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ABSTRACT NoSQL database can provide massive, high concurrency, and scalable services for storing
different types of data. HBase, a type of NoSQL database, in which columns are grouped into column
families, is very suitable for storing semi-structured or unstructured spatial vector data. However, since there
are few rules and constraints to be followed for the NoSQL database, the design of storage schema for spatial
data based onNoSQL is difficult. In this paper, based on our early work, an improved Z-curve storage schema
is proposed for spatial vector data. According to our new schema, row key of a geometric object is the Z-curve
code of the spatial grids intersected with the geometric object. Moreover, geometric objects with the same
row key are stored in a column family. Our proposed method has two features. First, geometric objects
adjacent in the location are adjacent in physical storage. Second, redundant exists in storage for improving
query accuracy. In our experiments, we compare the improved Z-curve storage schema with a Quadtree
storage schema, an R-tree storage schema, and the previous Z-curve storage schema. Query response time,
memory usage, and the query accuracy of spatial query on point and range are used to verify the validity of
our proposed method. The experimental results show that the two storage schemas based on Z-curve achieve
higher query efficiency than the two storage schemas based on tree—the Quadtree storage schema and the
R-tree storage schema. More importantly, the query results of the improved Z-curve schema are completely
correct, while the query results of the previous Z-curve schema are not.

INDEX TERMS Cloud computing, geographic information system (GIS), HBase, NoSQL, spatial index.

I. INTRODUCTION
Geographic information system (GIS) is mainly intended for
spatial data collection, storage, and on-demand processing
with the support of computer software and hardware [1].
In GIS, many services need be provided for spatial vector
data. The rapid development of information technology, earth
observation technology, and sensor technology, has resulted
in a rapid increase in the accumulated volume of spatial vector
data in various fields. Hence, GIS services are often provided
via the Internet to speed up processing [2]. GIS service via the
Internet requires a large number of concurrent read and write
operations together with scalability. Consequently, efficient
storage of massive spatial vector data based on the Internet
has become the key to the development of GIS [3].

Traditional relational database is fit for storing structured
data rather than spatial vector data, a type of unstruc-
tured data [4]. Fortunately, the new-generation IT model -
cloud computing, which plays an important role in big data
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processing, is designed to enable dynamic resource pooling,
virtualization, and high availability. Not only SQL (NoSQL),
which is a new type of database based on cloud computing,
has the performance advantages on big data access, scalabil-
ity, and high concurrency. The excellent scalability of NoSQL
provides the ability to handle large amounts of data. Thus,
performance problems that result from increased amount of
data can be solved [5]. In short, the strong scalability and low-
cost features of a NoSQL distributed database management
system in the cloud-computing environment provide a new
way of thinking for spatial vector data operations. Hence,
NoSQL is a better choice for spatial vector data than relational
database.

With the aim of providing improved support for search
engines and other applications, Google has designed massive
extensible infrastructure that addresses each issue individu-
ally on each level of the application stack. Their goal is to
create a scalable infrastructure to process massive amounts
of data including spatial vector data in parallel [6]. To this
end, Google has established a complete set of cloud com-
puting mechanisms, including a distributed file system GFS,
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distributed coordination system Chubby, column family ori-
ented data storage Bigtable, and the parallel algorithm execu-
tion environmentMapReduce. Basic principle and key details
can be found in [7]. The above work of Google is an example
of spatial vector data operations based on NoSQL in the
cloud-computing environment.

Undoubtedly, storage schema is the foundation of spa-
tial vector data operations based on NoSQL in the cloud-
computing environment. Nevertheless, in design of storage
schema, few rules and constraints can be followed. The litera-
ture on storage schema on NoSQL, especially storage schema
for spatial polygon data on NoSQL, is quite limited [8].
In [9], two schemas for storing spatial vector data on HBase -
a widely used NoSQL database - were proposed by us. One
schema employs row key based on the Z curve and is named
Z curve schema, whereas the other has row key based on
geometric object identifiers. Experiments in [9] showed that
the performance of the former schema is better than the
performance of the latter schema. So far, the performance
of the two schemas is not compared with the performance
of any storage schemas based on classical indexing methods.
In this paper, based on our previous work in [9], we propose
an improved Z curve schema for storing spatial vector data
on HBase. The current Z curve schema, differs from the
last version in terms of the row key and column family.
According to the current Z curve schema, the row key of a
geometric object is the list of Z curve code of the spatial grids
intersected with the geometric object. Moreover, geometric
objects with the same row key are in the different column
of the same column family. With the proposed schema, geo-
metric objects adjacent in location are stored adjacently in
physical position. In practice, such a feature can improve
query efficiency because the geometric objects of one query
result usually are adjacent in location. Meanwhile, under the
control of the schema, a geometric object could possibly be
stored in multiple grids. That is, redundancy may occur in
storage. However, such redundancy based on high scalability
of HBase may help to accurately locate geometric objects
in less query time. Therefore, accuracy and speed of spatial
query for special geometric objects, such as those with a large
area or narrow shape, can be improved.

