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ABSTRACT Failure mode and effects analysis (FMEA) is one of the most effective pre-accident prevention
methods. Risk priority number (RPN) approach is a traditional method in the FMEA for risk evaluation.
However, there are some shortcomings in the traditional RPN method. In this paper, we propose an FMEA
approach based on Dempster–Shafer theory (DST) in an uncertainty evaluation environment. An evidential
network (EN) method is proposed to establish a new model for risk evaluation in the FMEA, and we propose
a novel approach to determine the conditional belief mass table (CBMT) of the non-root node. In addition,
subjective weight and objective weight are integrated to determine the weights of risk factors, which can fully
reflect the importance of risk factors. A numerical case is provided to illustrate the practical application of
the proposed method, and the results show that this method is reasonable and effective.

INDEX TERMS Failure mode and effects analysis, risk priority number, Dempster-Shafer theory, evidential
network.

I. INTRODUCTION
Failure mode and effects analysis (FMEA) is one of the most
effective pre-accident prevention methods. Risk evaluation is
a crucial step in FMEA to identify high-risk failure modes so
as to prevent unexpected failure scenarios [1]. In the risk eval-
uation of FMEA, risk priority number (RPN) approach is a
classical method for the purpose of ranking the failure modes.
RPN is an aggregated index which is obtained by multiplying
risk factors occurrence (O), severity (S), and detection (D) of
a failure mode [2], [3]. Although the RPN method is useful
in some real applications, it still has several shortcomings:
the three risk factors (O,S,D) are assumed to have the same
importance, which may lead to inaccurate results when the
FMEA is applied in a practical application [4]–[6]; the three
risk factors may produce an identical RPN value, whereas the
risk implication may be totally different [4]–[6]; it is difficult
to give the crisp evaluations of the risk factors for experts [7],
[8]; the most controversial shortcoming of RPNmethod is the
failure to address uncertainties in risk evaluation [9]–[11].
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In the risk evaluation of FMEA, there are various uncer-
tainties in FMEA team members’ assessments due to the
different expertise and backgrounds, such as imprecision,
ambiguity, and incompleteness. Various theories have been
proposed to deal with all kinds of uncertainties, such
as Dempster-Shafer theory (DST) [12]–[14], fuzzy set
theory [15], [16], evidential reasoning [17], belief
entropy [18]–[20], belief function [21]–[23], Z-number [24],
D-number [25], [26], and so on [27]–[30]. Among these
methods, DST [31], [32] is effective in dealing with inde-
terminate information, which is widely used in uncertain
information processing [33] and risk analysis [34]. Many
methods based on DST have been proposed to improve the
effectiveness of the traditional FMEA [35]–[39]. In [36],
the mean value of RPN (MVRPN) was proposed to evaluate
the risk in FMEA, where the Dempster’s combination rule
in DST was modified to fuse the experts’ uncertain assess-
ments. In [37], the authors improved the MVRPN method by
adding a new process of generating basic probability assign-
ment (BPA), which can deal with the conflict information
effectively. Liu et al. [39] proposed an improved FMEA
method in which the weights of experts are determined
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by the evidence distance and belief entropy. The above
literature reviews mainly focus on the uncertainty contained
in the experts’ assessments, the uncertainty in experts’ knowl-
edge about the relationships between input factors for risk
evaluation in FMEA, however, is not well addressed. Thus,
a new FMEA method based on DST by integrating evi-
dential network (EN) [40] is proposed to simultaneously
represent the uncertainty in the experts’ assessments and in
experts’ knowledge about the relationships between input
factors.

In this FMEA method, DST is applied to represent both
the probabilistic uncertainty and epistemic uncertainty in
the experts’ assessments, and EN provides the framework
for representing experts’ knowledge about the relationships
between input factors. In this paper, we use an improved EN
which avoids the combination explosion of the number
of states when implemented in large real-world applica-
tions, and a novel approach to determine the conditional
belief mass table (CBMT) of the non-root node is proposed.
Besides, the proposed FMEA method uses linguistic terms
in the uncertainty evaluation structure, which overcomes
the limitation of crisp assessments in the traditional RPN
approach, the results of the assessments can provide valu-
able information for the risk evaluation process. In addition,
linguistic terms allow experts to give more moderate judg-
ments according to their knowledge bases, which makes
the evaluation process easier to implement. To fully reflect
both experts’ knowledge and intrinsic information of the
evaluation data, both subjective and objective weighting
methods are utilized to determine the weights of risk
factors.

