization of
{END, ẼND} as an example and formulate the corresponding
SDP problem as the formulation

max
{END,ẼND}∈ξ

Tr(P1)+ Tr(P2)

s.t.

 I +6
−

1
2

SD R̂D,1(END)6
−

1
2

SD 6
−

1
2

SD R̂D,1(END)

R̂D,1(END)6
−

1
2

SD R̂D,1(END)− P1

�0
 I +6

−
1
2

SRDR̂D,2(ẼND)6
−

1
2

SRD 6
−

1
2

SRDR̂D,2(ẼND)

R̂D,2(ẼND)6
−

1
2

SRD R̂D,2(ẼND)− P2

�0
(23)

where R̂D,1(END) = σ−2n R−1
C̃
⊗(9̂D+END) and R̂D,2(ẼND) =

σ−2n R−1
C̃
⊗
(
σ̂ 2
r 6̂D+9̂D+ẼND

)
. As discussed above, the opti-

mization of ED, {ES , ẼS} can also be formulated as stan-
dard SDP optimization problems and their optimal solutions
can be found using some numerical algorithms, such as
interior-point method.
Thus, by iteratively computing the derived SDP optimiza-

tions given in (21), (23) and the corresponding SDP problems
w.r.t. ES , ẼS and ED, the dimension-reduced problem (18)
can be solved efficiently.
As presented in [59], the computational complexity for

a standard SDP problem is O(MsdpN 3.5
sdp + M2

sdpN
2.5
sdp +

M3
sdp N

0.5
sdp) log(1/ε), where Nsdp andMsdp denote the dimen-

sion of semidefinite cone and the number of semidefinite
cone constraints, respectively, and ε indicates the solution
accuracy. In our proposed iterative SDP algorithm, each iter-
ation mainly involves three SDP subproblems in terms of
the variable blocks RC̃ , {EN , ẼN } and {EH , ẼH }. Therefore,
the order of total complexity of our proposed iterative SDP
algorithm is ItolO

(
(NSND)3.5

)
log(1/ε), where Itol denotes

the total number of iterations. However, in terms of our work,
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Algorithm 1 The Subgradient Algorithm for Problem (25)
1: Initialize: iteration index n = 0; maximum iteration

number Imax ; auxiliary parameters µ(0)
l ,∀ l = 1, · · · ,L;

2: repeat
3: Solve the problem (25) to obtain X (n) given µ(n)

l ;
4: Define the step size tn = c

a+n·b , where the scalars
{a, b, c} > 0;

5: Update µ(n+1)
l = P[µ(n)

l + tn(Tr(W lXXH )− Pl)] by
solving the problem

min
L∑
l=1

‖P[µl]− µl‖2,

s.t.
L∑
l=1

P[µl]W l � 0, P[µl] ≥ 0. (26)

6: Update n = n+ 1
7: until µ(n−1)

l (Tr(W kX (n−1)(X (n−1))H )−Pl)≤ εl, ∀l or n ≤
Imax , where εl > 0 is sufficiently small.

8: return µ
(n)
l ,X

(n),∀ l = 1, · · · ,L.

as illustrated in simulations, the actual complexity of the
proposed iterative SDP algorithm is much lower than the
above worst case bound.

C. THE LOW-COMPLEXITY UPPER BOUND OPTIMIZATION
SCHEMES
1) THE EQUIVALENCE TRANSFORMATION
From problem (18), it can be found that given statistical
errors set E , the objective function of problem (18) can be
classified into f (C̃∗4C̃T

) with 4 = σ−2n IL . According to
the literature [2], the function f (C̃∗4C̃T

) is matrix mono-
tonically decreasing w.r.t C̃∗4C̃T

. Then a useful Theorem 1
in [58] is presented for the following analysis.
Theorem 1: For a matrix monotonically decreasing func-

tion f (X4XH ), where X ∈ CN×M and 4 ∈ CM×M , the fol-
lowing problem

min
X

f (X4XH ) s.t. Tr(W lXXH ) ≤ Pl, l=1, · · · ,Lp,

(24)

withW l � 0 ∈ CN×N , is equivalent to

min
X

f (X4XH ) s.t. Tr(WXXH ) ≤ P, (25)

where P =
∑Lp

l=1Pl and W =
Lp∑
l=1

ulW l . Note that W � 0

and this constraint guarantees that the original problem (24)
is feasible. Besides, u′ls are nonnegative scalars satisfying
ul(Tr(W lXXH ) − Pl) = 0,∀ l, and can be found using
the subgradient method [60], which is briefly introduced in
Algorithm 1.

Based on Theorem 1 and defining RC̃ = C̃∗C̃T
,

the robust training optimization problem (18) with general

power constraints is equivalent to

min
RC̃

max
E∈ξ

Tr
{(
σ−2h (6̂T

S + E
T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n RC̃⊗(9̂D + END)−1
)−1}

+Tr
{(

(σ̂ 2
h 6̂

T
S + Ẽ

T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n RC̃⊗
(
σ̂ 2
r 6̂D + 9̂D + ẼND

)−1)−1}
s.t. Tr(W∗RC̃ ) ≤ P

′
S , RC̃ � 0, (27)

where W∗ = W
1
2W

1
2 =

Lp∑
l=1
µlW∗l � 0 and P′S =

Lp∑
l=1

P′Sl .

Unfortunately, the problem (27) is still nonconvex due to
the coupled variables. In the following in order to solve
the problem (27) effectively, two upper bound optimization
algorithms are proposed.

