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ABSTRACT Reconstructing the interference-plus-noise covariance matrix instead of searching for the
optimal diagonal loading factor for the sample covariance matrix is a good method for calculating the
adaptive beamforming coefficients. However, when the directions-of-arrival (DOAs) and the number of
the interferences are unknown and the steering vector has an error, the reconstructed interference-plus-
noise covariance matrix might not be accurate, which degrades the performance of adaptive beamforming.
Here, we propose a robust Capon beamforming approach, which is suited to the sparse array with the
array steering error and the unknown interference DOAs. In particular, by drawing a modified optimization
problem and the mean shift model of the interference covariance matrix, we propose the robust beamforming
with the importance resampling based compressive covariance sensing, which is shown to outperform the
classical beamforming method based on reconstructing the interference-plus-noise covariance matrix. The
key to our approach is the new solution of the reconstructing method and the important functions. The
excellent performance of the proposed approach for interference suppression is demonstrated via a number
of numerical examples.

INDEX TERMS Adaptive beamforming, compressive covariance sensing, sparse antenna array, importance
resampling.

I. INTRODUCTION
Adaptive beamforming can form the narrow receiving beam
pointing to the desired signal and nulls pointing to the inter-
ferences, which is widely used in radar, sonar, wireless com-
munications, and other areas [1]–[3]. There are some ideal
adaptive beamforming approaches which assume that the
desired signal components are not present in the training
data [1]. In practice, the assumption of signal-free train-
ing data may not be valid, thus the exact interference-plus-
noise covariance matrix is usually unavailable. Moreover,
various errors and nonideal factors exist in the practical
antenna arrays, such as source wavefront distortions, look
direction errors, imperfect array calibration, and distorted
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antenna shape [2]–[15]. Therefore, sufficient robustness of
the adaptive beamformers is required. Because of their good
resolution and interference rejection capability, the robust
Capon beamforming methods based on the diagonal load-
ing and subspace-based adaptive beamforming methods are
widely used [3]–[5]. In the presence of an arbitrary unknown
signal steering vector mismatch, worst-case optimization
based beamformers in the form of convex second-order cone
program [6] can be used.

In recent years, many new approaches to robust adaptive
beamforming have still been proposed [7]–[15]. A novel
method named spatial power spectrum sampling is pro-
posed to reconstruct the interference-plus-noise covariance
matrix in [7]. In [8], a robust diagonal loading algorithm
against steering vector mismatch is proposed, which esti-
mates beam-to-reference ratio firstly and then uses it as
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a weighting factor for variable diagonal loading. In [9],
an outlier-resistant beamformer design criterion based on
minimizing the expectation of themodulus of the array output
with a regularization term being added for sidelobe sup-
pression is proposed. In [10], a robust linear programming
beamformer is proposed, which minimizes the norm of the
output to exploit the non-Gaussianity and to achieve robust-
ness against steering vector mismatch. To obtain a robust
beamformer, the symmetric structure of the array weights is
used to transform the non-convex constraint into a convex
one without any relaxation or approximation [11]. In [12],
the Capon beamformer and reconstructed interference-plus-
noise covariance matrix constructed by the mutual coupling
matrix are used for robust beamforming in the case of the
mutual coupling effects. In order to address the issue of
robust beamforming with the precise main beam control in
the presence of arbitrary steering vector uncertainties, in [13],
the lower and upper norm bounds of the beamformer weight
vector are derived. The semidefinite relaxation technique is
then employed as an approximate solver, ending up with
iterative, grid search, and linearization solutions. For cost-
effective low-rank techniques of designing robust adaptive
beamforming algorithms, [14] proposes an algorithm based
on the exploitation of the cross-correlation between the array
observation data and output of the beamformer. In [15],
attempts have been made to reconstruct the interference-
plus-noise covariance matrix instead of searching for the
optimal diagonal loading factor for the sample covariance
matrix. To solve the steering vector error dominated by large
DOA mismatch, a robust Capon beamforming approach is
proposed in [16] and its essence is to decompose the actual
steering vector into two components by oblique projection
onto a subspace and then estimate the actual steering vec-
tor in two steps. A robust adaptive beamforming technique
based on a modification of the robust Capon beamform-
ing approach with approximate orthogonal projection onto
the signal-plus-interference subspace is introduced in [17].
In [18], a middle subarray interference-plus-noise covariance
matrix reconstruction approach is proposed to mitigate the
mutual coupling problem in robust adaptive beamforming.
Based on interference-plus-noise covariance matrix recon-
struction with interference steering vector and power estima-
tion, a robust adaptive beamforming algorithm is proposed
in [19]. In [20], a robust adaptive beamforming using k-means
clustering is proposed, which is a solution to high complexity
of the reconstruction-based algorithm. An iterative adaptive
approach based on angular sector reconstruction algorithm
to reconstruct the interference-plus-noise covariance matrix
is proposed in [21]. In [22], a new approach to MVDR
beamforming which is suited to high-dimensional settings is
proposed, and its key is the design of an optimized inverse
covariance estimator, which applies eigenvalue clipping and
shrinkage functions that are tailored to the MVDR applica-
tion. Two new reconstruction-based robust adaptive beam-
formers by using the accurate iterative adaptive approach
spectrum to combat the covariance matrix uncertainties and

the steering vector mismatches are proposed in [23]. In [24],
an enhanced eigenspace-based beamformer derived using the
minimum sensitivity criterion is proposed with significantly
improved robustness against steering vector errors. In [25],
the fractional lower order covariance based minimum vari-
ance distortionless response beamformer is introduced, which
has great white noise array gain. In [26], to solve inaccuracies
in DOA, adding appropriate constraints in the determination
of beamforming weights is used to improve the robustness of
MVDR beamformers and optimizing array configurations is
used to enhance system robustness. In [27], a deconvolution
algorithm used in image deblurring to the conventional beam
power of a uniform line array (spaced at half-wavelength) is
applied to avoid the instability problems of common deconvo-
lution methods. In [28], a novel robust beamforming method
is devised to receive multipath signals effectively, which
constructs a transformation matrix derived through high-
order angle constraint to suppress the interferences with the
directions of arrival of interference signals. In [29], based on
analyzing the effect of nonuniform array configurations on
adaptive beamforming for enhanced signal-to-interference-
plus-noise ratio, three sparse array design methods are pro-
posed. In [30], a novel coprime array adaptive beamforming
algorithm is proposed, where both robustness and efficiency
are well balanced.