By summarizing this work, there are three main contribu-
tions. At first, in the risk evaluation of FMEA, multi-experts
assessment is generally used when evaluating failure modes
with respect to risk factors. In previous studies, multi-criteria
decision-making (MCDM) methods are often employed to
integrate the assessments of experts. In this paper, we aggre-
gate the evaluations of multiple experts from the perspective
of network reasoning under uncertain environment. As an
extension of Bayesian network (BN), EN provides an effec-
tive framework for representing experts’ knowledge about the
relationships between input factors. In addition, an improved
EN is employed to integrate the assessments of multiple
experts, which avoids the combination explosion of the
number of states when implemented in large real-world appli-
cations. At second, the knowledge is represented by a con-
ditional probability table (CPT) in BN and a CBMT in EN.
However, how to determine the CBMT in EN is still an
open issue. To handle this issue, we propose a new method
based on experts’ assessments to determine the CBMT. In this
method, we can get a probability distribution from the results
of experts’ assessments, then the CBMT can be determined
by the Shannon entropy. At third, both subjective weight and
objective weight are considered to reflect the relative impor-
tance of risk factors, within the objective weight is deter-
mined by calculating the entropy of data for quantification

of uncertain degree coming from the experts and evaluation
process.

The rest of the paper is organized as follows. Section II
presents the literature related to FMEA improvements.
Section III gives a brief introduction about Dempster-Shafer
theory, pignistic probability transformation, some uncertainty
measures, evidential network approach, and fuzzy set the-
ory. The proposed FMEA model is presented in Section IV.
Section V gives a numerical case to demonstrate the effec-
tiveness of the proposed model. Finally, a brief conclusion is
made in Section VI.

II. LITERATURE REVIEW
FMEA is an effective tool to identify and eliminate
potential failure modes in the pre-prevention phase. How-
ever, the conventional FMEA method has many short-
comings which affect its effectiveness [4]. To overcome
the drawbacks, various risk priority methods have been
proposed [41], [42]. For example, Liu et al. [43] devel-
oped an effective FMEA approach by using interval-valued
intuitionistic fuzzy sets (IVIFSs) and the multi-attributive
border approximation area comparison (MABAC) method.
Moreover, the authors developed an optimal model based on
the maximum cross-entropy to determine the weight vectors
of risk factors. In their another study [44], an advanced
integrated FMEA model based on cloud model theory and
hierarchical TOPSIS was proposed, where the cloud model
theory can effectively address the uncertainty of experts’ lin-
guistic expressions and the hierarchical TOPSIS was applied
to rank the risk of failure modes for the advantages in deal-
ing with complex risk analysis problems. Song et al. [45]
developed a risk evaluation model using the TOPSIS
method under fuzzy environment to prioritize failure modes.
Li and Chen [46] proposed an evidential FMEA method by
integrating fuzzy belief structure and grey relational projec-
tion method(GRPM). In this method, GRPM was applied
to address assessments by fusing different evaluation cri-
teria to deal with the deficiencies in conventional FMEA.
Song et al. [47] proposed a risk priority model based on rough
set theory and TOPSIS for obtaining a more rational rank of
failure modes. This method took the advantages of rough set
theory to handling the vagueness and uncertainty in FMEA.

Considering the ambiguity and uncertainty in FMEA team
members’ assessments, fuzzy set theory [15] provides a
useful framework to represent the uncertainty in FMEA.
Kumru et al. [5] used fuzzy logic approach to remove the
deficiencies in traditional FMEA, and proposed a fuzzy-
based FMEA to improve the purchasing process of a public
hospital. An improved FMEAmethodology, which integrated
the intuitionistic fuzzy set (IFS) and the decision-making trial
and evaluation laboratory (DEMATEL) approach to rank the
risk of failure modes, was presented by Chang et al. [6].
Yang et al. [10] proposed a fuzzy rule-based Bayesian rea-
soning (FuRBaR) method for the risk prioritization of failure
modes. The method had advantages in handling the draw-
backs of conventional fuzzy logic approaches in FMEA.
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Yeh and Chen [11] proposed an improved RPN computa-
tion based on fuzzy theory, which reduced the uncertain-
ties related to experts’ assessments to enhance the accu-
racy of the RPN values. Fuzzy set theory improves the
accuracy of fault critical analysis, but it may not be able
to effectively deal with uncertain information which is
aleatory and epistemic in nature [46]. Other studies carried
out to represent the ambiguity and epistemic uncertainty
in risk assessment process by using evidential reasoning
method [35]–[39], D numbers [48], and so on. For exam-
ple, Bian et al. [48] used a risk priority model based
on D numbers and technique for the order of preference
by similarity to ideal solution (TOPSIS) to rank the risk
of failure modes in FMEA, where D numbers can effec-
tively represent the uncertain information. Certa et al. [38]
proposed a DST-based FMEA method to deal with the epis-
temic uncertainty often affecting the experts’ opinions on
risk factors. In spite of DST provides an effective framework
to represent the uncertainty in FMEA, the uncertainty in
experts’ knowledge about the relationships between input
factors for risk evaluation in FMEA is not well addressed.
As an extension of BN, EN provides the tool for repre-
senting experts’ knowledge about the relationships between
input factors. Therefore, in this paper, we propose a new
FMEA method based on DST by integrating EN to simulta-
neously represent the uncertainty in the experts’ assessments
and in experts’ knowledge about the relationships between
input factors.