2) WEIGHTING-SCALED-SCHEME
The first alternative scheme is based on the relaxation of
the weighting related matrix W . To be specific, we firstly
scale the power constraint Tr(W∗RC̃ ) ≤ P′S in problem (27)
up to Tr( λmax(W∗)RC̃ ) ≤ P′S . Then by defining R̃C̃ =
λmax(W∗)RC̃ , the weighting-scaled problem is formulated as

min
R̃C̃

max
E∈ξ

Tr
{(
σ−2h (6̂T

S + E
T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n λmax(W∗)−1R̃C̃⊗(9̂D+END)−1
)−1}

+Tr
{(

(σ̂ 2
h 6̂

T
S + Ẽ

T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n λmax(W∗)−1R̃C̃

⊗(9̂D+σ̂
2
r 6̂D+ẼND)−1

)−1}
s.t. Tr(R̃C̃ ) ≤ P

′
S , R̃C̃ � 0. (28)

In fact, the optimal analytical structure of {R̃C̃ ,E} for
the problem (28) can be proved utilizing the EVDs of
{6̂S , 6̂D, 9̂D}. So we firstly define the following EVDs

6̂
T
S = ÛS3SÛ

H
S ,

6̂D = ÛD3DÛ
H
D ,

9̂D = ÛD�DÛ
H
D , (29)

where ÛS and ÛD are the eigenvector unitary matrix of 6̂
T
S

and 9̂D, respectively. The diagonal elements of diagonal
matrices {3S ,3D,�D} are the eigenvalues of {6̂S , 6̂D, 9̂D},
respectively, with 3S = diag[λS,1, · · · , λS,NS ], 3D =

diag[λD,1, · · · , λD,ND ] and �D = diag[�D,1, · · · , �D,ND ].
From (29), it can be observed that 9̂D and 6̂D have
identical eigenvectors [61]. It means that the colored noise
shares the spatial structure of the MIMO channels. In other
words, the colored noise impinges on the receiver antenna
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array from the same spatial directions as that of desired
signals [61]. Thismodel is widely used in the existing training
designs [30]–[32], [49], [61]. Based on the structure derived
in (29), the problem (28) is further reformulated as

min
R̃C̃

max
E ′∈ξ

Tr
{(
σ−2h (3S+E′S )

−1
⊗(3D+E′D)

−1

+ σ−2n λmax(W∗)−1Û
H
S R̃C̃ÛS ⊗ (�D+E′ND)

−1
)−1}

+Tr
{(
(σ̂ 2
h3S+Ẽ

′

S )
−1
⊗(3D+E′D)

−1
+σ−2n λmax(W∗)−1

×ÛH
S R̃C̃ÛS⊗(�D+σ̂

2
r 3D+Ẽ

′

ND)
−1
)−1}

s.t. Tr(R̃C̃ ) ≤ P
′
S , R̃C̃ � 0, (30)

where E ′ = {E′D,E
′
S , Ẽ
′

S ,E
′
ND, Ẽ

′

ND}, E
′
D = ÛH

DEDÛD and
E′S = ÛH

S E
T
S ÛS , Ẽ

′

S = ÛH
S Ẽ

T
S ÛS as well as E′ND =

ÛH
DENDÛD, Ẽ

′

ND = ÛH
D ẼNDÛD. To simplify the considered

optimization problems, the optimal diagonalizable structures
of {ÛH

S R̃C̃ÛS ,E ′} of the problem (30) are derived and the
results are demonstrated Theorem 2.
Theorem 2: For the problem (30), the optimal variables still

satisfy the following diagonalizable structure

{ÛH
S R̃

opt
C̃ ÛS ,E

′opt
} = {3C ,3E′D

3E′S
,3Ẽ′S

,3E′ND
,3Ẽ′ND

}.

(31)

where 3C = diag[λC,1, · · · , λC,NS ], 3E′D
= diag[λE ′D,1,

· · · , λE ′D,ND
], 3E′S

= diag[λE ′S ,1, · · · , λE ′S ,NS ], 3Ẽ′S
=

diag[λẼ ′S ,1, · · · , λẼ ′S ,NS ],3E′ND
= diag[λE ′ND,1, · · · , λE ′ND,ND ]

and 3Ẽ′ND
= diag[λẼ ′ND,1, · · · , λẼ ′ND,ND ]. Then the

matrix-variable problem (30) can be simplified as the follow-
ing optimization problem

min
3C

max
3E∈ξ

NS∑
i=1

ND∑
j=1

(
σ−2h (λS,i+λE ′S ,i)

−1(λD,j+λE ′D,j)
−1

+ σ−2n λmax(W∗)−1λC,i(�D,j+λE ′ND,j
)−1
)−1

+

NS∑
i=1

ND∑
j=1

(
(σ̂ 2
h λS,i+λẼ ′S ,i

)−1(λD,j+λE ′D,j)
−1

+ σ−2n λmax(W∗)−1λC,i(�D,j+σ̂
2
r λD,j

+ λẼ ′ND,j
)−1
)−1

s.t.
NS∑
i=1

λC,i ≤ P′S , λC,i ≥ 0, i = 1, · · · ,NS . (32)

where3E = {3E′D
3E′S

,3Ẽ′S
,3E′ND

,3Ẽ′ND
}. By recalling that

C = C̃1(Q
[1:NS ]
H )H , RC̃ = C̃∗1C̃

T
1 and R̃C̃ = λmax(W∗)RC̃ ,

we can finally derive the semi-closed-form {C,E} of the
weighting-scaled-scheme as

C = λmax(W∗)−
1
2 Û∗S3

1
2
CQA(Q

[1:NS ]
H )T ,

ED = ÛD3E′D
ÛH
D ,

ETS = ÛS3E′S
ÛH
S ,

ẼTS = ÛS3Ẽ′S
ÛH
S ,

END = ÛD3E′ND
ÛH
D ,

ẼND = ÛD3Ẽ′ND
ÛH
D . (33)

whereQA ∈ CNS×NS is an arbitrary orthogonal unitary matrix
satisfying QAQ

H
A = INS .

Proof: Please see Appendix B.
Particularly, the proposed weighting-scaled-scheme is

tight when W l = INS ,∀ l = 1, · · · ,L holds corresponding
to the total power constraint. In other words, for the case of
W l = INS ,∀ l = 1, · · · ,L, the analytical solutions presented
in Theorem 2 are actually optimal to the original robust
training problem (16).