Compressive covariance sensing is a novel approach to
reconstruct the covariance matrix from the compressed sig-
nal, which can be applied to the numerous applications such
as power-spectrum estimation, incoherent imaging, direction-
of-arrival estimation, frequency estimation, and wideband
spectrum sensing [31]–[33]. For the case of the reconstruction
of the interference-plus-noise covariance matrix, compres-
sive covariance sensing can be seen as the extensions of
the reconstruction approaches. Moreover, a sparse antenna
array can be expressed as a compressed antenna array, which
is coincident with the application condition of compressive
covariance sensing.

In practical applications, reconstructing the interference-
plus-noise covariance matrix is a good method for calcu-
lating the beamformers. However, as the estimates of the
directions-of-arrival (DOAs) and the number of the inter-
ferences might not be accurate enough, the reconstructed
interference-plus-noise covariance matrix is different from
the actual interference-plus-noise covariance matrix, which
degrades the performance of the method. Thus, a more accu-
rate interference-plus-noise covariance matrix is needed for
better beamforming performance. In this paper, we show
how to establish our robust Capon beamformer based on the
compressive covariance sensing. The main contributions are
summarized as follows. Firstly, different with the Stochas-
tic Differential Equation (SDE) based group targets model
described in [34], we provide a compound model of the
interferences based on SDE, which is related to the time-
varying interference angle positions and the interaction of
the eigen-subspace corresponding to each interference during
the DOA estimation process respectively. And the compound
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model is the basis of the probability distribution of the DOAs
of the interferences. Secondly, based on three different cases
of the DOA resolution and estimation of the interferences,
the mean shift model of the interference covariance matrix
is proposed to reconstruct the interference covariance matrix.
These two models provide more accurate interference covari-
ance matrix in the presence of unknown array steering error
and time-varying interferences, which can be also interpreted
as the probability distribution of the covariance matrix for
the importance resampling. Finally, the importance resam-
pling is used to reconstruct the interference covariance matrix
with the proper weights which are related to the importance
functions. Furthermore, three different importance functions
are provided and their computational complexity is ana-
lyzed. Compared with the traditional beamformers, the robust
Capon beamforming approach using the importance resam-
pling based compressive covariance sensing has better output
SINR of interference suppression.

This paper is organized as follows. In Section II, the adap-
tive beamforming optimization problem and the signal
model with coherent sources, time-varying DOAs of inter-
ferences, sparse array and array steering error are formulated.
In Section III, the compoundmodel of the interferences based
on SDE is established and the mean shift model for the
reconstruction of the interference covariance matrix is intro-
duced.Meanwhile, an importance resampling process and the
selection of the importance function are discussed. Numerical
examples for different scenarios are shown in Section IV and
conclusions are drawn in Section V.

II. PROBLEM FORMULATION
A. BASIC DATA MODEL
We discuss the problem of robust digital beamforming for
coherent signals and coherent interferences received by a
uniform linear array (ULA) with N ′ antennas and the inter-
element spacing is d . At time t , there are K narrow-band
coherent signal sources and P narrow-band coherent interfer-
ences which are expressed as s1(t), s2(t), . . ., sK (t) and j̄1(t),
j̄2(t), . . ., j̄P(t) where the signals and interferences are phase-
delayed amplitude-weighted replicas of one of them [35].
All of them have the identical center wavelength λ. The
signals arrive from the DOAs θ1, θ2, . . ., θK , and the spatial
nonstationary interferences arrive from the directions ϕ1(t),
ϕ2(t), . . ., ϕP(t), which are time-varying and can be written as

ϕp(t) = ϕ0p (t)+1ϕ(t) · rand(t) (1)

where ϕ0p (t) denotes the center of the p-th interference direc-
tion (p = 1, 2, . . . ,P), 1ϕ(t) > 0 corresponds to the vari-
ation range, rand(t) represents a random number that varies
uniformly between [−1, 1].
In the case where the array steering vector contains errors,

we denote the error vector as 1x , which is bounded by a
known constant ε > 0, that is

‖1x‖ ≤ ε (2)

Then, the actual array steering vector can be expressed as c,
which is written as

c = a+1x (3)

where a is the ideal array steering vector without error, which
is denoted as

a = [1, ej2πd sin θ/λ, · · · , ej2π (N
′
−1)d sin θ/λ]H (4)

The observation errors induced by the error of the array
steering vector at the n-th sensor is denoted as 1x

n, which is
also assumed Gaussian distribution with zero mean. There-
fore, the observation model for the n-th sensor of the actual
array is

x̄n(t) = xn(t)+1x
n

=

K∑
k=1

sk (t)ej2π (n−1)d sin θk/λ

+

P∑
p=1

j̄p(t)ej2π (n−1)d sinϕp/λ + ξn(t)+1x
n (5)

where ξn(t) is the noise of the n-th antenna element, which is
assumed Gaussian distribution with zero mean and variance
σ 2
ξ , and xn(t) is the observation model for the n-th antenna

element without the error of the array steering vector, which
is written as

xn(t) =
K∑
k=1

sk (t)ej2π (n−1)d sin θk/λ

+

P∑
p=1

j̄p(t)ej2π (n−1)d sinϕp/λ + ξn(t) (6)

The signals and the interferences are in the far field of the
antenna array, which can be considered as the plane wave.