III. PRELIMINARIES
A. DEMPSTER-SHAFER THEORY
DST is introduced by Dempster [31] and developed by
Shafer [32], which is widely used to deal with uncertain
information [33], [34], [49].

1) BASIC DEFINITION
In DST, a finite set of N mutually exclusive and exhaustive
elements is called the frame of discernment (FOD), symbol-
ized as 2 = {L1,L2, . . . ,Li, . . . ,LN }. The power set of 2 is
denoted by 22 which composed of 2N elements:

22 = {∅, {L1}, . . . , {LN }, {L1,L2},

. . . , {L1,L2, . . . ,Li}, . . . ,2}. (1)

A BPA is a mapping from 22 to [0,1], defined asm : 22→
[0, 1], which satisfies the following condition:

∑
A∈22

m(A) = 1 and m(∅) = 0. (2)

In a mass function, m(A) represents the supporting degree
to focal element A. When m(A) > 0, A is called a focal
element. Assume that there are two independent BPAs indi-
cated by m1 and m2, they are combined with Dempster’s

combination rule as follows:

m(A) =


0 A = ∅

1
1− K

∑
B∩C=A

m1(B)m2(C) A 6= ∅, (3)

where

K =
∑

B∩C=∅

m1(B)m2(C), (4)

K is a normalization constant, reflecting the conflict between
the two BPAs m1 and m2.

2) PIGNISTIC PROBABILITY TRANSFORMATION
The pignistic probability transformation (PPT) [50] assigns
the probability of a multiple-element set to singleton sets
using the principle of insufficient reason. That means, a belief
interval is distributed into the crisp ones, which is called bet
probability (BetP). Let m be a BPA on 2, the resulting PPT
for the singleton x ∈ 2 is given by:

BetP({x}) =
∑

x∈A⊆2

m(A)
|A|

, (5)

where A is the focal element of m, and |A| is the cardinality
of A which denotes the number of elements in A.

3) UNCERTAINTY MEASURES
Entropy concept in information theory can be considered as
a criterion for the degree of uncertainty represented by a
discrete probability distribution. Shannon proposed a math-
ematical theory of communication which can evaluate the
expected information content of a certain message, called
Shannon entropy [51]. Shannon entropy is defined as follows:

H = −
N∑
i=1

pilogbpi, (6)

where N is the number of basic states in a state space, pi is
the probability of state i appears satisfying

∑N
i=1 pi = 1, b is

the base of logarithm. In the DST framework, a generalized
Shannon entropy called Deng entropy [52] is proposed to
measure the uncertainty of belief functions. Deng entropy is
defined as follows:

Hd = −
∑
A⊆2

m(A)log2
m(A)

2|A| − 1
, (7)

where m is a mass function defined on the FOD 2, A is the
focal element of m, and |A| is the cardinality of A. Especially,
if all the focal elements are singletons, Deng entropy degen-
erates into Shannon entropy.

B. EVIDENTIAL NETWORK APPROACH
The evidential network [40] extends the BN to the context of
belief function theory to some extent. An evidential network
is defined as a directed acyclic graphG = ((N ,A),M ), where
(N ,A) stands for a graph consisting of nodes’ set N and arcs’
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FIGURE 1. An example of evidential network.

set A, M represents a set of belief mass distributions asso-
ciated with these nodes. If a node is a root node, which has
no parents, its priori belief mass table is defined; otherwise,
for a non-root node, which has some parent nodes, then its
belief mass distribution is defined by a CBMT quantifying
the relation between the node and its parents. Then, the mass
function of the node concerned can be obtained by the infer-
ence algorithm. The following example is given to illustrate
the reasoning process.
Example 1: Assume that there are three nodes: X1, X2,

and Z , their FOD are21,22,2Z respectively. X1 and X2 are
root nodes, Z is the child node of X1 and X2, and they have the
same FOD 21 = 22 = 2Z = {{Yes}, {No}}. Then, a graph
G consisting of three nodes can be constructed, as shown
in Fig. 1. Since X1 and X2 are root nodes, their belief mass
tables are defined prior as two mass functions mX1 and mX2 .
mX1 ({Yes}) = 0.3
mX1 ({No}) = 0.5
mX1 ({Yes,No}) = 0.2,


mX2 ({Yes}) = 0.2
mX2 ({No}) = 0.7
mX2 ({Yes,No}) = 0.1.