3) CORRELATION-SCALED-SCHEME
Firstly, based on the definition RC̃ = W

1
2RC̃W

1
2 , the robust

training problem (27) can be reformulated as

min
RC̃

max
Ẽ∈ξ

Tr
{
(W ⊗ IND )

(
σ−2h (W−

1
2 6̂

T
SW
−

1
2 + ES )−1

⊗(6̂D + ED)−1 + σ−2n RC̃ ⊗ (9̂D + END)−1
)−1}

+Tr
{
(W ⊗ IND )

(
(σ̂ 2
hW
−

1
2 6̂

T
SW
−

1
2 + ẼS )−1

⊗(6̂D + ED)−1 + σ−2n RC̃ ⊗ (9̂D

+ σ̂ 2
r 6̂D + ẼND)−1

)−1}
s.t. Tr(RC̃ ) ≤ P

′
S , RC̃ � 0 (34)

where

Ẽ = {ES , ẼS ,ED,END, ẼND},

ES = W−
1
2ETSW

−
1
2 ,

ẼS = W−
1
2 ẼTSW

−
1
2 . (35)

Following the philosophy of worst case robustness
optimization, in the sequel, we consider the new unitarily-
invariant channel errors {ES , ẼS} instead of {ES , ẼS} for
the problem (34). Particularly, the uncertainty size of
{ES , ẼS} is mainly determined by the specific type of
the unitarily-invariant uncertainty set {ES , ẼS}. Taking the
Frobenius norm constrained ES , i.e., ‖ES‖F ≤ ξf ,
as an example, we have ‖ES‖F ≤ λmax(W̃ )ξf , where
W̃ = (W−1)T ⊗W−1.

In order to achieve the low-complexity upper bound
optimization for problem (34), we also utilize the identity
W � λmax(W )I to relax the correlation 6̂

T
S related positive

semidefinite matrix WS =W−
1
2 6̂

T
SW
−

1
2 in problem (34) to

be λmax(WS )INS . Then the correlation-scaled upper bound
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optimization of the problem (34) is given by

min
RC̃

max
Ẽ∈ξ

Tr
{
(W ⊗ IND )

(
σ−2h (λmax(WS )INS + ES )

−1

⊗(6̂D + ED)−1 + σ−2n RC̃ ⊗ (9̂D + END)−1
)−1}

+Tr
{
(W ⊗ IND )

(
(σ̂ 2
h λmax(WS )INS + ẼS )

−11

⊗(6̂D + ED)−1 + σ−2n RC̃ ⊗ (9̂D + σ̂
2
r 6̂D

+ẼND)−1
)−1}

s.t. Tr(RC̃ ) ≤ P
′
S , RC̃ � 0 (36)

Then based on the EVDs in (29) and the EVD
W = UW3WUH

W , where UW ∈ CNS×NS is the uni-
tary eigenvector matrix and the diagonal matrix 3W =

diag[λW ,1, · · · , λW ,NS ] contains the NS eigenvalues of W ,
the problem (36) is equivalent to the following one

min
RC̃

max
Ẽ∈ξ ′

Tr
{
(3W ⊗ IND )

(
σ−2h (λmax(WS )INS + E

′

S )
−1

⊗(3D + E′D)
−1
+ σ−2n UH

WRC̃UW

⊗(�D + E′ND)
−1
)−1}

+Tr
{
(3W ⊗ IND )

(
(σ̂ 2
h λmax(WS )INS + Ẽ

′

S )
−1

⊗(3D + E′D)
−1

+ σ−2n UH
WRC̃UW ⊗ (�D + σ̂

2
r 3D + Ẽ

′

ND)
−1)−1}

s.t. Tr(RC̃ ) ≤ P
′
S , RC̃ � 0

(37)

where E
′

S = UH
WESUW and Ẽ

′

S = UH
W ẼSUW .

Similarly, we can also prove that the optimal solutions of
{UH

WRC̃UW ,E′D, E
′

S , Ẽ
′

S ,E
′
ND, Ẽ

′

ND} of problem (37) are
diagonal, which is summarized in the following Theorem 3.
It is worth noting that the proof for Theorem 3 is similar to
that for Theorem 2.
Theorem 3: For the problem (37), the optimal variables are

also diagonal structured, which means

{UH
WR

opt
C̃ UW , Ẽopt } = {3C ,3E′D

,3E
′

S
,3

Ẽ
′

S
,3E′ND

,3Ẽ′ND
}.

(38)

Therefore, the matrix-variable problem (37) can be signifi-
cantly simplified as

min
3C

max
3̃E∈ξ

NS∑
i=1

ND∑
j=1

(
λW ,i

(
σ−2h (λmax(W∗)+ λE ′S ,i

)−1(λD,j

+ λE ′D,j
)−1 + σ−2n λC,i(�D,j + λE ′ND,j

)−1
)−1)

+

NS∑
i=1

ND∑
j=1

(
λW ,i

(
(σ̂−2h λmax(W∗)+λẼ

′

S ,i
)−1(λD,j

+ λE ′D,j
)−1+σ−2n λC,i(�D,j+σ̂

2
r λD,j+λẼ ′ND,j

)−1
)−1

s.t.
NS∑
i=1

λC,i ≤ P′S , λC,i ≥ 0, i=1, · · · ,NS . (39)

where 3̃E = {3E′D
,3E

′

S
,3

Ẽ
′

S
,3E′ND

,3Ẽ′ND
}. By utilizing

the identity (38), we can further derive the semi-closed-form
{C,E} of the correlation-scaled-scheme as

C = (W−
1
2 )∗Û∗W3

1
2
CQA(Q

[1:NS ]
H )T ,

ED = ÛD3E′D
ÛH
D ,

ES = W
1
2 ÛW3E

′

S
ÛH
WW

1
2 ,

ẼTS = W
1
2 ÛW3

Ẽ
′

S
ÛH
WW

1
2 d,

END = ÛD3E′ND
ÛH
D ,

ẼND = ÛD3Ẽ′ND
ÛH
D . (40)

