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ABSTRACT Localization and mapping in a dynamic scene is a crucial problem for the indoor visual
simultaneous localization and mapping (SLAM) system. Most existed visual odometry (VO) or SLAM
systems are based on the assumption that the environment is static. The performance of a SLAM systemmay
degenerate when it is operated in a severely dynamic environment. The assumption limits the applications
of RGB-D SLAM in the dynamic environment. In this paper, we propose a workflow to segment the objects
accurately, which will be marked as the potentially dynamic-object area based on the semantic information.
A novel approach for motion detection and removal from the moving camera is introduced. We integrate
the semantics-based motion detection and the segmentation approach with an RGB-D SLAM system.
To evaluate the effectiveness of the proposed approach, we conduct the experiments on the challenging
dynamic sequences of TUM-RGBD datasets. The experimental results suggest that our approach improves
the accuracy of localization and outperforms the state-of-the-art dynamic-removal-based SLAM system in
both severely dynamic and slightly dynamic scenes.

INDEX TERMS SLAM, dynamic environment, image segmentation.

I. INTRODUCTION
Simultaneous Localization andMapping (SLAM) is essential
to robotic automatization, which has been developed over
thirty decades. SLAM plays an important role in autonomous
driving, smart home and intelligent service, etc. When the
robot is moving around, its sensor such as the camera
could capture the walking people in such usage scenarios.
For example, Fig. 1(a) represents the mall scenes [1], and
Fig. 1(b) shows the office or expo scenes [2], while Fig. 1(c)
represents the smart home scene. Then the localization of
the robot would be corrupt using these consecutive images.
Although many impressive SLAM systems have been pre-
sented and open-sourced [3]. Usually, the basic assumption
of these SLAM systems is that the surroundings of the robot
is static. However, the accuracy of the location reduces a lot
in dynamically changing environment. That is because the
dynamic objects could corrupt the mapping of the environ-
ment, which results in the wrong estimation of positions.

In recent years, researchers have proposed some
approaches to solve this problem. Especially, with the
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emergence of low-cost depth cameras, RGB-D based visual
SLAM extensively becomes popular in the last few years.
The purely visual SLAMprovides more stable data streams in
most circumstances, where the RGB-D sensor like the Kinect
is a standard equipment for most robots.

An important issue is how to remove outliers and handle
false correspondences if the objects are moving in a common
environment. There are several algorithms are proposed, such
as the Random Sample Consensus (RANSAC) algorithm,
Progressive Sample Consensus (PROSAC) algorithm, and
Maximum Likelihood Estimation by Sample and Consensus
(MLESAC) algorithm [4]–[6]. However, these algorithms are
usually compatible while only small portion of feature points
are outliers.

On the other hand, different from the situation in the static
environment, the motions of the camera and the moving
objects in the scene all need to be considered. So it is hard to
determine whether the camera is moving or the objects ahead
is moving. Motion detection from a still camera has been
studied for several years [7]–[9], where the foreground sub-
traction (BS) [10] and optical flow [11] are exploited. On the
other hand, these approaches are not directly applicable to
many applications that involve moving cameras. Some new
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FIGURE 1. The application scenes of SLAM. (a) the mall scenes. (b) the office or expo scenes. (c) the smart home scene.

researches on this problem appear in recent years [12]–[15].
These works mainly adopt motion segmentation approaches
to handle the motion detection from a moving camera.

In this paper, we choose to use the boundary of the dynamic
object to remove the feature points in the dynamic area.
We adopt a semantic segmentation algorithm based onMask-
RCNN [16] network and an edge refinement algorithm to
find the contour of the potentially dynamic objects. Then a
novel approach that inspects the consistency of optical flow
between the potentially dynamic area and the background
area, is implemented to detect the real state of the potentially
dynamic area. The pixels influenced by the dynamic area will
be ignored in the feature-based visual SLAM system. And the
static scenes enhance the constrains of the whole graph-based
optimization framework. Themain contributions of this paper
can be summarized in three aspects:
• A novel approach to segment potentially dynamic
objects precisely is proposed. The algorithm implements
the motion removal based on the semantic information.