The relation between Z and its parents X1 and X2 is quan-
tified by a CBMT, as shown in Table 1 for example. Then
the inference result regarding node Z can be obtained by the
following formula:

mZ (A) =
∑

MZ={x1∧x2∧···∧xn−1→A}

∏
i=1,··· ,n−1

mXi (xi)m
MZ
Z (A),

with A ⊆ 2Z and xi ⊆ 2i, (8)

where mXi (xi) represents the mass value when node Xi is in
the xi state;MZ represents that the state of the Z node is in A
state when the other n−1 nodes take the corresponding state.
mMZ
Z (A) represents the mass value of node Z in the A state

when the other nodes satisfy the corresponding conditions in
the CBMT. The calculation process is as follows:

mZ ({Yes})

=

∑
MZ={x1∧x2→{Yes}}

∏
i=1,2

mXi (xi)m
MZ
Z ({Yes})

= 0.3×(0.2×1+0.7× 0.3+0.1× 0.3)+0.5× (0.2× 0.3

+ 0.1× 0.1)+ 0.2× (0.2× 0.3+0.7× 0.1+0.1× 0.1)

= 0.195,

mZ ({No})

=

∑
MZ={x1∧x2→{No}}

∏
i=1,2

mXi (xi)m
MZ
Z ({No})

= 0.3×(0.7× 0.3+0.1× 0.1)+0.5× (0.2× 0.2+0.7× 1

+ 0.1× 0.3)+0.2× (0.2× 0.1+0.7× 0.4+0.1×0.1)

= 0.513,

mZ ({Yes,No})

=

∑
MZ={x1∧x2→{Yes,No}}

∏
i=1,2

mXi (xi)m
MZ
Z ({Yes,No})

= 0.3× (0.7× 0.4+ 0.1× 0.6)+ 0.5× (0.2× 0.5+ 0.1

× 0.6)+ 0.2× (0.2× 0.6+ 0.7× 0.5+ 0.1× 0.8)

= 0.292.

Compared to the CPT in BN, the CBMT could include
not only singletons but also subsets of FODs as the basic
reasoning components. Therefore, the evidential network has
provided the ability to simultaneously handle random uncer-
tainty and epistemic uncertainty. However, for a non-root
node, the size of its CBMT increases exponentially with the
rise of the cardinalities of its parents’ FODs. For example,
if node X1 and node X2 have 10 elements in the frame of
discernment, then the CBMT of Z has to be a table with
size of 1023 × 1023. It is a big challenge to generate such
a huge CBMT. A novel evidential network approach pre-
sented by Deng and Jiang [53] overcomes the shortcoming
in the original evidential network approach. Consider only
the single subset state of the parent node when generating the
CBMT in the novel evidential network approach. According
to the novel evidential network approach, the CBMT given
in Table 1 is changed to Table 2. Compared to the original
evidential network, the size of node’s CBMT is much smaller.
And the novel evidential network approach also gets the
ability of expressing imprecise knowledge, which has formed
the major advantage of evidential networks [53].

C. FUZZY SET THEORY
Fuzzy set theory was first proposed by Zadeh [15] in 1965,
which can deal with the uncertainty problems in real-life
decision situations. A fuzzy set Ã is defined on a universe X
may be given as:

Ã =
{〈
x, µÃ (x)

〉
|x ∈ X

}
, (9)

where µÃ : X → [0, 1] is the membership function A.
The membership value µÃ(x) describes the degree of x ∈ X
belonging to Ã.
A fuzzy number Ã = (al, ac, au) is called to be a triangular

fuzzy number if its membership function is given as follows:

µÃ(x) =



0 x < al
x − al
ac − al

al ≤ x ≤ ac
au − x
au − ac

ac ≤ x ≤ au

0 x > au,

(10)
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TABLE 1. The conditional belief mass table for node Z .

FIGURE 2. The flowchart of the proposed FMEA method.

where al and au are the lower and upper bounds of support
of triangular fuzzy number Ã, respectively. And ac is the core
of triangular fuzzy number Ã. The triangular fuzzy number
Ã can be convert into a crisp number αÃ by the following
formula:

αÃ =

∫
xµÃ(x)dx∫
µÃ(x)dx

. (11)

IV. THE PROPOSED FMEA MODEL
This new FMEA method, which is based on DST and
EN approach, aims to find options with high risk. In the

TABLE 2. The new conditional belief mass table for node Z .

proposed FMEA method, the uncertainty evaluation matrix
structure is applied to provide flexibilities in the assessments
delivered by experts, which allows the experts to give moder-
ate judgments according to their knowledge bases. Besides,
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TABLE 3. Interpretations of the linguistic terms [4].

this method does not use the traditional RPN in the risk
priority evaluation but uses the language terms gathered from
experts to reflect the assessment of risk level. The flowchart
in Fig. 2 shows the proposed approach for the FMEA process.