Equation (5) can be rewritten as

x̄n(t) = x̄0n (t)+ ξn(t)+1
x
n (7)

where x̄n(t) is the observation model for the n-th antenna
element without the noise and the error of the array steering
vector, which is written as

x̄0n (t) =
K∑
k=1

sk (t)ej2π (n−1)d sin θk/λ

+

P∑
p=1

j̄p(t)ej2π (n−1)d sinϕp/λ (8)

The output data of the array can be expressed as

x(t) = [x̄1(t), x̄2(t), · · · , x̄N ′ (t)]
T

= x0(t)+1x(t) (9)

where

x0(t) = [x̄01 (t), x̄
0
2 (t), · · · , x̄

0
N ′ (t)]

T (10)

1x(t) = [ξ1(t)+1x
1, ξ2(t)+1

x
2, · · · , ξN (t)+1

x
N ′ ]

T (11)
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FIGURE 1. Illustration of a sparse antenna array.

Considering a sparse array [36], shown in Fig. 1 (the DOA
of the signal source is θ ), we only reserve N active antennas
(shown in the solid line) which have indices q0, . . . , qN−1.
The data vector received by this subarray at time t , which
can be seen as a compressed observation, is given by
ȳ(t) = [x̄q0 (t), . . . , x̄qN−1 (t)]

T . Then the output signals can
be expressed as

ȳ(t) = 8x(t)

= 8x̄0(t)+81x̄(t) (12)

The matrix 8 which is N × N ′ dimension, contains ones at
the positions (i, j) and zeros elsewhere, where i = 1, 2, . . .,
N , and j = q0, . . . , qN−1 respectively. Therefore, the sparse
matrix8 has at most one nonzero element at each row or col-
umn, which can be randomly selected. When the signals and
interferences are mixed together, the accurate interference
covariance matrix cannot be always obtained from the receiv-
ing data directly. The following section considers how to
reconstruct the interference covariance matrix.

B. ADAPTIVE BEAMFORMING OPTIMIZATION PROBLEM
The DOAs of the interferences can be estimated using the
MUSIC [37] algorithm based on the spatial smoothing tech-
nique [35]. As the interference DOAs are ϕi, where i =
1, 2, . . . ,P, the reconstructed interference covariance matrix
can be expressed as

Rc =

P∑
i=1

αi8cicHi 8H

=

P∑
i=1

αi8(ai +1i)(ai +1i)H8H

=

P∑
i=1

αi8aiaHi 8H
+191 +192 +1 (13)

where

191 =

P∑
i=1

αi8ai1H
i 8H

192 =

P∑
i=1

αi81iaHi 8H

1 =

P∑
i=1

αi81i1
H
i 8H (14)

And ci is the actual array steering vector corresponding to the
middle of i-th interference, 1i is its error of the array steering
vector, ai is the ideal array steering vector, αi is the power
corresponding to each sub-interval, where i = 1, 2, . . ., P.
Let the actual value of the array response be more than one,

that is ∣∣∣wHc
∣∣∣ ≥ 1 (15)

Formula (15) can be rewritten as

min
∣∣∣wHc

∣∣∣ ≥ 1 (16)

Based on (3), the constraint in (16) is equivalent to

min
∣∣∣wHa+ wH1

∣∣∣ ≥ 1 (17)

Furthermore, using the Cauchy Schwartz inequality and (2),
we have∣∣∣wHa+ wH1

∣∣∣ ≥ ∣∣∣wHa
∣∣∣− ∣∣∣wH1

∣∣∣ ≥ ∣∣∣wHa
∣∣∣−ε ‖w‖ (18)

Therefore, we have

min
∣∣∣wHa+ wH1

∣∣∣ = ∣∣∣wHa
∣∣∣−ε ‖w‖ (19)

where we assume that
∣∣wHa

∣∣ > ε ‖w‖.
Thus, the optimization problem (17) can be transformed

into the following minimization problem

min(
∣∣∣wHa

∣∣∣− ε ‖w‖) ≥ 1 (20)

In [6], it is proved that the constraint min(
∣∣wHa

∣∣− ε ‖w‖) in
(20) is equivalent to

∣∣wHa
∣∣ = ε ‖w‖+1. Thus, (20) can be

rewritten as ∣∣∣wHa− 1
∣∣∣2 = ε2wHw (21)

Then, according to the optimization problem in [6] and (21),
the adaptive beamforming problem can be transformed into
the following constrained minimization problem

min
w, Rc

wHRcw subject to


∣∣wHa− 1

∣∣2 = ε2wHw

Rc =
P∑
i=1
αi8aiaHi 8H

+191 +192 +1

(22)

When Rc is known, w in (22) can be solved with (68) in
Appendix A. Therefore, the optimization problem in (22) is
transformed as a covariance fitting problem, which needs to
reconstruct the interference covariance matrix and the equa-
tion can be written as

Rc = 8c8Rorg (23)

where Rorg is the actual interference covariance matrix of the
original non-sparse array, 8c is the corresponding transfor-
mation matrix.

From the form of the transformation formula (23), it is
close to the formula of the compressive sensing problem.
From [33], we know that this problem can be taken as the
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compressive covariance sensing problem, and we can recover
the original Rorg according to the constructed Rc. However,
the transformation matrix 8c is also unknown, and the exact
original covariance matrix Rorg cannot be obtained directly
by the compressive sensing algorithm. Therefore, the modifi-
cation approach of the reconstructed interference covariance
matrix is needed.

III. NEW ROBUST CAPON BEAMFORMING BASED
ON COMPRESSIVE COVARIANCE SENSING
A. COMPOUND MODEL OF THE INTERFERENCES
BASED ON SDE
In [34], a dynamical model based on SDE for target states
conditional upon group structure is introduced. Based on
the dynamical model, here we suppose that ϕ̂t,i is the com-
pound DOA, and ϕ̂it,i is the time-varying DOA of the i-th
interference at time t , and ϕ̂st,i is the DOA estimate of the
i-th interference at time t by the eigen-subspace algorithm,
we have

ϕ̂t,i =
1
2

(
ϕ̂it,i + ϕ̂

s
t,i

)
(24)

Definition 1: The compound model of the interferences
written as (24) is a dynamical model based on SDE for
the DOA and the DOA estimates of interferences, which is
divided into two parts. One part is the time-varying inter-
ference DOA, and the other part is the interaction of the
eigen-subspace corresponding to each interference during the
interference DOA estimation process.