Proof: Please see the proof for Theorem 2 in Appendix B.
Based on Theorem 2 and 3, it is obvious that both
the dimensions of optimization variables in the scalar-
ized weighting-scaled problem (32) and the scalarized
correlation-scaled problem (39) are significantly reduced
compared to the proposed iterative SDP optimization algo-
rithm, i.e., from 3N 2

S + 3N 2
D to 3NS + 3ND, which real-

izes the low computational complexity. Besides, it is clear
that the problems (32) and (39) are convex w.r.t the arbi-
trary variable in {3C ,3E } and {3C , 3̃E }, respectively, when
the remaining variables are fixed. Therefore, the proposed
iterative SDP optimization is still suitable to the simplified
problems (32) and (39). Particularly, the low-complexity IBS
algorithm in [52] can further be applied to derive the optimal
training C for both two problems. To proceed, we take the
problem (32) as an example to introduce the low-complexity
IBS algorithm. Then the problem (39) can also be addressed
by a similar logic. For the problem (32), we firstly utilize
the lagrangian dual method to derive the optimal λC,i, ∀i =
1, · · · ,NS as (41) as shown at the bottom of the next page,
where η ≥ 0 is the lagrangian multiplier of the weighted
power constraint. Observing from (41), we find that η is
monotonically decreasing w.r.t λC,i,∀ i = 1, · · · ,NS , which
implies that the IBS method in [52] can be applied to search
the optimal λC,i both satisfying (41) and (42), as shown at the
bottom of the next page. The interested readers can refer to
literature [52] for details.
Remark 2: Assuming that all considered statistical errors

belong to the Nuclear norm constrained uncertainty set,
i.e., Tr((33H )

1
2 ) ≤ ζu,∀3 ∈ 3E/3̃E , then the

low-complexity IBS algorithm can also be applied to opti-
mize the arbitrary statistical error term 3 ∈ 3E/3̃E for
the simplified problem (32)/(39). Besides, to demonstrate
the effectiveness of the proposed two low-complexity upper
bound schemes, the training design with perfect channel
and noise statistical information, i.e., E = ∅, is consid-
ered as a benchmark in our work, which is in essence an
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effective lower-bound for the LMMSE based robust training
optimization.

III. EXTENSION TO THE MUTUAL INFORMATION
MAXIMIZATION
Another widely used criterion for training design is to
maximize mutual information between the true channel
h and the estimated channel ĥ, i.e., I (h, ĥ). Because
I (h, ĥ) = log det(9−1M ) [38], similarly to the formulation of
the LMMSE based robust training optimization problem (14),
the robust mutual information maximization problem under
general power constraints is formulated as follows

max
C

min
E∈ξ

log det(R̃−1h +C̄
H
Q̄H R̃

−1
n Q̄

H
H C̄),

s.t. Tr
(
W l(X+C)(X+C)H

)
≤PSl , ∀ l=1,· · ·,Lp,

(43)

Naturally, by performing the dimension-reduced operation
and applying Theorem 1, the problem (43) can be equiva-
lently simplified as

max
RC̃

min
E∈ξ

log det
(
σ−2h (6̂T

S + E
T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n RC̃⊗(9̂D + END)−1
)

+ log det
(
(σ̂ 2
h 6̂

T
S + Ẽ

T
S )
−1
⊗ (6̂D + ED)−1

+ σ−2n RC̃⊗
(
σ̂ 2
r 6̂D + 9̂D + ẼND

)−1)
s.t. Tr(W∗RC̃ ) ≤ P

′
S , RC̃ � 0. (44)

It can be proved that the problem (44) is concave w.r.t.RC̃ and
the arbitrary variable in the set of E . As a result, the proposed
iterative SDP optimization algorithm is still applicable to the
problem (44). Besides, for mutual information maximization,
both the weighting-scaled-scheme and the correlation-scaled
scheme become an effective lower bound of the problem (44).
In particular, the weighting-scaled-scheme can be directly
extended to the problem (44) and the corresponding opti-
mal solutions with diagonal structure are available similarly
to that for the problem (30). Here, we omit this similar

derivation process due to the space limitation. Neverthe-
less, considering the characteristics of function log det(A),
the relaxation of the matrix WS = W−

1
2 6T

SW
−

1
2 is not

required when applying the correlation-scaled-scheme to the
problem (44). To be specific, similarly to the formulation
of the problem (34), we firstly utilize the definition RC̃ =
W

1
2RC̃W

1
2 to equivalently rewrite the problem (44) as

max
RC̃

min
Ẽ∈ξ ′

log det
(
σ−2h (W−

1
2 6̂

T
SW
−
1
2+ES )−1

⊗(6̂D+ED)−1 + σ−2n RC̃⊗(9̂D+END)−1
)

+ log det
(
(σ̂ 2
hW
−

1
2 6̂

T
SW
−

1
2+̃ES )−1

⊗(6̂D+ED)−1 + σ−2n RC̃⊗(9̂D+σ̂
2
r 6̂D+̃END)−1

)
s.t. Tr(RC̃ ) ≤ P

′
S , RC̃ � 0, (45)

where the constant term log det(W−1 ⊗ I) has been
removed and the new unitarily-invariant uncertainty sets
{ES , ẼS} are also considered. Further by defining the EVD
WS = W−

1
2 6T

SW
−

1
2 = UWS3WSU

H
WS

, where UWS ∈

CNS×NS is the unitary eigenvector matrix and the diagonal
matrix3WS contains NS eigenvalues ofWS , the problem (45)
is equivalently transformed into

max
RC̃

min
Ẽ∈ξ ′

log det
(
σ−2h (3WS + E

′

S )
−1
⊗ (3D + E′D)

−1

+ σ−2n UH
WS
RC̃UWS ⊗ (�D + E′ND)

−1
)

+ log det
(
(σ̂ 2
h3WS + Ẽ

′

S )
−1
⊗ (3D + E′D)

−1

+ σ−2n UH
WS
RC̃UWS ⊗ (�D + σ̂

2
r 3D + Ẽ

′

ND)
−1
)

s.t. Tr(RC̃ ) ≤ P
′
S , RC̃ � 0, (46)

where E
′

S = UH
WS
ESUWS and Ẽ

′

S = UH
WS
ẼSUWS . Note that

the diagonal structured optimal solutions of {UH
WS
RC̃UWS ,

Ẽ} of problem (46) can also be obtained similarly to that in
Theorem 2. Particularly, for the robust mutual information
maximization, the training design with the perfect channel
and noise statistical information becomes an effective upper
bound of the problem (44).