Assume there is a multiple criteria decision making prob-
lem with M failure modes FMi toward the three risk fac-
tors RFj (S,O,D). Moreover, judgments are presented by
K experts. The proposed method can be summarized as the
following phases:
Phase.1: List all failure modes and causes of failure modes

in the system through historical data and expert knowledge.
Phase.2: Construct the uncertainty evaluation matrix. The

severity of the associated effects (S), probability of occur-
rence (O), and detection to each failure mode (D) are con-
sidered as risk factors in the evaluation matrix. In addition,
the relative importance among S, O, and D is taken into
consideration by determining the weights of risk factors. The
uncertainty evaluation matrix based on the judgment of the
K th expert is defined as follows:

MK
=

FM1
...

FMi
...

FMM

S O D

Sk11 Sk12 Sk13
...

...
...

Ski1 Ski2 Ski3
...

...
...

SkM1 SkM2 SkM3

, (12)

where Skij is an uncertainty evaluation structure addressed
by the K th expert for each failure mode versus each risk
factor, which can be given by the following distribution
mathematically:

Skij = {(Ln, β
k
n ), n = 1, · · · ,N }, (13)

where Ln is the nth evaluation grade, βkn is a degree of
belief. A distribution Skij is completed if

∑N
n=1 β

k
n = 1. Skij

means that the K th expert Ek believes that the FMi with

respect to RFj has the nth evaluation grade Ln with belief
degree βkn . For example, there is an expert who addresses
complete assessment toward the risk factor S of failure mode
FM1 elaborately as follows:

S11 = {(G, 0.8), (M , 0.1), (P, 0.1)}.

To simplify the procedure, 3 Linguistic terms Good(G),
Moderate(M), and Poor(P) are chosen to represent 3 diverse
classes. The interpretations of these linguistic terms are given
in Table 3. The numbers are the degrees of belief toward
3 distinct standards, which means the expert is 80% sure
that the assigned amount of failure mode FM1 is good,
10% is moderate, and 10% is poor with respect to the first risk
factor S. In addition, the BPA generated from the uncertainty
evaluation structure can be listed as below:

mE1 ({G}) = 0.8
mE1 ({M}) = 0.1
mE1 ({P}) = 0.1

Phase.3: Integrate the assessments of experts using
EN method.
In this phase, EN method aims to aggregate the assess-

ments of k experts on failure mode FMi with respect to risk
factor RFj.
Step 1: Construct the network structure
Assume that all experts have the same credibility. The evi-

dential network structure graph can be constructed, as shown
in Fig. 3. In the figure, all nodes have the same FOD 2 =

{L1,L2, . . . ,Ln, . . . ,LN }, where Ln(n : 1, 2, . . . ,N ) is the
nth evaluation grade. Ek is the K th expert who addresses the
assessment on failure mode FMi with respect to risk factor
RFj, which is a root node in the evidential network structure,
then its priori belief mass table is defined. E is the aggregated
judgment on failure mode FMi with respect to risk factor RFj,
which is a non-root node, then its belief mass distribution is
defined by a CBMT.
Step 2: Determine the CBMT of non-root node E .
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FIGURE 3. The evidential network structure graph.

How to determine the CBMT of the non-root node in EN
method is still an open issue. To handle this issue, we propose
a newmethod to determine the CBMT of the non-root node E
with Shannon entropy. As mentioned in section III-B, it is
difficult to construct CBMT in the traditional way. Therefore,
drawing on the method proposed by Deng [53], only consider
the single subset state of the parent nodes when generating
the CMBT. The process can be described as follows:

Assume p(Ln) represents the frequency of experts’ assess-
ments as Ln on failure mode FMi with respect to risk factor
RFj, thenwe can get a probability distributionP defined on2.
The entropy of the probability distribution to the assessment
can be calculated, which is taken as the mass value of the
multi-element subset. Remove the mass value of the multi-
element subset, the rest is assigned to the single subset ele-
ments according to the corresponding proportions, which is
taken as the mass value of the single subset. The CBMT of the
non-root node can be expressed as follows mathematically:
mP({Ln|Ln ∈ 2, p(Ln) 6= 0}) = −

N∑
n=1

p(Ln)logkp(Ln),

mP(Ln) = (1− mP({Ln|Ln ∈ 2, p(Ln) 6= 0}))p(Ln),
Ln ∈ 2,

(14)

where N is the number of evaluation grades, k is the num-
ber of experts. It is worth noting that when all the experts’
assessments are different from each other, then p(Ln) = 1

k ,
mP({Ln|Ln ∈ 2, p(Ln) 6= 0}) = mP(2) takes the maximum
value 1, it means that we don’t know how to distribute the
reliability; when all the experts’ assessments are identical to
each other, for example, the assessments of all experts are L1,
then p(L1) = 1, mP(L1) takes the maximum value 1, it means
assigning all the reliability to L1.
Step 3: Aggregate experts’ assessments
When determining the CBMTof non-root nodeE , themass

function can be calculated by (8), which is the aggregated
judgment of k experts on failure mode FMi with respect to
risk factor RFj.
The following example is given to illustrate the process.
Example 2: Assume there are three experts who give

the assessments toward risk factor S of failure mode

FIGURE 4. Example of constructing a graph to represent the relationship
among experts.