In our experiments, not only the current and previous Z
curve schemas but also two other classical storage schemas
for spatial vector data, one based on Quadtree, the other based
on R-tree are executed. We assess their performance in terms
of spatial point query and spatial range query. Experimen-
tal results show that both the previous and current Z curve
schemas outperform R-tree schema and Quadtree schema.
However, the previous Z curve schema does not work well
when processing large or narrow geometric objects. In these
cases, the query results do not completely meet the query
condition.

The remainder of the paper is organized as follows.
Section II provides background information and relatedwork.
Section III presents our proposed schema and its three
peers. Section IV describes our experiments based on a

real-world vector dataset, followed by an analysis of the
results. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. SPATIAL INDEX TECHNOLOGY AND NOSQL
In recent years, the ever-increasing scale of spatial data has
attracted increasing attention and prompts the development of
spatial index technologies that enable spatial data to be pro-
cessed quickly. Spatial index relates not only to information
about the location, shape, and attributes of spatial objects, but
also the relationship between objects. For an object, the data
structure of the spatial index may include its identification
information, its minimum bounding rectangle (MBR), and its
pointer to the spatial object entity [10]. Thus, spatial index
acts as a bridge between algorithm performing the operation
and spatial object entity. In fact, when certain spatial objects
need to be retrieved, spatial index can help to exclude a
large number of spatial objects, thereby reducing the scope
of related spatial objects. Thus, spatial objects are quickly
located and the query efficiency is consequently improved.

NoSQL, a new database model that differs from rela-
tional database, disposes of the limitation of ACID theory
and belongs to non-relational database. NoSQL is seizing
the dominant position occupied by relational database for a
long time [11]. A NoSQL provides unstructured storage [12].
That is, data storage does not need the table structure to be
designed in advance, because the join operation and hori-
zontal segmentation between tables do not occur. In short,
NoSQL are useful when processing an enormous quantity
of data (especially big data) when a relational model is not
necessary [13]. The growth in the scalability of spatial data
has made the NoSQL database a suitable choice.

HBase, an open source column family NoSQL-type
database, provides high reliability, high performance, and
column-based storage. Furthermore, it is scalable and offers
real-time read and write database system services derived
from its underlying storage based on HDFS. All columns in
a HBase column family are stored together. Column fami-
lies of a table are stored separately. HBase is suitable for
storing semi-structured and unstructured data that have no
fixed pattern and are loosely coupled. In addition, HBase is
particularly beneficial for physical decentralized storage in
the case for spatial vector data collected in various locations.

Generally speaking, the cost of a spatial index consists of
two parts, the time required for data positioning and the time
required for returning the data. The time for positioning is the
time required to execute the query, whereas the time for data
return is the time required to transmit the query result from the
system storage layer to the processing layer. The time for data
return is proportional to the amount of data to be returned. The
computational cost of the spatial index is mainly the result
of data positioning, which involves indexing the spatial data.
The considerable cost associated with querying spatial data
stored in a relational database is due to the complexity of these
data. This explains why it is necessary to use an index in a
non-relational database [14].
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Spatial index is important to enable a spatial database to
retrieve and display data efficiently; thus, the performance
of the spatial index affects the overall performance of the
spatial database directly [15]. From the perspective of the
development and evolution of spatial index technology, four
structures have been used to build the spatial index: a binary
tree, B-tree, hash, and space-filling curve.

B. RELATED WORK
NoSQL databases are becoming popular for storing mas-
sive amounts of spatial data. For example, the KR+−
spatial index was designed using the NoSQL database
Cassandra to improve the efficiency of spatial data query [16].
Nishimura et al. usedHBase to store spatial data and designed
an index layer to address multi-dimensional query prob-
lems [17]. A spatial index structure based on the NoSQL
database Accumulo was designed to conduct performance
query [18]. A spatial index of raster data stored in HDFS was
established on HBase [19]. A hybrid index structure combin-
ing Quadtree and a grid based on HBase was designed [20].
A map tile data storage strategy was designed on the
NoSQL database MongoDB to improve the storage of mas-
sive amounts of spatial data and to allow concurrent access
efficiency [21]. A data storage structure was designed on the
NoSQL database CouchDB to enable spatial vector data to be
stored in a hand-held application [22]. Hsu et al. [23] made
use of the R+− tree index technique to optimize the design of
row keys in HBase and Cassandra to improve the data access
efficiency. Li et al. [24] used geohash coding technology to
establish a spatial index on the NoSQL database OrientDB
to improve the write data rate. Liu et al. [25] stored spatial
big data in the NoSQL database MongoDB and designed a
big data cloud storage solution based on MongoDB cluster
architecture. Cho and Choi [26] used the column family
database HBase to store information relating to GPS logis-
tics of vehicles to improve query efficiency. Most of the
above studies proposed storage schemas for spatial point data.
Meanwhile, few studies concerned with storage schemas for
polygon. Nevertheless, for polygon, we proposed two storage
schemas implemented in Hbase based on Z curve in [9].