ND∑
j=1

σ−2n λmax(W∗)−1(�D,j+λE ′ND,j
)−1(

σ−2h (λS,i+λE ′S ,i)
−1(λD,j+λE ′D,j)

−1+σ−2n λmax(W∗)−1λC,i(�D,j+λE ′ND,j
)−1
)2

+

ND∑
j=1

σ−2n λmax(W∗)−1(�D,j+σ̂
2
r λD,j+λẼ ′ND,j

)−1(
(σ̂ 2
h λS,i+λẼ ′S ,i

)−1(λD,j+λE ′D,j)
−1+σ−2n λmax(W∗)−1λC,i(�D,j+σ̂ 2

r λD,j+λẼ ′ND,j
)−1
)2 = η (41)

NS∑
i=1

λC,i = P′S (42)
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IV. NUMERICAL RESULTS AND DISCUSSIONS
In this section, some numerical results are given to assess

the performance of the proposed robust training designs for
cooperative communications in terms of both channel estima-
tionMSE and mutual information. Without loss of generality,
in our simulation the three nodes in the cooperative network
are all equipped with 4 antennas, i.e., NS = NR = ND = 4.
The transmit and receive correlation matrices of the channel
matrices are generated according to the widely used exponen-
tial model in our simulation.More specifically, the correlation
matrices 6̂S , 6̂R and 6̂D in the simulation setting are denoted
as

[6̂S ]i,j=pj−is ; [6̂R]i,j=pj−ir , [6̂D]i,j=p
j−i
d , ∀j ≥ i, (47)

where the correlation parameters pl, l∈{s, r, d} are the com-
plex correlation coefficients with |pl | = 0.5. The correlation
matrices of the colored noises at the relay and receiver are
modeled as [9̂R]i,j=q

j−i
r , [9̂T ]i,j=q

j−i
t ,∀j ≥ i,where |ql |=

0.5, l ∈ {t, r}. As discussed above, both the eigenvectors
of 9̂D and 6̂D are assumed to be the same. In other words,
the received colored noise has the identical spatial correlation
as that of channel, i.e., 9̂D=ÛD�DÛ

H
D , where ÛD is derived

from 6̂D = ÛD3DÛ
H
D and the diagonal �D is specified to

guarantee the diagonal elements of 9̂D being 1.
Besides, due to the fact that the general power constraints

are considered in our work, we assume that the maximum
transmit power corresponding to each weighted power con-
straint is Pt dBW. Besides, the variance of all channel and
noise elements are assumed to be σ 2

h =σ
2
n = 1, and thus the

training SNR is defined as SNR = Pt . Particularly, in this
simulation, the unitarily-invariant channel and noise statis-
tical errors are specified as the Frobenius norm constrained
uncertainty sets and the corresponding error threshold ξf is
initialized to be ξf = 0.5. Moreover, both the normalized
worst case MSE w.r.t. the effective channel size 2NDNS and
the robust mutual information are adopted as the channel
estimation performance metrics. Further, to demonstrate the
effectiveness and advantages of the proposed robust training
designs, both the perfect training design and the non-robust
training design are adopted as comparisons. Specifically, for
the non-robust training design, we firstly solve the outer min-
imization subproblem of (16) with E = ∅, then substitute the
obtained C and the worst case statistical errors derived from
the proposed robust training designs into (16) to calculate the
non-robust channel estimation MSE. While for the perfect
training design, themin-max problem (16) is actually reduced
to be a min problem considering E = ∅. Finally, in order to
effectively solve the involved SDP problems (21) and (23),
the famous matlab software toolbox CVX [60] is utilized.

Firstly, in Fig. 2, we show that the performance of worst
case MSE as a function of training SNR under a total power
constraint, i.e.,W l = INS ,∀ l = 1, · · · , 4. It can be seen that
the achievable worst case MSE decreases with SNR for all
proposed training designs. Our proposed weighting-scaled-
scheme in Theorem 2 is tight and equivalent to the robust

FIGURE 2. Worst case MSE performance versus SNR under total power
constraint, where El = INS

,∀l = 1, · · · , 4.

FIGURE 3. Convergence rate of the subgradient method in Theorem 1.

training design in [34] in essence. As mentioned before,
literature [34] considered both the direct link and complete
channel correlations for AF MIMO relaying networks. As a
result, we also observe that the worst case MSE achieved by
the proposed iterative SDP optimization and the weighting-
scaled-scheme in Theorem 2 are almost identical to that of
the robust training design in [34]. Besides, the correlation-
scaled-scheme in Theorem 3 achieves higher worst case
MSE than that of the above three schemes due to the relax-
ation in6S . As SNR increases, the correlation-scaled-scheme
is closer to the iterative SDP optimization. However, all of
them outperform the non-robust training design by consid-
ering the optimization of the worst case channel and noise
statistical errors. In addition, as an effective lower bound,
the perfect training design naturally realizes the minimum
MSE among all proposed training designs.

In order to demonstrate our proposed Theorem 1,
in Fig. 3, we show the convergence performance of the
subgradient method, which is used for searching µ′ks
satisfying the general power constraints. To be specific,
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FIGURE 4. Worst case MSE versus SNR under the combined total and
individual power constraints, where
W l = diag[01×l−1, 1, 01×4−l ], ∀ l = 1, · · · , 4;W5 = INS

.

we consider the individual power constraints, i.e., W l =

diag[01×l−1, 1, 01×4−l], ∀l = 1, · · · , 4, and adopt the
weighting-scaled-scheme in Theorem 2 as an example. Then
in Fig. 3, the difference between the actual transmit power
of each antenna and its corresponding maximum threshold,
i.e., Tr(W lC̃C̃

H
)− P′Sl ∀l = 1, · · · , 4, is shown. We clearly

observe that the subgradient method converges after around
10 ∼ 20 iterations with all individual power constraints being
activated.