FM1 elaborately as follows:

E1(0.8, 0.1, 0.1),

E2(0.7, 0.0, 0.3),

E3(0.8, 0.2, 0.0).

There are three evaluation grades {L1,L2,L3} =

{G,M ,P}. The evidential network structure graph can be
constructed, as shown in Fig. 4. When the assessment given
by the three experts is {E1 = G,E2 = G,E3 = M}, we can
get a probability distribution P1 : p(G) = 2/

3, p(M ) =
1/
3, p(P) = 0. Then the conditional mass function of the non-

root node can be calculated as follows:
mP1 ({G,M}) = −(

2/
3× log32

/
3+

1/
3× log31

/
3)

= 0.579
mP1 (G) = (1− 0.579)× 2/

3 = 0.281
mP1 (M ) = (1− 0.579)× 1/

3 = 0.14.

There are three experts and each one give three assessments
to each failure mode versus each risk factor. The CBMT of E
can be obtained by all combinations of the assessment given
by the three experts, the result is shown in Table 4. Then the
mass function of E can be calculated by (8), the result is as
follows: 

mE ({G}) = 0.57
mE ({M}) = 0.03
mE ({P}) = 0.044
mE ({G,M}) = 0.105
mE ({G,P}) = 0.158
mE ({M ,P}) = 0.007
mE ({G,M ,P}) = 0.086

Phase.4: FMEA analysis using DST
It should be point that when evidence highly conflicts

with each other, Dempster’s combination rule is not effi-
cient [54]. Many methods are proposed to deal with this
problem [55]–[57]. One of the efficient methods is to modify
the original data, it means Dempster’s combination rule itself
is not wrong. The typical method is an averaged algorithm
based on the consideration of the ensemble potential by Mur-
phy method [58]. However, Murphy method is only an aver-
age of evidence, it does not consider the relations between

VOLUME 7, 2019 79585



H. Wang et al.: New Failure Mode and Effects Analysis Method Based on Dempster–Shafer Theory by Integrating EN

TABLE 4. The conditional belief mass table for node E .

the evidence. In this FMEA model, we use a weighted aver-
aging combination method based on Deng entropy, which
can consider the relative importance of risk factors. To fully
reflect both experts’ knowledge and intrinsic information,
both subjective and objective weighting methods are utilized
to determine the weight of risk factor RFj.
Step 1:Weight determination for risk factor RFj
According to expert knowledge, determine the subjective

weight (wsj) of risk factor RFj. When determining the objec-
tive weight (woj) which is ascertained with intrinsic informa-
tion, Deng entropy is well suited for measuring the relative
contrast intensities of BPAs. Deng entropy is an efficient tool
to measure uncertain information of evidence. The bigger the
entropy, the more the elasticity of evidence, which should be
given more attention. Therefore, the objective weight based
on Deng entropy can be obtained as follows:

woj =
Hdj
n∑
j=1

Hdj

, (15)

with

Hdj =
m∑
i=1

Hdij, (16)

where Hdij represents Deng entropy of each BPA on failure
mode FMi with respect to risk factor RFj, it can be calculated
by (7); m is the number of failure modes; n is the number of
risk factors.

Then combine subjective weights from experts and objec-
tive weights from intrinsic information together to determine
the comprehensive weights of risk factors. The compre-
hensive weight (wj) can be obtained by multiplicative

combination weighting method, the formula is as follows:

wj =
wsj × woj
n∑
j=1

wsj × woj

. (17)

Step 2: Integration of risk factors
The DST is aimed to aggregate the risk factors of fail-

ure mode FMi. Therefore, after determining the weights of
the risk factors, we can get the weighted average of the
evidence m̃:

m̃(L) =
n∑
j=1

wj × mij(L), L ⊆ 2, (18)

where mij(L) is the evidence of risk factor RFj toward failure
mode FMi, n is the number of risk factors. Finally, fusing
the weighted average evidence n − 1 times by Dempster
combination rule, we can get the aggregated evidence of
failure mode FMi:

mFMi = m̃⊕ m̃⊕ . . .⊕ m̃︸ ︷︷ ︸
n−1 times

, (19)

where mFMi represents the combined result of all the risk
factors toward failure mode FMi.
Phase.5: Calculate the risk of each failure mode
In this FMEAmodel, the evaluation grade Ln is represented

with triangular fuzzy number ũ(Ln) = (uln, u
c
n, u

u
n), which

can be converted into a crisp number α(Ln) by (11). Through
the PPT method, we can transform mFMi to a probability
distribution PFMi by (5). Then risk of failure mode FMi can
be calculated as follows:

RFMi =

N∑
n=1

α(Ln)× PFMi (Ln), (20)

where N is the number of evaluation grades. Note that RFMi

is a positive indicator, while risk is a negative concept; there-
fore, the smaller the value of RFMi is, the higher the risk,
which should be paid more attention to identify the related
failure modes.