According to the description of SDE [34], we have

d ˙̂ϕit,i = −γ1 ˙̂ϕ
i
t,idt + dŴ

i
t,i (25)

d ˙̂ϕst,i = {−α[ϕ̂
s
t,i − f2(ϕ̂

s
t,i)]− γ2 ˙̂ϕ

s
t,i]}dt + dŴ

s
t,i (26)

where Ŵi
t,i is a Brownian motion which is related to the time-

varying interference DOA, f2(ϕ̂st,i) is the mean of all of the
interference DOAs, Ŵs

t,i is another Brownian motion which
is related to the DOA estimation. γ1, γ2 and α are positive,
which can be interpreted as the strength of the pull towards
themean of all of the interferenceDOAs. At time t , the ‘‘mean
reversion’’ term γ1 ˙̂ϕit,i and γ2

˙̂ϕst,i simply prevent the velocities
drifting up to very large values.

Let ϕ̂̂ϕ̂ϕt =
[
ϕ̂t,1, ˙̂ϕt,1, ϕ̂t,2,

˙̂ϕt,2, . . . , ϕ̂t,P, ˙̂ϕt,P

]T
, accord-

ing to (24)

ϕ̂̂ϕ̂ϕt =
1
2
Hϕϕϕt (27)

where

H =


1 0 · · · 0 1 0 · · · 0

0 1
... 0 1

...
...

. . . 0
...

. . . 0
0 · · · 0 1 0 · · · 0 1


2P×4P

(28)

ϕϕϕt =

[
ϕ̂ϕϕ
i
t
ϕ̂ϕϕ
s
t

]
(29)

ϕ̂ϕϕ
i
t =

[
ϕ̂it1,
˙̂ϕit1, ϕ̂

i
t,2,
˙̂ϕit,2, . . . , ϕ̂

i
t,P,
˙̂ϕit,P

]T
(30)

ϕ̂ϕϕ
s
t =

[
ϕ̂st1,
˙̂ϕst1, ϕ̂

s
t,2,
˙̂ϕst,2, . . . , ϕ̂

s
t,P,
˙̂ϕst,P

]T
(31)

According to [34], ϕϕϕt and its transition probability obey
Gaussian distribution, and ϕ̂ϕϕit and ϕ̂ϕϕ

s
t are also Gaussian distri-

bution with different variances. According to (27), the ϕ̂t,i in
ϕ̂ϕϕt is a compound Gaussian model.

Suppose the ϕ̂t,i in ϕ̂ϕϕt obeys a compound Gaus-
sian distribution with a mean of θ̃θθ t and a variance of
εεε2t , where εεε2t is a diagonal matrix. Suppose θ̃θθ t =[
θ̂ it,1,
˙̂
θ it,1, θ̂

i
t,2,
˙̂
θ it,2, . . . , θ̂

i
t,P,
˙̂
θ it,P,

θ̂ st,1,
˙̂
θ st,1, θ̂

s
t,2,
˙̂
θ st,2, . . . , θ̂

s
t,P,
˙̂
θ st,P

]T
, εεε2t has a diagonal ele-

ment of
(
ε̂it,1

)2
,
(
˙̂εit,1

)2
,
(
ε̂it,2

)2
,
(
˙̂εit,2

)2
, . . .,

(
ε̂it,P

)2
,(

˙̂εit,P

)2
,
(
ε̂st,1

)2
,
(
˙̂εst,1

)2
,
(
ε̂st,2

)2
,
(
˙̂εst,2

)2
, . . .,

(
ε̂st,P

)2
,(

˙̂εst,P

)2
, are the mean and variance of the time-varying DOA

of the i-th interference at time t , θ̂ st,i and
(
ε̂st,i

)2
are the mean

and variance of the DOA estimate of the i-th interference
at time t by the eigen-subspace algorithm. Suppose θ̂t,i and(
ε̂t,i

)2
are the mean and the variance of the compound angle

position ϕ̂t,i, which are expressed as

θ̂t,i =
1
2

(
θ̂ it,i + θ̂

s
t,i

)
(32)(

ε̂t,i
)2
=

1
2

[(
ε̂it,i

)2
+
(
ε̂st,i
)2] (33)

B. RECONSTRUCTION OF THE INTERFERENCE
COVARIANCE MATRIX
1) THE CASE WHEN THE INTERFERENCES CAN BE
RESOLVED AND THE ESTIMATES ARE UNBIASED
According to the compound Gaussian model of the interfer-
ences, the DOA of the i-th interference at time t is located in
[θ̂t,i − 3ε̂t,i, θ̂t,i + 3ε̂t,i] with 0.997 probability [38]. In the
case that the interferences can be resolved and the estimates
are unbiased, the reconstructed covariance matrix can be
expressed as

Rc,1 =

P∑
i=1

∫ θ̂t,i+3ε̂t,i

θ̂t,i−3ε̂t,i
αi8Ri(θ )8Hdθ+191+192 +1

(34)

where Ri(θ ) = ai(θ )aHi (θ ) and ε̂t,i represents the stan-
dard deviation, indicating the value of the interference angle
changes within the interval at time t , which is derived
in Appendix B.

2) THE CASE WHEN THE INTERFERENCE CAN BE
RESOLVED BUT THE ESTIMATES ARE BIASED
In the case that the interference can be resolved but the
estimates are biased, the reconstructed covariance matrix can

80482 VOLUME 7, 2019



Y. Hou et al.: Robust Capon Beamforming Approach for Sparse Array

be expressed as

Rc,2 =

P∑
i=1

∫ θ̂t,i+1θ̂t,i+3ε̂t,i

θ̂t,i+1θ̂t,i−3ε̂t,i
αi8Ri(θ )8Hdθ

+191 +192 +1 (35)

where 1θ̂t,i is the estimation bias of the i-th interference at
time t .