• A novel motion detection from moving cameras
approach is adopted to inspect the consistency between
the potentially dynamic-object area and the static-
background area.

• We demonstrate that our proposed approach achieves
the state-of-the-art localization performance on the
TUM [17] dataset.

The remainder of this paper is organized as follows:
Section II presents the related work in the past few years
about dynamic removal and motion detection from a moving
camera. Section III describes our proposed approach. The
experimental results tested on the public TUM data sets are
given in Section IV. Conclusion and discussion are drawn
in Section V.

II. RELATED WORK
This section reviews the previous contributions, which are
related to dynamic objects removal in SLAM and visual
odometry (VO) system andmotion detection from themoving
camera. To remove the dynamic objects, the frequently used

approaches in existed work can be generally classified into
three categories.

The first category is based on inspecting the reprojection
error. In [18] and [19], feature points are extracted between
two consecutive images, and then matched by calculating the
distance of the descriptors. By minimizing the reprojection
error of feature points, the motion of camera will be esti-
mated. The feature points whose reprojection errors increase
above a predefined threshold will be ignored in the following
steps.

The second category is based on the distance-transform
error. Reference [20] and [21] used the distance transform in
both direct and indirect approaches. The edges are extracted
to compute the distance transform of each pixel. The match
information can be available without descriptor matching.
Then the motion of the camera between the current frame
and the reference frame is obtained by reducing the distance
transform errors, which saves the computational cost in an
elegant way. Moreover, those pixels with a large distance
transform error will be discarded.

The third category is based on the motion detection and
blob segmentation approach. A dynamic removal approach
for a general SLAM system was proposed in [22], which
focused on the foreground segmentation of a scene. In [23],
a RGB-D foreground segmentation algorithm was proposed,
which could be used into the RGB-D slam system for the
dynamic removal approach in some circumstances. In [24],
Namdev et al. proposed an approach, where a dense optical
flow was calculated between two consecutive frames. The
potential motion information derived from optical flow is
taken as the input of a graph-based segmentation algorithm.
As the similar portions of potential motion information are
clustered, the dynamic parts are obtained. Sun et al. [10]
proposed an algorithmwhere the difference between two con-
tinuous images was computed to detect the contours of mov-
ing objects. Then the difference is quantized into a vector to
segment dynamic objects. In [25], a RDSLAMwas presented
to compare the appearance and the structure of the image,
whichwas able to detect the difference ofGPU-SIFT features.
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FIGURE 2. Overview of our proposed system.

And the outliers are discarded by an adaptively RANSAC-
based approach in view of a prior. However, the accuracy
is low and the system is only suitable for a part of scenes.
Li and Lee [26] proposed a methodology to detect the edge
of foreground in depth images. The weights of the static point
at the edge derived from the depth image are calculated based
on Student’s t-distribution.

And an iterative closest point (ICP) algorithm is imple-
mented by adding the information composed of static-point’s
weight, intensity weight and geometric weight. Yao et al. [27]
proposed a real-time visual odometry combining the sparse
edge alignment and minimizing reprojection error to obtain
robust state estimation. In addition, the edge with the large
reprojection error in the dynamic area will be discarded.
However, the outliers in the dynamic area are also existed in
the estimation phases. Our proposed approach will overcome
this problem.

For detecting motion from a dynamic camera based on
optical flow, contributions in [11] are made by researchers.
The basic principle is to detect the consistency of optical flow
between the speed of an object and its background. Then the
moving objects is derived due to the object’s motion, which
deviates from the background radial pattern. A threshold
screening strategy is adopted, which is a straightforward and
efficient way to compare the motion deviation of pixels for
motion determination. However, this approach is generally
influenced by occlusion, noise or color changes, where the
deep and effective representation of optical flow of the image
is ignored.

III. OVERVIEW
The overview of our proposed SLAM system based on the
feature points selection using the precise contour detection
is illustrated in Fig. 2. Briefly, the system implements the
following steps at each frame:
1) Pre-process the input by an instance-aware semantic

segmentation of the RGB data.
2) Refine the boundaries of the dynamic objects by inte-

grating the RGB edges with mask boundaries.
3) Take the extracted feature points and boundaries of

dynamic objects to determine whether the feature is
good or corrupt.