V. NUMERICAL CASE STUDY
In this section, a case study of a steel factory (steel factory
of guilan) is provided to illustrate the effectiveness of the
proposed FMEA method. In this case, ten failure modes for
sheet steel production process are evaluated. The severity
of the associated effects (S), probability of occurrence (O),
and detection to each failure mode (D) are considered as
risk factors, as shown in Fig. 5. The weights of risk factors
(wS , wO, and wD) are set as: 0.2, 0.3, and 0.1. According to
the earlier study [59], the judgments in the decision matrix
are taken by three experts with the same importance. The
assessments are evaluated by a set of standards with three
evaluation grades, and each evaluation grade is represented
with a triangular fuzzy number. The following steps are given
to illustrate the process of the proposed method.
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FIGURE 5. The evidential network structure graph [59].

TABLE 5. The FMEA of the sheet steel production process in Guilan steel
factory [59].

Step 1: List the failure modes and causes of failure
throughout the system versus three risk factors, as shown
in Table 5.
Step 2: Construct the uncertainty evaluation matrix based

on the expert opinions. In the decision matrix, there are
ten failure modes FM1,FM2, . . . ,FM10, three risk factors
S,O,D, and three experts E1,E2,E3. Each assessment in
the matrix is expressed as an uncertainty evaluation structure
with three evaluation grades {L1,L2,L3} = {G,M ,P}. The
uncertainty evaluation matrix is presented in Table 6.
Step 3: The assessments from three different experts in the

decision matrix are aggregated by ENmethod. The CBMT of
the non-root node can be obtained by (14), the mass function
can be calculated by (8), which is the aggregated judgment of
three experts on failure mode FMi with respect to risk factor
RFj. The result is presented in Table 7.
Step 4: When using DST method to aggregate three risk

factors, both subjective and objective weighting methods are
utilized to determine the weight of risk factor RFj. The sub-
jective weights of the risk factors (S,O,D) are set as: 0.2,
0.3, and 0.1. Then calculate the objective weights by (15) and
(16), we can have woS = 0.338, woO = 0.314, woD = 0.348.
The comprehensive weights can be obtained by (17), which
are wS = 0.344, wO = 0.479, wD = 0.177. The risk factors
are aggregated by using the improved D-S evidence theory in
(18) and (19). The result is presented in Table 8.
Step 5: In this FMEAmodel, the evaluation grade Ln is rep-

resented with triangular fuzzy number ũ(Ln) = (uln, u
c
n, u

u
n).

TABLE 6. Uncertainty evaluation structure judgment of the sheet steel
production process [59].

Suppose the utilities of evaluation grades are

ũ(L1) = ũ(G) = (0.5, 0.7, 0.9)

ũ(L2) = ũ(M ) = (0.3, 0.5, 0.7)

ũ(L3) = ũ(P) = (0.1, 0.3, 0.5)

The triangular fuzzy number can be converted into a crisp
number α(Ln) by (11), we have α(G) = 0.7, α(M ) = 0.5,
α(P) = 0.3. Through the PPT method, we can transform
the BPAs of aggregated risk factors to probability distribution
by (5). Then the risk of failure mode RFMi can be calculated
by (20). The result is presented in Table 9. From the result,
it is found that the failure mode FM4 has the highest risk
and the failure mode FM10 has the lowest risk. To note that,
all experts have the same assessments on failure modes FM3
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TABLE 7. The assessments after aggregating the experts’ opinions by using EN.

TABLE 8. The BPAs of aggregated risk factors.

TABLE 9. The result of RFMi
and risk priority ranking.

and FM8, so they hold the same risk values, which means
the same attention should be paid toward them. The case of
failure modes FM5, FM6, and FM9 is the same as that of FM3
and FM8. The risk ranking of all failure modes from high to
low is FM4 > FM3 = FM8 > FM1 > FM7 > FM2 >

FM5 = FM6 = FM9 > FM10.
The above-mentioned case was also studied by

Vahdani et al. [59] and Li and Chen [46]. In literature [46],
Li et al. dealted with the risk evaluation in FMEAwith GRPM
method. Vahdani et al. proposed an improved FMEA method
based on fuzzy belief technique for order of preference by
similarity to ideal solution (FB-TOPSIS) in [59]. Besides,
In [36], [37], the authors developed the improved FMEA
models in DST framework. Therefore, we use the same case
to implement the MVRPN [36] and improved MVRPN [37]
to illustrate the validation of this proposed method. The
comparison results are given in Table 10.