3) THE CASE WHEN THE INTERFERENCES
CANNOT BE RESOLVED
If the interferences cannot be resolved, we suppose that the
p′ intervals of the interference DOAs can be obtained, where
p′ < P. Suppose the possible p′ intervals of interference
are

[
θ̂k −

1
21θ̂k , θ̂k +

1
21θ̂k

]
, where k = 1, 2, . . . , p′, θ̂k is

the center value of the k-th interval and 1θ̂k is the length of
the k-th interval. The reconstructed covariance matrix can be
expressed as

Rc,3 =

p′∑
k=1

∫ θ̂k+
1
21θ̂k

θ̂k−
1
21θ̂k

αi8Ri(θ )8Hdθ +191 +192 +1

(36)

4) THE MEAN SHIFT MODEL OF INTERFERENCE
COVARIANCE MATRIX
In order to find the most suitable models, based on the
three models described above and the mean shift algorithm
described in [39] and [40], we take Rc,i (i = 1, 2, 3) as the
samples in the N × N dimensional space, then we have the
mean shift matrix Mshift as

Mshift =

3∑
i=1
2
(
wi
)
wiRc,i

3∑
i=1
2
(
wi
)
wi

− Rorg

= Rshift − Rorg (37)

where 2(·) is the kernel function, for example, it can be the
sigmoid function. Rorg is the actual interference covariance
matrix of the compressed array.wi (i = 1, 2, 3) are the weight
coefficients, which are obtained by the importance function
described below. And Rshift is the mean shift reconstruction
of the interference covariance matrix, which is denoted as

Rshift =

3∑
i=1
2
(
wi
)
wiRc,i

3∑
i=1
2
(
wi
)
wi

(38)

C. ESTABLISHING AN IMPORTANCE
RESAMPLING PROCESS
In the following, the estimation process of Rorg is regarded
as a sequential signal processing, and the state-space and
observation equations are established as

Rorg(t) = ft
(
Rorg(t − 1),ut

)
Rc(t) = gt

(
Rorg(t), vt

)
(39)

where ft (·) is a system transition function, gt (·) is a mea-
surement function, ut and vt are the noise vectors. Rorg(t)
is the actual interference covariance matrix at time t , Rc(t)
is the reconstructed interference covariance matrix which is
equivalent to a measurement data matrix. According to the
compound model of the interferences based on SDE, (39) can
be rewritten as

Rorg(t) = Rorg(t − 1)+
P∑
i=1

1Ri(1θt−1)

Rc(t) = Rorg(t)+1Rshift (t) (40)

where 1Ri(1θt−1) is the difference of the actual interfer-
ence covariance matrix induced by the DOA difference 1θt
between time t-1 and time t . And 1Rshift (t) is the difference
between the reconstructed interference covariance matrix and
the actual interference covariance matrix at time t .

According to [41], the joint posteriori distribution of
Rorg(0),Rorg(1), . . ., Rorg(t) in the case of the independent
noise samples is approximated by the distribution of interest
χ , which is

χ =
{
Rorg(t)(m),w(m)

}M
m=1

(41)

where Rorg(t)(m) is the matrix formed by the elements of the
particles, w(m) is the weight, andM is the number of particles
used in the approximation.

Thus, the actual interference covariance matrixRorg can be
written as

Rorg =

M∑
m=1

w(m)Rorg(t)(m) = wM · R̃org(t) (42)

From (23) and (42), we have

Rc = 8c8Rorg = wM8c8R̃org(t) = wM · R̃c(t) (43)

where

wM =

[
w(1),w(2), . . . ,w(M )

]
R̃org(t) =

[
Rorg(t)(1),Rorg(t)(2), . . . ,Rorg(t)(M )

]T
R̃c(t) = 8c8R̃org(t)

R̃c(t) =
[
Rc(t)(1),Rc(t)(2), . . . ,Rc(t)(M )

]T
Rc(t)(m) = 8c8Rorg(t)(m) m = 1, 2, · · · ,M (44)

We denote the particle matrix of Rshift in (38) as
Rshift (t)(m)(m = 1, 2, . . . ,M ), and let R̃c(t) = R̃shift (t) and
Rc(t)(m) = Rshift (t)(m). From (43), we have

Rc = wM · R̃shift (t) =
M∑
m=1

w(m)Rshift (t)(m) (45)

In order to select the optimal weight combination,
we establish the importance resampling based compressive
covariance sensing method, as shown in Table 1.
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TABLE 1. The importance resampling based compressive covariance
sensing method.

D. THREE IMPORTANCE FUNCTIONS
1) MAXIMIZATION OF THE BEAM-SPACE MUSIC SPECTRUM
The maximization of the beam-space MUSIC [42] spectrum
is used as an importance function. Assuming that the number
of the beamformers is D, the signals received by the antenna
array are transformed by these D beamformers. The role of
the beamformers is to point the bearings to the sector of
interest and its output can be expressed as

zj(t) =
N∑
i=1

tHji ȳi(t) =t
H
j ȳ(t), j = 1, 2, . . . ,D (46)

where zj(t) is the j-th signal in the beam-space, ȳi(t) is the sig-
nal received by the i-th antenna element, which is the element
of the signals vector ȳ(t) of the array space, tji is the weight
coefficient of j-th beamformer to i-th antenna element, tj is
the weight coefficient vector. The beam-space signals can be
written as

z(t) = TH ȳ(t) (47)

where T = [t1, t2, . . . , tD] is the beamforming matrix which
consists of the weight coefficients of these D beamformers.
The covariance matrix of z(t) is

R0 = E{z(t)zH (t)} (48)

The beam-space signal subspace UBS and the beam-
space noise subspace UBN can be obtained by the eigen-
decomposition of thematrixR0, then the beam-spaceMUSIC
spectrum can be written as

p(θ ) =
1

(TH8a(θ ))HUBNUH
BNT

H8a(θ )
(49)

Assuming that the maximum amplitude of the beam-space
MUSIC spectrum is max(p(θ )), the mean amplitude of the
beam-space MUSIC spectrum is mean(p(θ )), denote the dif-
ference between these two amplitudes as

1p = max(p(θ ))−mean(p(θ )) (50)