4) Estimate the 3D motion of camera for each input image
using the information of good feature point.

The details of each component of the pipeline will be
described below.

IV. METHODOLOGY
A. CONTEXT-AWARE PRECISE SEGMENTATION
1) OBJECT SEGMENTATION
For recognizing dynamic and potentially dynamic objects
from a single image, an instance-aware semantic segmenta-
tion algorithm is implemented. Take the indoor environment
as an example, where the main dynamic objects are persons.
We use the Mask-RCNN, a state-of-the-art deep convolu-
tional neural network for this task. For each input frame,
the Mask-RCNN pre-trained by the COCO dataset [28] is
adopted to detect and classify person instances. The person
detections are computed independently in each frame. The
edge and mask of each person instance will be extracted
as Fig. 3.

As Fig. 3 shows, the first column is the original
RGB image. The second column shows the drawn edges of
the person instances on the gray image. The third column is
the binary mask image. The fourth column shows the feature
points highlighted with blue, which is detected outside the
contour of the mask. Through Mask-RCNN, it can be noted
that some useless feature points are still detected around the
person instances .

2) CONTOUR REFINEMENT
As Fig. 3 denotes, the contours of the moving person is not
precise as expected. To solve the problem, we propose a
contours refinement algorithm. First, we implement a canny
edge [29] detection algorithm to detect the edge in the original
image. Second, the contour of the mask calculated by the
semantic segmentation algorithm is repaired by the edge.
Researches have shown that the centroid can be used to
describe the distribution of pixels in contours. The first-order
moments of each contour can be calculated. Assuming that
(i, j) is the coordinate of the pixel in the contours and g(i, j) is
the value of the pixel (i, j), then the moments of the contour
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FIGURE 3. Segmentation results.

can be derived as follows:

empq =
n∑
i=1

n∑
j=1

ipjqg(i, j) (1)

where pq and n represent the order of the geometric moment
and the number of pixels located at the contour respectively.
When both p and q are set as 0, the sum of the pixels’ value
on the contour is calculated as follows:

m00 =

n∑
i=1

n∑
j=1

g(i, j). (2)

Then, when p and q equal 1 and 0 respectively, the first
order of the moment along the x-axis is derived.

m10 =

n∑
i=1

n∑
j=1

ig(i, j). (3)

Similarly, the first of the moment along the y-axis is
obtained.

m01 =

n∑
i=1

n∑
j=1

jg(i, j). (4)

Finally, the x-coordinate and y-coordinate of the contour’s
centroid can be described as equation (5) and (6).

Cx = m10/m00 (5)

Cy = m01/m00 (6)

In the same way, the x-coordinate and y-coordinate of each
edge’s centroid are calculated. We take (eix , e

i
y) as the coordi-

nate of the i-th edge’s centroid. Then the distance between the
point (Cx ,Cy) and (eix , e

i
y) is calculated.

d =
√
(Cx − eix)2 + (Cy − eiy)2 (7)

α represents the threshold of the distance, which is set as a
matter of experience. When d > α, the edge is removed and
we reserve the original contour.

d > α, ei ∈ other object

d < α, ei ∈ maski (8)

After the preliminary selection according to the position
of edge, we implement an edge-contour matching operation
to further filter out the edge which dose not belong to the
contour. Motivated by the observation that the edge and the
contour from the same object could have the same trend, such
as the radian, the slope and the direction of stretch, we pro-
pose an edge-contour matching algorithm to describe the
similarity of these properties between an edge and a contour.

At the first step, given that edge is not with the same
length as contour, it is necessary to determine which part of
contour comes from the same position of one object as the
edge. Connecting the centroid of edge and contour, the line
intersects with contour at a point as Fig. 4.

To calculate this intersection on the contour, some princi-
ples in mathematics are used. Assuming that the centroid of
this edge is PE = (x1, y1) and the centroid of this contour is
PC = (x2, y2), then the function of the straight line passing
through PC and PE is computed by,

y =
y2 − y1
x2 − x1

(x − x1)+ y1 (9)

Given that the pixel in the contour is denoted as Pn =(
xpn , ypn

)
, the distance between the point and the line calcu-

lated above can be derived as,

diffn =
y2 − y1
x2 − x1

(
xpn − x1

)
+ y1 − ypn (10)

According to the position of the point Pn, we could know
the value calculated by the function listed above is positive
when the point Pn under the line in the image coordinate
system. But it is negative when the point Pn above the line.
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FIGURE 4. The illustration of the intersection calculation.