Following Fig. 3, in Fig. 4, we investigate the worst
case MSE versus SNR under the combined individual
power constraints and total power constraint, i.e., W l =

diag[01×l−1, 1, 01×4−l], ∀ l = 1, · · · , 4;W5 = INS . From
this figure, it is observed that under the combined individual
power constraints and total power constraint, the proposed
iterative SDP algorithm outperforms the weighting-scaled-
scheme in Theorem 2 and the correlation-scaled-scheme in
Theorem 3, which dues to the relaxation operation in the pro-
posed low-complexity upper-bound optimization. Besides,
the weighting-scaled-scheme in Theorem 2 achieves the
lower worst case MSE than that of the correlation-scaled-
scheme in Theorem 3. However, with the increase of SNR,
both the two upper-bound optimization schemes perform
closer to the proposed iterative SDP optimization. Undoubt-
edly, among all studied robust training designs, the perfect
training design still achieves the lowest channel estimation
MSE, while the non-robust training design realizes the high-
est worst case MSE.

In fact, our proposed robust training designs are also appli-
cable to the more general power constraints case. For exam-
ple, a virtual MIMO transmitter consisting of three sources
is considered, where two of the three sources are assumed to
be single antenna, while the remaining one has two antennas.
Then the total transmit power of each source is specified by
W1 = diag[1, 0, 0, 0], W2 = diag[0, 1, 0, 0], and W3 =

diag[1, 1, 0, 0], respectively. Based on this, the worst case

FIGURE 5. Worst case MSE versus SNR under the more general power
constraints,i.e., W1 = diag[1, 0, 0, 0], W2 = diag[0, 1, 0, 0], and
W3 = diag[1, 1, 0, 0].

FIGURE 6. Worst case MSE versus channel uncertainty parameter under
total power constraint, where El = INS

,∀l = 1, · · · , 4.

MSE versus SNR for all proposed robust training designs is
shown in Fig. 5. Naturally, the almost identical worst case
MSE performance as that of Fig. 4 is observed. Among
the three proposed algorithms, the correlation-scaled-scheme
outperforms the weighting-scaled-scheme algorithm, and the
iterative SDP algorithm is optimal.

Further, Fig. 6 shows the worst case MSE as a function of
the channel and noise statistical error threshold ξf , where the
combined individual and total power constraints are consid-
ered. From Fig. 6, it is observed that the achievable worst case
MSE increases with the uncertainty parameter ξf for all stud-
ied robust training designs. As expected, among the proposed
three robust training designs, the proposed iterative SDP opti-
mization still performs best in terms of the worst case MSE,
while the correlation-scaled-scheme in Theorem 3 performs
worst. In addition, the non-robust training design naturally
achieves the highest worst case MSE especially under the
large value of ξf .
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FIGURE 7. Worst case mutual information versus SNR under the
combined total and individual power constraints, where
W l = diag[01×l−1, 1, 01×4−l ], ∀ l = 1, · · · , 4;W5 = INS

.

Finally, we illustrate the worst case maximum mutual
information versus SNR under the combined individual and
total power constraints in Fig. 7. It can be seen that the
achievable mutual information increases with SNR for all
studied training designs. Similarly to that in Fig. 4, it is
clearly seen that the the proposed iterative SDP optimization
outperforms the weighting-scaled-scheme in Theorem 2 and
the error-scaled-scheme in Theorem 3. Besides, the perfect
training design still performs best in terms of the achievable
maximum mutual information, while the non-robust training
design performs worst.

V. CONCLUSIONS
In this paper, the robust training design for AF MIMO
relaying channel estimation has been investigated. Specifi-
cally, we consider the channel and colored noise statistical
errors subject to the unitarily-invariant uncertainty set, then
the LMMSE based robust training optimization problem is
formulated, which is generally non-convex and intractable.
To solve this problem effectively, we propose an iterative
SDP optimization and two low-complexity upper-bound opti-
mization schemes, respectively. In particular, the diagonal
structured optimal solutions of the proposed two upper-bound
optimization schemes are available, and thus the semi-closed-
form training matrix is can be obtained for effective chan-
nel estimation. Further, we extend our work into the robust
mutual information maximization of the AF MIMO relaying
channel, to which all proposed robust training designs are
proved to be still applicable. Finally, numerical simulation

results are conducted to indicate the effectiveness of the
proposed various robust training designs in terms of channel
estimation MSE and the achievable mutual information.

APPENDIX A
Recalling the Kronecker structured channel models in (9),
we can further model the imperfect spatial correlation matri-
ces 6S , 6R and 6D as

6S = 6̂S + ES ,

6R = 6̂R + ER,

6D = 6̂D + ED. (48)

where the positive-definite Hermitian matrices 6̂S ∈

CNS×NS , 6̂R ∈ CNR×NR and 6̂D ∈ CND×ND are the esti-
mated spatial correlation matrices, respectively. The matrices
ES ∈ CNS×NS , ER ∈ CNR×NR and ED ∈ CND×ND denote
the correlation error matrices corresponding to 6S , 6R and
6D, respectively. Then based on (48), the imperfect statistical
model of the direct channel HSD is given by

E[vec(HSD)vec(HSD)H ]

= E[(6
1
2T
S ⊗6

1
2
D)vec(H̄SD)vec(H̄SD)H (6

1
2T
S ⊗6

1
2
D)]

= σ 2
h (6̂

T
S + E

T
S )⊗ (6̂D + ED), (49)

Similarly, the imperfect statistical model of the compound
channel HRDFRHSR is

E[vec(HRDFRHSR)vec(HRDFRHSR)H ]