Corresponding to the m-th particle matrix, 1p can be
obtained, which can be recorded as 1p(m). Thus, when the

beam spatial MUSIC algorithm spectrum is maximized as an
objective function, the weight w(m)

1 is

w(m)
1 = 1p

(m) (51)

2) MAXIMUM LIKELIHOOD FUNCTION
According to the reference [43], the maximum likelihood
estimation for the signal DOA θ is

max
θ

Tr
[
PTH8a(θ )R

(m)
0

]
(52)

where Tr(·) is the trace of a matrix, and

PTH8a(θ )=T
H8a(θ )

[
(8a(θ ))HTTH8a(θ )

]−1
· (8a(θ ))HT

(53)

which is a projection operator projected onto the space
formed by the column vector of TH8a(θ ), and R(m)

0 is the
beam-space covariance matrix of the m-th iterative. With the
eigen-decomposition on R(m)

0 , we have

R(m)
0 =

D∑
i=1

λ
(m)
i e(m)i

(
e(m)i

)H
(54)

where λ(m)i is the eigenvalue of matrix R(m)
0 and e(m)i is the

eigenvector corresponding to λ(m)i . Thus, the maximum like-
lihood estimation is

max
θ

D∑
i=1

λ
(m)
i

∥∥∥PTH8a(θ )e
(m)
i

∥∥∥2 (55)

According to (54), the maximum of maximum likelihood
function which is also the value of the importance resampling
function can be obtained. Thus, the weight w(m)

2 is

w(m)
2 = max

θ

D∑
i=1

λ
(m)
i

∥∥∥PTH8a(θ )e
(m)
i

∥∥∥2 (56)

3) MATCHED FILTER MAGNITUDE AFTER THE ADAPTIVE
BEAMFORMING
We consider the maximal value of the matched filter magni-
tude after the adaptive beamforming as an importance func-
tion, which is denoted as

max
∥∥∥tHm ȳ(t)∥∥∥2 m = 1, 2, . . . ,D (57)

In (57), the weight vector tm of the matched filter which
points to the direction of the signal. With the constant beam-
forming matrix, the importance function in (57) is equivalent
to

max
∥∥∥TH ȳ(t)∥∥∥2 (58)

The problem can be furtherly rewritten as

maxTr
[
TH ȳ(t)ȳH (t)T

]
=

D∑
i=1

λ2i (59)
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After the adaptive beamforming processing, the residual of
the interferences can be written as

ζc = THRorgT (60)

And the noise and the error components can be denoted as

1n_e = TH81x̄(t)1x̄H (t)8HT (61)

With (60) and (61), we have the pre-whitening matrix, which
is denoted as

W̄−1/2 = (THRorgT+ TH81x̄(t)1x̄H (t)8HT)−1/2 (62)

With the pre-whitening processing, we have

maxTr
[
W̄−1/2TH ȳ(t)ȳH (t)TW̄−1/2

]
= max

D∑
i=1

λ̄2i (63)

where λ̄i (i = 1, 2, . . . ,D) are the eigenvalues of the matrix
after the pre-whitening processing, which are arranged by
descending order. In the case of single signal, we have
λ̄i = σ

2, where 2 ≤ i ≤ D. And the problem in (59) can
be rewritten as

maxTr
[
W̄−1/2TH ȳ(t)ȳH (t)TW̄−1/2

]
= max

D∑
i=1

λ̄2i

= max
[
λ̄21 + (D− 1)σ 2

]
→ max λ̄21 (64)

Formulas (58) and (64) are basically equivalent, but due to
the computational complexity, (58) is chosen as the objective
function. Thus, when using the matched filter magnitude
after the adaptive beamforming as the objective function,
the weight w(m)

3 is

w(m)
3 = max

∥∥∥TH ȳ(t)∥∥∥2 (65)

4) COMPUTATIONAL COMPLEXITY OF THE
IMPORTANCE FUNCTIONS
Suppose the number of the elements of the sparse array is N ,
which is generated from a uniform linear array with N ′ ele-
ments, the number of expected signals is K , and the number
of interferences is P. The number of the beamformers is D,
and the number of the angle searching grids isQ. Because the
calculation speed of multiplication is much slower than the
addition, only the multiplication calculations of the impor-
tance functions are counted here.

(1) According to [44], when the beam-space MUSIC
spectrum is maximized as an importance function, the com-
putational complexity of the eigen-decomposition of the
beam-pace covariance matrix is O(D3), and the computa-
tional complexity of p(θ ) in (49) is O(DN ′(N − 1) + (D +
1)(D− K )). Therefore, the computational complexity of this
importance function isO(QDN ′(N−1)+(D+1)(D−K )+D3).

(2) When using the maximum likelihood estimation as the
importance function, the computational complexity of the
eigen-decomposition of the covariance matrix after beam-
forming is O(D3), and the computational complexity of
PTH8a(θ ) is O(DN

′(N − 1) + D + D2). The computational
complexity of the maximum likelihood estimation in (84) is
O(D3

+ D), so the computational complexity of this impor-
tance function is O(2D3

+ DN ′(N − 1)+ D2
+ 2D).

(3) When using the matched filter magnitude after the
adaptive beamforming as the importance function, the com-
putational complexity is O(D(N+1)).

E. IMPLEMENT OF THE PROPOSED APPROACH
The proposed robust Capon beamforming approach using the
importance resampling based compressive covariance sens-
ing is summarized in Table 2.

TABLE 2. The proposed robust capon beamforming approach.

Remark 1: Generally, for the fixed DOA difference
between multiple sources, the DOA estimation of indepen-
dent sources is much easier and has higher accuracy than the
DOA estimation of coherent sources. Therefore, although the
proposed approach in this paper is based on the coherent inter-
ferences, it is also suitable for the independent interferences.