We calculate the diffn using all the known position of
points on the contour, and then traverse the list of diffn to
multiply two neighboring values. If the result of this product
is negative, it suggests the two points are located on either side
of the centroid of the edge of the contour respectively. Then
we can derive that the intersection P0 is located between the
point P1 =

(
xp1 , yp1

)
and point P1 =

(
xp1 , yp1

)
, which cause

the value of diff1 and diff2 are negative.
To approximately calculated the coordinate of the intersec-

tion P0, the principle of the similar triangle is applied. The
coordinate of the intersection is listed as follows:

xP0 =
|diff1|

|diff1| + |diff2|

∣∣xp1 − xp2 ∣∣+ xp1
yP0 =

|diff1|
|diff1| + |diff2|

∣∣yp1 − yp2 ∣∣+ yp1 (11)

After the calculation of the intersection P0, we proposed
an approach to construct descriptors for describing the prop-
erties stated before. We pick up the same number of points on
the contour as the edge. These points are distributed around
the intersection uniformly. The longest distance between the
intersection and some points in picked point set are smaller
than the shortest distance between the intersection and some
points in unpicked set.

Two vectors Ev1 and Ev2 are calculated after points picking,
which are formed by the points on the edge and the points
picked from the contour. The angle of two vectors with
respect to the optical center can be calculated by,

θ = arccos

 dT1 d2√
dT1 d1

√
dT2 d2


= arccos

 (
K−1x1

)T (
K−1x2

)√(
K−1x1

)T (K−1x1)√(K−1x2)T (K−1x2)


= arccos

 xT1
(
K−TK−1

)
x2√

xT1
(
K−TK−1

)
x1
√
xT2
(
K−TK−1

)
x2

 (12)

FIGURE 5. The description of Ev1 and Ev2.

FIGURE 6. The results of the edge refinement. (a) the result of our
proposed approach. (b) the result of Mask-RCNN.

which is relatedwith the points in the image, the original point
of the image coordinate and the optical center.

As shown in Fig. 5, a is one point in the image and b is the
original point of the image coordinate, while c denotes the
optical center. Then the Euclidean distance between the two
vectors is calculated. Moreover, a threshold ξ is set to filter
out the vectors constructed by those edges that do not belong
to the contour.

When the edge is remapped to the contour, it can be found
that the original contour may not be connected with the edge
as expected. To make the contour and edge coincide nearly,
a closed operation is employed. Finally, a more precise con-
tour of the dynamic object can be obtained. Then, the contour
information will be taken as the input of feature filter.

The segmentation result obtained by Mask-RCNN is
shown in Fig. 6(b). As the contour marked with the yellow
rectangle denotes, the contour obtained from the segmenta-
tion process is not precise as expected. In order to refine
the edge of the contour, we propose an edge refinement
algorithm as Algorithm 1 shows. Applying the algorithm
on the Fig. 6(b), accurate contours are obtained which are
highlighted using the red curve as shown in Fig. 6(a).

B. MOTION DETECTION
After potentially dynamic areas have been determined pre-
cisely, it is necessary to inspect the real state of the motion
in this potentially dynamic areas from the moving camera.
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Algorithm 1 ContourRefinement
0: procedure CONTOURREFINEMENT

1: contours← findcontours(mask_image);
2: edges← Canny(RGB_image);
3: (Cx ,Cy)← CalMoments(contours);
4: for edge in edges do
5: (eix , e

i
y)← CalculateMoments(edge);

6: d1← CalculateEuclideandistance((eix , e
i
y), (Cx ,Cy));

7: if d1 < threshold1 then
8: f ← CalculateLineFunctoinOfConnectedMoments((eix , e

i
y), (Cx ,Cy));