From the results shown in Table 10, it can be found that
all the methods identify that the failure mode FM4 has the
highest risk. It should be noted that the methods in [36], [37]
have the same risk priority ranking. This is because that the
improved MVRPN in [37] mainly deal with the case where
different and precise values of the evaluation in [36], while
this case does not appear in the assessment of the sheet
steel production process. In addition, if we divide all the
failure modes into two groups in the risk ranking by using
FB-TOPSIS, MVRPN, and improved MVRPN, the first
group which has higher risk is composed by failure modes
FM4, FM7, FM3, FM8, FM1, the second group having lower
risk includes FM2, FM5, FM6, FM9, FM10. By using the
proposed method, we can also obtain the same classification
that FM4, FM3, FM8, FM1, FM7 are in the first group with
higher risk andFM2,FM5,FM6,FM9,FM10 are in the second
group with lower risk. It can be discovered that in the sec-
ond group, the risk priority ranking by the proposed method
is the same as that by MVRPN and improved MVRPN.
A close look at the first group, the FB-TOPSIS, MVRPN, and
improved MVRPN give a higher risk to FM7 in comparison
with FM1, while FM7 is ranked behind FM1 in the risk
priority ranking by the proposed method. The main reason
may be that FB-TOPSIS, MVRPN, and improved MVRPN
do not consider the objective weights of risk factors which
are obtained by the intrinsic information. Besides, according
to Table 6, it can be found that FM1 has a higher level of the
probability of occurrence in comparison with FM7, and the
occurrence has the greatest weight. Therefore, FM1 should
be given a higher priority than FM7. A close look at FM10,
the ranking is in front of FM2 in FB-TOPSIS, while FM10
ranks behind FM2 in the proposed method. However,
FM10 has the lowest level of the probability of occurrence
according to Table 6, and GRPM, MVRPN, and improved
MVRPN give the least priority to FM10. Thus, it is reason-
able to rank FM10 behind FM2. Comparing the risk priority
ranking of failure modes by using the proposed method with
GRPM, it can be found that the ranking results are basically
the same. The difference is that FM7 ranks in front of failure
mode FM2 in the proposed method, while the ranking of FM7
is behind FM2 in GRPM. In addition, the ranking of failure

79588 VOLUME 7, 2019



H. Wang et al.: New Failure Mode and Effects Analysis Method Based on Dempster–Shafer Theory by Integrating EN

TABLE 10. Risk ranking of failure modes by using different FMEA methods.

mode FM7 is in front of FM2 in FB-TOPSIS, MVRPN, and
improved MVRPN. Therefore, it is reasonable to rank FM7
in front of FM2. Through the above analysis and comparison,
it shows that the proposed method is effective for risk evalu-
ation in FMEA.

In addition, in our previous studies on risk evaluation in
FMEA [60], [61], the focuses are mainly on the uncertainty
in the experts’ assessments and evaluation process, ignoring
the uncertainty in experts’ knowledge about the relationships
between input factors for risk evaluation in FMEA. Thus,
we proposed a new FMEA method based on DST by inte-
grating EN to simultaneously represent the uncertainty in the
experts’ assessments and in experts’ knowledge about the
relationships between input factors. Besides, both subjective
weight and objective weight are considered to reflect the
relative importance of risk factors and avoid failure modes
from being underestimated or overestimated, which is differ-
ent from our previous work. Furthermore, the assessments
of multiple experts are integrated from the perspective of
network reasoning, which provides a new solution for the risk
evaluation in FMEA.

VI. CONCLUSIONS
In this paper, a new FMEA method based on DST by inte-
grating EN is proposed to improve risk evaluation process.
In this proposed method, DST is applied to represent both
the probabilistic uncertainty and epistemic uncertainty in
the experts’ assessments, and EN provides the framework
for representing experts’ knowledge about the relationships
between input factors. Besides, an improved EN is employed
to integrate the assessments of multiple experts, which avoids
the combination explosion of the number of states when
implemented in large real-world applications, and we pro-
pose a novel approach to determine the CBMT of the non-
root node. Additionally, the proposed FMEA method uses
linguistic terms in the uncertainty evaluation structure, which
overcomes the limitation of crisp assessments in the tra-
ditional RPN approach and allows experts to give more
moderate judgments in the evaluation process. To the end,
both subjective weight and objective weight are utilized to
determine the weights of risk factors, which can fully reflect
the importance of risk factors and avoid failure modes from
being underestimated or overestimated. Finally, a case study
of a steel factory is provided to illustrate the effectiveness
of the proposed FMEA method. By comparing with other
FMEA methods, the results show that the proposed method
is effective for risk evaluation in FMEA.

This study provides a new solution for the risk evaluation
in FMEA from the perspective of network reasoning, which
can be easily applied in industries fields. In future research,
the relative importance of each expert can be studied in
FMEA analysis. Besides, how to construct the CBMT of the
non-root node when its parents’ FODs are different needs
further study. Finally, we will explore other technologies such
as MCDMmethods to improve the risk evaluation in FMEA.
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