IV. SIMULATIONS
In order to verify the validity of the proposed method,
we introduce the input signal to noise ratio (SNR) and the
output signal to interference plus noise ratio (SINR) [6],
which can be written as

SNR =
σ 2
s

σ 2
0

, SINR =
wHRSw
wHRi+nw

(66)

where σ 2
s is the signal power, σ 2

0 is the noise power, RS is the
signal covariance matrix,Ri+n is the covariance matrix of the
interference plus noise. The kernel function in (37) is set as
the sigmoid function, which is written as

2(wi) =
ρ

1+e−ς (wi−ϑ)
wi ∈

[
wmin,wmax

]
(67)
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where ρ is the ratio of wi and ρ = 2 is selected in this
simulation. ϑ = wmax and ς = 10/

(
wmax − wmin

)
, where

wmax and wmin are the minimum and maximum values of wi
in (37), i = 1, 2, 3 respectively.

Consider the receiving antenna array of a radar system,
which is a sparse antenna array with 16 identical antennas.
This sparse antenna array is generated from a uniform linear
array with 32 elements, which can be randomly selected. The
ratio of the distance between the neighboring elements d to
the wavelength is 0.5. And we use a 16 × 32 dimensional
sparse matrix 8, which has at most one nonzero element at
each row or column. In the following simulations, we set
8(1, 1) = 1, 8(2, 2) = 1, 8(3, 4) = 1, 8(4, 7) = 1,
8(5, 8) = 1, 8(6, 11) = 1, 8(7, 14) = 1, 8(8, 15) = 1,
8(9, 17) = 1,8(10, 20) = 1,8(11, 23) = 1,8(12, 24) = 1,
8(13, 26) = 1, 8(14, 29) = 1, 8(15, 30) = 1,
8(16, 32) = 1, and other elements are zero.

The received signals and the interferences are coherent,
and the error of the array steering vector is considered in our
interference covariance reconstruction equation. According
to (3), the error of the array steering vector has the same
dimensionality as the array steering vector, the elements of
which are modeled as Gaussian random number with zero
mean and variance 0.2 in our simulation.M is 5, which is the
number of particles for importance resampling. The number
of the data samples is 64 and the noise is the additive white
Gaussian noise. The variation range of the interference DOA
1ϕ(t) is 1◦. In the following simulations, 10 repetitions are
carried on for each different SNR to calculate the output
SINR.

Four approaches are considered in the following
simulations, which are the standard Capon beamformer
algorithm [3] (which is referred to as SCB), the Capon
beamformer with diagonal loading (which is referred to
as DL-CB), the Capon beamformer with diagonal loading
and of which covariance matrix is reconstructed (which
is referred to as DL-RE-CB), the proposed robust Capon
beamformer based on the compressive covariance sensing
without the importance resampling (which is referred to as
CCS-RCB), and the proposed robust Capon beamformer
based on the compressive covariance sensing with the impor-
tance resampling using the maximization of the beam-space
MUSIC spectrum, the maximum likelihood estimation and
the matched filter magnitude after the adaptive beamforming
as the importance function respectively (which are referred to
as BS-IR-CCS, ML-IR-CCS and MF-IR-CCS respectively).

In the first simulation, we consider one target signal with
the DOA 0◦ and two interferences of which the azimuths are
20◦ and 40◦ respectively. The interference is time-varying
according to (1), and the time-varying numerical intervals
can be obtained by the estimation dynamically and can
be expressed as [20◦ − 1ϕ(t), 20◦ + 1ϕ(t)] and [40◦ −
1ϕ(t), 40◦ + 1ϕ(t)] respectively. The beampatterns of the
first simulation are shown in Fig. 2 in the case of SNR=10 dB.
It is shown that the approach proposed in this paper has a quite
deeper interferences nulling than the other beamformers.

FIGURE 2. Beampatterns of the first simulation (SNR=10 dB).

FIGURE 3. Output SINR versus SNR of the first simulation.

Fig. 3 gives the output SINR under the case of SNR ranging
from -10 dB to 10 dB. We can see that in the case of low
SNR, the CCS-RCB, BS-IR-CCS, ML-IR-CCS, MF-IR-CCS
have higher output SINR than other three beamformers. In the
case of high SNR, BS-IR-CCS, ML-IR-CCS and MF-IR-
CCS have higher output SINR than other four beamform-
ers. Although BS-IR-CCS has the highest output SINR,
the curves of BS-IR-CCS, ML-IR-CCS and MF-IR-CCS
have little difference.

In the second simulation, we consider one target sig-
nal with the DOA 0◦ and three interferences of which the
azimuths are 20◦, 21◦ and 22◦ respectively. The interference
is time-varying according to (1), and the time-varying numer-
ical intervals are expressed as [20◦ − 1ϕ(t), 20◦ + 1ϕ(t)],
[21◦ − 1ϕ(t), 21◦ + 1ϕ(t)], [22◦ − 1ϕ(t), 22◦ + 1ϕ(t)]
respectively. The beampatterns of the second simulation are
shown in Fig. 4 in the case of SNR=10 dB. It is shown
that compared with the other three approaches, the proposed
approaches have quite deeper interferences nulling. Fig. 5 is
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FIGURE 4. Beampatterns of the first simulation (SNR=10 dB).

FIGURE 5. Output SINR versus SNR of the first simulation.

the output SINR of the second simulation under the case of
SNR ranging from -10 dB to 10 dB. We can see that BS-IR-
CCS,ML-IR-CCS andMF-IR-CCS have higher output SINR
than other four beamformers. Although MF-IR-CCS has the
highest output SINR, the curves of BS-IR-CCS, ML-IR-CCS
and MF-IR-CCS have little difference.

In the third simulation, we consider one target signal with
the DOA 0◦ and three interferences of which the azimuths
are −18◦, −12◦ and −10◦ respectively. The time-varying
numerical interval of the interferences can be expressed as
[−18◦−1ϕ(t),−18◦+1ϕ(t)] and [−12◦−1ϕ(t),−12◦+
1ϕ(t)], [−10◦ − 1ϕ(t),−10◦ + 1ϕ(t)] respectively. The
beampatterns of the third simulation are shown in Fig. 6 in
the case of SNR=10 dB. Also, the proposed approaches have
quite deeper interferences nulling. Fig. 7 is the output SINR
of the third simulation. Although BS-IR-CCS has the highest
output SINR, the curves of BS-IR-CCS, ML-IR-CCS and
MF-IR-CCS have little difference.