9: xintersection, yintersection)← CalculateIntersection(f , contour);
10: Ev1← DiscriptorFormation(edge);
11: Ev2← DiscriptorFormation((xintersection, yintersection) , contour);
12: d2← CalculateEuclideandistance( Ev1, Ev2);
13: if d2 < threshold2 then
14: contours← remapping(edges, contours);
15: end if
16: end if
17: end for
18: RefinementMask ← CloseOperation(contours);
19: RefinementContour ← findcontours(RefinementMask);
20: return RefinementContour ;

Basically, we adopt an optical flow-based approach to check
the consistency of potentially dynamic areas and background
areas. Optical flow algorithm [30] has been studied generally
over the past decades for this field, which performs strongly
in motion detection. The general idea of the algorithm is to
determine the point correspondences from two consecutive
images, which is under the assumption of spatial-temporal
consistency of the images. Two kinds of solutions for optical
flow problems are stated, which are called sparse and dense
solutions. The dense solution calculates optical flow values
in the image pixel by pixel. However, the sparse solution
just computes flow vectors on those points of interests. And
the optical flow value of one pixel can be obtained from
formulations as follows:

τ (X, u) =
∑
Xi∈S

[Il−1 (Xi)− Il (Xi + u (Xi))]2 (13)

For each 2D coordinate Xi in the set S ⊂ R2, the Il−1 (Xi)
is the pixel intensity of Xi at frame l − 1. Il (Xi + u (Xi))
denotes the corresponding pixel intensity value in the frame l.
u (Xi) is the changes of Xi-coordinate between frame l−1 and
frame l. It is defined as the minimizer of a criterion, which
is computed over a local window centered on Xi. To min-
imize the cost function mentioned above, the flow vector(
ux (Xi)
dt ,

uy(Xi)
dt

)
of the point Xi can be found. ux (Xi)

dt is the
derivative of coordinate changes with respect to time along
the x-axis, and uy(Xi)

dt is the derivative of coordinate changes
with respect to time along the y-axis. Here, the widely used
Lucas-Kanade optical flow [30] approach is implemented to
track sparse points inside and outside the potentially dynamic
objects.

For an optical flow vector p = (u, v), its orientation 8 and
magnitude ρ is depicted as follows:

φ =

{
atan 2

( v
u

)
∗ 180/pi, if atan2

( v
u

)
> 0(

360+ atan 2
( v
u

))
∗ 180/ pi, otherwise

(14)

ρ = 2
√(

u2 + v2
)

(15)

Then, similar to [15], a normalized histogram will be con-
structed for the potentially dynamic area and the background
area, in which the range of each bin will be determined by the
formulation shown as follows:

2π ∗
r − 1
R

< ψ < 2π ∗
r
R

(16)

where R is the number of bins and r is the serial number of
bin from left to right. All the flow vectors will be divided into
each bins according to their angle from the horizontal axis.
In addition, all the flow vectors will be assigned to different
clusters. The height of each bin will be computed as below:

H =

∑
ξ∈bin ρξ∑
µ∈area ρµ

(17)

where ρξ means the magnitude of the flow vector in one bin,
and the ρµ is the magnitude of flow vector in the potential
dynamic area or the background area.

The motion descriptor vector will be constructed as V =
(H1,H2,H3, . . . ,HR) for both potentially dynamic areas and
background areas respectively. Finally, cosine distance will
be calculated to determine whether the potentially dynamic
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area is moving or not, which are as follows:

cos1 =
VD · VB
|VD| · |VB|

(18)

cos1 > τ, D ∈ dynamic area (19)

cos1 < τ, D ∈ stationary area (20)

where the D denotes the potentially dynamic area. B repre-
sents the background area and τ is a tolerance for measuring
the state of motion. The threshold τ is set to avoid the
degeneration in low-dynamic scenes. Therefore, we choose
the statistical upper bound of the cosine distances of the dense
optical flow vectors for the moving object in slightly dynamic
scenes as τ , and it can be derived as:

τ = max(cos11, cos12, cos13, . . .) (21)

where cos1i represents the maximal cosine distance of the
dense optical flow vectors in one scene of the TUM-RGBD
dataset.

C. FEATURE SELECTION AND FEATURE-BASE VISUAL
SLAM
We extract the ORB feature points on the image. It is operated
by adding an accurate orientation component into FAST and
rotation invariant into BRIEF [31].