= E
[(

6
1
2T
S ⊗ (6

1
2
DH̄RD6

1
2
RFR6

1
2
R )
)
vec(H̄SR)vec(H̄SR)H

×
(
6

1
2T
S ⊗ (6

1
2
RF

H
R 6

1
2
R H̄

H
RD6

1
2
D)
)]

= σ 2
hE
[
6T
S ⊗

(
6

1
2
DH̄RD6

1
2
RFR6RFHR 6

1
2
R H̄

H
RD6

1
2
D

)]
= σ̄ 2

h6T
S ⊗6D = σ̄

2
h (6̂

T
S + E

T
S )⊗ (6̂D + ED), (50)

where σ̄ 2
h = σ 4

hTr
(
(6̂R + ER)FR(6̂R + ER)FHR

)
. Clearly,

the spatial correlation errors ER, ES are coupled and
intractable in the function σ̄ 2

h (6̂
T
S + ETS ). To facilitate the

following analysis, we unify all coupled errors in σ̄ 2
h (6̂

T
S +

ETS ) into a single error matrix ẼS ∈ CNS×NS . As a result,
the formulation (50) can be rewritten as

E[vec(HRDFRHSR)vec(HRDFRHSR)H ]

= (σ̂ 2
h 6̂

T
S + Ẽ

T
S )⊗ (6̂D + ED). (51)

where σ̂ 2
h = σ 4

hTr(6̂RFR6̂RFHR ). Based on (49) and (51),
the imperfect channel covariance matrix R̃h in (8) is modeled
as the formulation (52), as shown at the bottom of this page.

R̃h =
[
E[vec(HSD)vec(HSD)H ] 0

0 E[vec(HRDFRHSR)vec(HRDFRHSR)H ]

]
=

[
σ 2
h (6̂

T
S + E

T
S )⊗ (6̂D + ED) 0

0 (σ̂ 2
h 6̂

T
S + Ẽ

T
S )⊗ (6̂D + ED)

]
(52)
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R̃n =

[
E[vec(N [1]

D )vec(N [1]
D )H ] 0

0 E[vec(HRDFRNR+N
[2]
D )vec(HRDFRNR+N

[2]
D )H ]

]

=

[
σ 2
n IK+L ⊗ (9̂D + END) 0

0 σ 2
n IK+L ⊗ (σ̂ 2

r 6̂D + 9̂D + ẼND)

]
(53)

Furthermore, taking advantage of the kronecker structured
colored noise model in (11), the imperfect relay and desti-
nation noise correlation matrices 9D and 9R are expressed
as

9D = 9̂D + END, 9R = 9̂R + ENR. (54)

Based on (54), the imperfect statistical model of the destina-
tion noise N [1]

D is given by

E[vec(N [1]
D )vec(N [1]

D )H ]

= E[(IK+L ⊗9
1
2
D)vec(N̄

[1]
D )vec(N̄

[1]
D )H (IK+L ⊗9

1
2
D)]

= σ 2
n IK+L ⊗9D

= σ 2
n IK+L ⊗ (9̂D + END), (55)

Besides, similar to the derivation of the imperfect statistical
model (50) for the compound channel, the imperfect com-
pound noise HRDFRNR + N [2]

D statistics can be derived to
be

E[vec(HRDFRNR + N
[2]
D )vec(HRDFRNR + N

[2]
D )H ]

= E[((6
1
2
RFRNR)T⊗6

1
2
D)vec(H̄RD)vec(H̄RD)H

×((6
1
2
RFRNR)∗⊗6

1
2
D)]+E[vec(N

[2]
D )vec(N [2]

D )H ]

= σ 2
hE
[
(N̄

T
R9

1
2T
R FTR6T

RF
∗
R9

1
2T
R N̄

∗

R)⊗6D
]

+E
[
vec(N [2]

D )vec(N [2]
D )H

]
= σ 2

n IK+L ⊗ (σ̄ 2
r 6D +9D)

= σ 2
n IK+L ⊗ (σ̄ 2

r 6̂D + σ̄
2
r ED + 9̂D + END). (56)

where σ̄ 2
r = σ

2
hTr((9̂

T
R + E

T
NR)F

T
R (6̂

T
R + E

T
R )F
∗
R). Naturally,

we can also introduce a novel statistical error matrix ẼND ∈
CND×ND to replace the coupled error terms {ENR,ER, ED} in
function (σ̄ 2

r 6D+9D). As a result, the formulation (56) can
be rewritten as

E[vec(HRDFRNR+N
[2]
D )vec(HRDFRNR+N

[2]
D )H ]

= σ 2
n IK+L ⊗ (σ̂ 2

r 6̂D+9̂D+ẼND), (57)

where σ̂ 2
r = σ 2

hTr(9̂
T
RF

T
R 6̂

T
RF
∗
R). Further based on (55)

and (57), the imperfect noise covariance matrix R̃n in (8) is
finally derived as the formulation (53), as shown at the top of
this page.

APPENDIX B
lemma 1: [56] For a diagonal matrix L ∈ RN×N with ±1
being diagonal elements, then we have L2= I and L3L=3

for the arbitrary diagonal matrix 3. Based on this, the diago-
nal matrix 3X which shares the same diagonal elements with

those of the matrix X can be expressed as 3X =
1
T

∑
L∈L

LXL.