FIGURE 6. Beampatterns of the first simulation (SNR=10 dB).

FIGURE 7. Output SINR versus SNR of the first simulation.

FIGURE 8. Output SINR versus SNR of the fourth simulation.

Remark 2: Although the output SINR curves of BS-IR-
CCS, ML-IR-CCS and MF-IR-CCS have little difference in
the three simulations, MF-IR-CCS is the most preferable
beamformer because of its computational efficiency.
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In the fourth simulation, we consider the role of the number
of particles for importance resamplingM on the output SINR
of the MF-IR-CCS. The simulation conditions are the same
as the first simulation. We consider the different selections of
the number of particles for importance resampling M which
are 5, 10, 15, 20 respectively (referred as 5-MF-IR-CCS,
10-MF-IR-CCS, 15-MF-IR-CCS, 20-MF-IR-CCS). Fig. 8 is
the output SINR of the fourth simulation. It is shown that the
number of particles for importance resamplingM is more and
the output SINR is larger.

V. CONCLUSION
We have shown how to obtain the robust Capon beamformer
based on the compressive covariance sensing with the impor-
tance resampling method. Three importance functions are
selected to generate the weights of the resampling parti-
cles, which are the maximization of the beam-space MUSIC
spectrum, the maximum likelihood function and the matched
filter magnitude after the adaptive beamforming. The pro-
posed robust Capon beamformer based on the compressive
covariance sensing with the importance resampling is much
less sensitive to coherent sources, time-varying DOA and
steering vector mismatches. They have much better interfer-
ence rejection capability than the robust beamformer based
on the standard interference covariance reconstruction. Since
the computation of the MF-IR-CCS is much more efficient,
MF-IR-CCS is the most preferable beamformer in engineer-
ing application. Moreover, the output SINR is proportional to
the number of particles for importance resampling. The excel-
lent performance of our proposed methods for interference
rejection has been demonstrated via a number of numerical
examples.

APPENDIX A
When P and αi are known, w in (22) can be solved by
minimizing function [45] H (w, λ) = w2Rcw+ λ(ε2wHw−
wHaaHw + wHa + aHw − 1), where λ is the Lagrange
multiplier. Take the gradient for w of H (w, λ) and let it equal
to zero, we get w = −λ(Rc + λε

2I− λaaH )−1a. Using the
matrix inversion rule, we have

w =
λ

λaH (Rc + λε2I)
−1a− 1

(Rc + λε
2I)−1a

=
λ

λaH (
J∑
i=1
αi8aiaHi 8H

+ λε2I)
−1

a− 1

·(
J∑
i=1

αi8aiaHi 8H
+ λε2I)−1a (68)

where λ can be obtained by solving the root of the scalar

equation f (λ) = λ2
n∑
i=1

c̄2i γi
(1+λγi)2

− 2λ
n∑
i=1

c̄2i
(1+λγi)

− 1, where

γγγ ∈ Rn are the diagonal elements of 0, γi(i = 1, 2, . . . , n)
is the element of γγγ . The values of γγγ are known as the gener-
alized eigenvalues of Q and Rc are the roots of the equation

det(Q−γγγRc) = 0, whereQ = ε2I− aaT , c̄ = VTRc
−

1
2 a, c̄i

is the element of c̄. VT and 0 satisfy the eigenvalue decom-
position V0VT

= Rc
−

1
2Q(Rc

−
1
2 )T , I is an identity matrix

of which dimension is identical to aaT . The roots λ should

satisfy λ > λ̂, where λ̂ =
−1−|c̄j|(γj+c̄2j )

−
1
2

γj
, c̄j = vTj Rc

−
1
2 a, vj

is the eigenvector associated with the negative eigenvalue γj.

APPENDIX B
The DOAs of the interferences are estimated by using the
MUSIC [37] algorithm based on the spatial smoothing tech-
nique [35]. From [46], [47], using the MUSIC algorithm
combined with the spatial smoothing technique, if there are
Nk subarrays, and each subarray is of size L = N ′ − Nk + 1,
we know that the asymptotic variance of the error in the
direction estimate of the k-th interference is given by

E[δθ2k ] =
2

dθ (θk )2CL2
{

L∑
m,n=1

βββHR(m, n)βββαααHN(m, n)ααα

+Re[
L∑

m,n=1,m 6=n

βββHN(m, n)αααβββHN(m, n)ααα]} (69)

where δθk denotes the error in the estimate of the DOA of the
k-th interference, C is the number of snapshots. And Re [·]
denotes the real part of a complex value. The scalar value
dθ (θk ) is given by the matrix product dH (θ )EnEHn d(θ ), where
d(θ ) is the Brandwood vector derivative of a(θ ). The matrix
R(m, n) is given by F(m)RF(n)T , where R is the covariance
matrix of array data before the spatial smoothing processing
and the matrix F(k) ∈ CL×N ′ is defined by

F(k)ij =

{
1 if j = i+ k − 1 and 1 ≤ i ≤ L
0 otherwise

(70)

ααα and βββ are defined as

ααα = EnEHn dS (θk ) and βββ = US3
−1
S UH

S aS (θk ) (71)

where En ∈ CN ′×(N ′−P) is the matrix of column noise
eigenvectors. The matrix US ∈ CL×P contains the P inter-
ference eigenvectors of the smoothed covariance matrix RS ,
3S ∈ RP×P is is a diagonal matrix containing the P smoothed
interferences eigenvalues. The matrix N(m, n) is defined in a
similar way to R(m, n) with N(m, n) = σ 2F(m)F(n)T , where
σ 2 is the variance of the Gaussian white noise. The vector
aS (θk ) is the steering vector for the smoothed array and dS (θk )
is its derivative.

As the angle estimation errors obey a Gaussian distri-
bution, we know the k-th angle estimation error 1θk ∼
N (0,E[δθ2k ]), k = 1, 2, . . . ,K .
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