Then the ORB feature points will be extracted both in
the recognized potentially dynamic area and the background
area. Given the results estimated by the approach shown
in IV-B, if the area is estimated as the stationary area, the fea-
ture points in the area will be kept. Otherwise, the feature
points will be ignored in the reference frame and the current
frame.

In fact, the feature points inside the contour obtained in
the previous section can be easily distinguished and removed.
However, the value of the pixel around the dynamic object’s
contour changes suddenly. Then some unwanted feature
points which would influence the accuracy of the location
are detected around the contour. Inspired by the concept
‘‘inflation area’’, we will remove these feature points. The
specific steps are illustrated as follows.

As Fig. 7 denotes, the P is the feature points and the
red curve represents a part of the contour of the dynamic
object. β represents the distance between the location of the
feature points and the contour. We set five pixels along the
normal vector of the contour as the threshold. When β > 5,
the feature point will be reserved. But When β > 5, we will
remove it.

In Fig. 8, the red points are the ORB feature points detected
in consecutive frames. It can be seen in Fig. 8(a) that both the
feature points located inside and around the dynamic object
area are detected and highlighted. However, when we apply
our proposed feature filter on these feature points, they are
successfully removed as shown in Fig. 8(b).
The remaining feature points in previous section will

be used to track the egomotion of the camera in ORB
SLAM2 [32]–[34]. The estimation of the camera motion is

FIGURE 7. Feature points around the contour.

FIGURE 8. The experimental results of the feature filter.

based on the feature points detected in two consecutive RGB
images. More specifically, these feature points will be taken
into an iterative closest point (ICP) [35] algorithm to get
the optimized camera’s orientation and position in the front-
end by minimizing the error between matched 3D points
in world coordinates and key points. Further optimization
results will be calculated in the back-end based on more
constrains between all frames and loop closure detected.

V. EXPERIMENTAL RESULTS
The performance of our proposed approach is evaluated on
the public RGB-D TUM dataset. The Mask-RCNN segmen-
tation algorithm and edge refine algorithm are implemented
on the graphics NVIDIA GeForce GTX 1060. The ORB
SLAM2 was run with one CPU Intel Core i7-6700 Processor.
We evaluated our proposed SLAM system including the loop
closure detection and the map optimization, where Absolute
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FIGURE 9. Trajectories estimated by ORB SLAM2 and proposed approach.

Trajectory Error (ATE) metric and Relative Pose Error(RPE)
metric are used [17]. The estimated trajectories for sequences
are compared with their ground truth.

For brevity, we use the words fr, half ,w, s, d, p as repre-
sentatives of sequences freiburg, halfsphere, walking, sitting,
desk , person. halfsphere and rpy stand for the camera motion
following a halfsphere-like trajectory and the camera rotating
along the roll-pitch-yaw axes respectively. static represents
the camera roughly kept in place manually. xyz depicts the
camera moved along the x-y-z axes. The sitting sequences
describe the scene that changes slowly as low-dynamic scene.
Unlike the low-dynamic scene, the scene in the sequence
walking is defined as the high-dynamic scene.

A. COMPARISON WITH THE ORIGINAL SLAM SYSTEM
Considering that our proposed approach is integrated with
ORB SLAM2 system, it is important to compare the esti-
mation results between the original SLAM system and
our proposed SLAM system to show the improvements.
Fig. 9 is the trajectories estimated by ORB SLAM2 and
the proposed approach. The estimated trajectories of original
ORB-SLAM2 are shown in the first row. At the same time,
the estimated trajectories of our proposed approach are stated
in the second row. The shorter the red lines are, the better
localization result can be obtained. The Table 1 is the quan-
titative results by comparing estimated trajectories of each
sequences with their ground truth file. Here, we only show
the Root Mean Square Error (RMSE) and Standard Deviation
Error (STD).