Here, L represents the set of all T =2N possible forms of L.
Recalling the problem (30), we define R̃S= Û

H
S R̃C̃ÛS and

then rexpress the objective function of (30) as

f (R̃S )=max
E ′∈ξ

Tr
{(
σ−2h (3S+E′S )

−1
⊗(3D+E′D)

−1

+σ−2n λmax(W∗)−1R̃S⊗(�D+E′ND)
−1
)−1}

+Tr
{(

(σ̂ 2
h3S+̃E

′

S )
−1
⊗(3D+E′D)

−1

+ σ−2n λmax(W∗)−1R̃S⊗(�D+σ̂
2
r 3D+Ẽ

′

ND)
−1
)−1}
(58)

Then based on lemma 1, we have the formulation (61), as
shown at the top of the next page, where

−→
E ′ = {

−→
E ′S ,
−→
Ẽ ′S ,E

′
D,E

′
ND, Ẽ

′

ND} (59)

and LNS denotes the NS -dimensional matrix L. Besides,
the last equality results from the fact that for the arbitrary
unitarily-invariant statistical error E ∈ ξ , LEL ∈ ξ also
holds due to the unitary matrix L. Further considering the
convexity of f (R̃S ) w.r.t R̃S because of the function Tr(A)−1

and utilizing the Jensen inequality, we have

f (3C ) = f (
1
T

∑
LNS∈L

LNS R̃SLNS )

≤
1
T

∑
LNS∈L

f (LNS R̃SLNS ) = f (R̃S ). (60)

where the diagonal matrix 3C has the same diagonal ele-
ments as that of R̃S = ÛH

S R̃C̃ÛS . The formulation (60)
indicates that for any given R̃S , its diagonal structured coun-
terpart 3C achieves the smaller value of function f (R̃S ), that
is f (3C ) ≤ f (R̃S ). Besides, for the problem (30), we also
have power constraints Tr(R̃C̃ ) = Tr(R̃S ) = Tr(3C ) ≤ P′S ,
which indicates that the optimal R̃S of problem (30) should
be diagonal. Furthermore, recalling that C = C̃1(Q

[1:NS ]
H )H

and RC̃ = C̃∗1C̃
T
1 as well as R̃C̃ = λmax(W∗)RC̃ and R̃S =

UH
S R̃C̃US , the superimposed training matrix C is expressed

as C = λmax(W∗)−
1
2 Û∗S3

1
2
CQA(Q

[1:NS ]
H )T in (33), where QA

satisfying QAQ
H
A = INS is an arbitrary orthogonal unitary

matrix. As for the derivation of the worst case channel and
noise statistical errors

−→
E ′={

−→
E ′S ,
−→
Ẽ ′S ,E

′
D,E

′
ND, Ẽ

′

ND}, we
take {E′ND, Ẽ

′

ND} as an example and substitute the diagonal

VOLUME 7, 2019 80417



B. Rong et al.: Robust Superimposed Training Designs for MIMO Relaying Systems Under General Power Constraints

f (LNS R̃SLNS )=max−→
E ′∈ξ

Tr
{(
σ−2h (3S+LNSE

′
SLNS︸ ︷︷ ︸

−→
E ′S∈ξ

)−1⊗(3D+E′D)
−1
+σ−2n λmax(W∗)−1R̃S⊗(�D+E′ND)

−1)−1}

+Tr
{(

(σ̂ 2
h3S+LNS Ẽ

′

SLNS︸ ︷︷ ︸
−→
Ẽ ′S∈ξ

)−1⊗(3D+E′D)
−1
+σ−2n λmax(W∗)−1R̃S⊗(�D+σ̂

2
r 3D+Ẽ

′

ND)
−1)−1}

= f (R̃S ) (61)

f (LNDE
′
NDLND ,LNDẼ

′

NDLND )

= max
Ê′∈ξ

Tr
{(
σ−2h (3S+E′S )

−1
⊗(3D+LNDE

′
DLND︸ ︷︷ ︸

−→
E ′D∈ξ

)−1+σ−2n λmax(W∗)−13C⊗(�D+E′ND)
−1)−1}

+Tr
{(

(σ̂ 2
h3S+̃E

′

S )
−1
⊗(3D+LNDE

′
DLND︸ ︷︷ ︸

−→
E ′D∈ξ

)−1+σ−2n λmax(W∗)−13C⊗(�D+σ̂
2
r 3D+Ẽ

′

ND)
−1)−1}

= f (E′ND, Ẽ
′

ND) (62)

3C into the function f (R̃S ) to redefine it as

f (E′ND, Ẽ
′

ND)

= max{
E′S ,

Ẽ′S ,E
′
D

}
∈ξ

Tr
{(
σ−2h (3S + E′S )

−1
⊗ (3D + E′D)

−1

+ σ−2n λmax(W∗)−13C ⊗ (�D + E′ND)
−1
)−1}

+Tr
{(

(σ̂ 2
h3S + Ẽ

′

S )
−1
⊗ (3D + E′D)

−1

+ σ−2n λmax(W∗)−13C ⊗ (�D + σ̂
2
r 3D + Ẽ

′

ND)
−1
)−1}

.

(63)

Similarly to deriving3C , we firstly give the formulation (62),
as shown at the top of this page, where the set of Ê′ =
{E′S , Ẽ

′

S ,
−→
E ′D} is still unitarily-invariant and LND denotes

the ND-dimensional matrix L. Due to the joint concavity of
f (LNDE

′
NDLND , LNDẼ

′

NDLND ) as indicated in Appendix A,
we have

f (3E′ND
,3Ẽ′ND

)

= f (
1
T

∑
LND∈L

LNDE
′
NDLND ,

1
T

∑
LND∈L

LNDẼ
′

NDLND )

≥
1
T

∑
LND∈L

f (LNDE
′
NDLND ,LNDẼ

′

NDLND )

= f (E′ND, Ẽ
′

ND). (64)

Therefore, for any given feasible {E′ND, Ẽ
′

ND}, it can be
concluded that the diagonal matrices {3E′ND

,3Ẽ′ND
} achieve

the maximum value of f (E′ND, Ẽ
′

ND). In order to compute
the diagonal {E′ND, Ẽ

′

ND}, the noise uncertainties {END, ẼND}
should satisfy END = ÛD3E′ND

ÛH
D and ẼND = ÛD3Ẽ′ND̂

UH
D

by referring to E′ND = ÛH
DENDÛD and Ẽ′ND= Û

H
D ẼNDÛD.

It is worth highlighting that the detailed proof of the diagonal
{E′S , Ẽ

′

S ,E
′
D} is almost the same as that of {E′ND, Ẽ

′

ND}. Thus
the original {ES , ẼS ,ED} can be derived as that in (33). Due
to space limitation, it is omitted this paper.
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