The proposed approach is tested both in low-dynamic
scenes and high-dynamic scenes. We did not take the exper-
iments in static scenes. It is noted that the results should
keep invariant because there is no potentially dynamic area
to be recognized. Moreover, the original ORB SLAMv2 with
our approach achieves more improvements in high-dynamic
scenes than in low-dynamic scenes. In the low dynamic
sequences, there are only small parts that are moving with the
low speed. The algorithm of the original ORB SLAMv2 can
remove these outliers. However, the original system performs
not well in the high dynamic environments. So the improve-
ments of our approach are more notable in the high-dynamic
environment relatively. It can be seen in the Table 1, in the
high-dynamic scenes, the RMSE average drops up to 85.5%
compared with original SLAM system. However, in the low-
dynamic scenes, the average decrease is 34.6%. So our
approach is proven to enhance the stability and robustness
for original feature-based visual SLAM system in severely
dynamic environments.

B. COMPARISON WITH STATE-OF-THE-ART VO SYSTEM
To compare our approach with recently state-of-the-
art dynamic-removal based VO system, Relative Pose
Error (RPE) [17] is adopted to quantify the odometry
drift. Intensity-Assisted Iterative Closest Point with Static
Point Weighting (SPW-IAICP) is the VO system in the
research [26]. The detailed experimental results on the TUM
dataset are provided. Thework of [27] is used for comparison,
which is EP-BASED VO for short, a VO system designed to
handle the situations in dynamic environments. Fig. 10 is the
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FIGURE 10. Trajectories estimated by EP-BASED VO and proposed approach.

TABLE 1. ATE [m] of ORB-SLAM2 and the proposed approach.

TABLE 2. RPE [m] of the SPW-IAICP, EP-based VO and the proposed approach.

trajectories estimated by EP-BASED VO and the proposed
approach.

The RMSE values of the translational drift and rotational
drift are shown in Table 2. And from the analyses and dis-
cussion in [27], it is clear that the EP-BASED VO achieves
the state-of-the-art results. However, our proposed approach

integrated with ORB SLAM2 outperforms the other two
approaches for most dynamic sequences, which can be found
in the Table 2.

Finally, a complete comparison between EP-based VO and
our proposed approach is listed in TABLE 3. From [27], it can
be known that the original ORB SLAM2 performs worse
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TABLE 3. ATE [m] of the state-of-the-art EP-based VO and the proposed approach.

than the EP-based VO. However, the ORB SLAM2 with
our approach is more stable and robust. The improvements
indicate our proposed approach have better performance on
the most of sequences. In addition, in the slightly dynamic
environments, the increase in the RMSE is about 12%. In the
highly dynamic environments, an average of 27.5% decrease
in RMSE is achieved, where the maximum reaches up
to 37.4%. But in very few scenes, the sequences of xyz
and half , the improvement values are negative. Because in
these scenes, there are always some objects whose few parts
are moving. For our algorithm, once one dynamic object is
detected, the whole blob of image will be discarded, even in
the low-dynamic scenes. Therefore, some static parts of these
objects will be also casted away. However, in EP-BASED
VO, only the small parts of the objects are ignored. So in these
few scenes, the EP-BASED VO could use all the information
of the static parts and then perform better. This limitation in
these very few scenes will be a point for our immediate future
work. Given that the main scenes are the slightly dynamic and
highly dynamic environments, hence the experimental results
demonstrate that our approach removes the dynamic features
more completely and is more robust in general.

VI. CONCLUSION
In this paper, a novel approach to overcome the degeneration
of visual SLAM system in severely dynamic environments
is proposed. Our approach takes the advantage of semantic
information of the image to recognize potentially dynamic
objects. A contour refinement algorithm is adopted to detect
the objects precisely. Then motion detection is implemented
to verify the consistency of optical flow in both potentially
dynamic area and the background area. This approach will be
taken as the front end of a feature-based visual SLAM system
to track the trajectories and map simultaneously. The exper-
imental results demonstrate that our approach improves the
accuracy of localization for generally feature-based SLAM
system and outperforms the state-of-the-art dynamic removal
SLAM and VO system. For the high-dynamic sequences,
the RMSE decreases about 95.1% compared with the original
SLAM system and 37.4% compared with the state-of-the-
art dynamic removal VO system on average. In the future,
our work will focus on the degeneration in low-dynamic
scenes because of discarding static-part information. And the

implementation and optimization on a high frame rate will
also be considered.
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