III. HBASE STORAGE SCHEMAS
As mentioned above, besides our early work, few storage
schemas for polygon data in NoSQL database can be found.
Thus, we also realize other two HBase storage schemas
for our experiments. That is, we employ four HBase stor-
age schemas for spatial vector data in experiments. Apart
from our proposed Z curve schema, R-tree schema, Quadtree
schema, and the previous version of the Z curve schema
are given here. Realization of R-tree and Quadtree schemas
requires two tables, one of which is for recording the estab-
lished tree structure of the index and the other for recording
spatial data. When a spatial query is performed, the approx-
imate spatial index range should first be queried through
the index table. Then, the spatial query can be executed
based on the associative relationship between the row key

of the spatial data table and the index table. In the previous
version of Z curve schema, Z curve is used to divide the
entire index space into several grids, each of which is used
as an index - row key. Both the barycentric coordinates of
the MBR of the geometric objects comprising the grid and
the geometric objects themselves are stored in the column
according to row key. The improved Z curve schema proposed
in this paper uses the list of Z curve code of the spatial grids
intersected with a geometric object as the row key of the
geometric object. Further, all geometric objects with the same
row keys are sequentially stored in the corresponding column
family. Additional details of the four storage schemas - row
key design, column family design, and access method - are
provided in the following subsections, respectively.

A. STORAGE SCHEMA BASED ON QUADTREE
(QUADTREE SCHEMA)
1) ROW KEY DESIGN
In index structure table, information for structure of the estab-
lished quadtree can be stored and indexed. Firstly, a row with
the row key value ‘‘1’’ is used to store the index structure
of quadtree. Then, each non-empty leaf node of the current
quadtree indicates an index range of the MBR of a geometric
object. Thus, in spatial data table, each non-empty leaf node
is stored in a row. The serial number of non-empty leaf node
is used as row key. In addition, the information of geometric
object within the index range can be stored in different col-
umn of the same column family in the corresponding row.

FIGURE 1. MBR N of polygon M.

2) COLUMN FAMILY DESIGN
In index structure table, three column families are needed.
The first column family, named Tree, is used to store infor-
mation about quadtree structure - the height of quadtree,
number of tree nodes, and number of geometric objects.
The second column family, named Nodes, is used to store
tree node data including the serial number of each non-leaf
node and the four quadrant location information of its child
nodes, which refers to the four quadrant positions in quadtree
index - northeast (NE), northwest (NW), southwest (SW),
southeast (SE). The four quadrants correspond to a four-
digit binary number, where ‘‘0’’ means that the MBR of the
geometric object is not in the quadrant, whereas ‘‘1’’ means
that it is present. Fig. 1 shows geometric object M and its
MBR N. The third column family, named Range, is used to
store quadtree index range of each node.

Here, we give some examples. Firstly, a quadtree index is
established based on the MBR data of the geometric object.
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FIGURE 2. Instance of spatial data storage model based on quadtree.
(a) Spatial data. (b) Quadtree index.

For example, Fig. 2 (b) can be established based on Fig. 2 (a).
The column family design model of the storage schema is
shown in Table 1. Fig. 2 (a) shows that both MBR A and
MBR C cover multiple grids each corresponds to a leaf node.
First, MBR A and MBR C need to be stored in the leaf
nodes covered by them. If spatial query operation is required,
the index range is obtained in the column family - Range -
through the node number.

In fact, each spatial data table requires a column family to
store geometric objects. The number of columns in a column
family is changed according to the number of geometric
objects. Based on quadtree index in Fig. 2, the design model
of the column family of the spatial data shown in Table 2 can
be obtained.

3) ACCESS METHOD
Based on the row key design and column family design
mentioned above, spatial point query, which is used to query
whether a point is included in a geometric object within the
index space, and spatial range query, which is used to list
all the geometric objects in a spatial range, can be done
with the help of index structure table and spatial data table.
When performing spatial point query, firstly, an intersection
operation is performed on the pair of coordinates of point
and the index range of the root node in the column family
- Range - within the index structure table. If intersection
exists, the index ranges of the child nodes stored in the
column family - Nodes - is used for the intersection operation.

Algorithm 1 Pseudocode of Spatial Point Query Based
on Quadtree Schema
Input: Spatial point M
Output: The geometric object intersected with M

1 Get the input, M
2 Read the stored quadtree index structure for the row
whose row key is ‘‘1’’ in the index structure table

3 Use the list collection to reconstruct quadtree to obtain
the index range of each node of quadtree

4 Execute intersections between spatial point M and its
root node

5 if intersection exists then
6 Query quadtree until a leaf node that intersects with

spatial point M is found
7 Get the node number N of the above leaf node as

row key to obtain the collection of geometric
objects, Result, in the spatial data table

8 for traverse all the geometric objects in Result do
9 Execute intersections between the pair of

coordinates of spatial point M and the current
geometric object

10 if intersection exists then
11 Give the output
12 end
13 end
14 end

This occurs recursively until the index range of the leaf node
that intersects with the spatial point is found. After obtaining
the index range, the found index range of the leaf node is used
as row key to query the spatial data table for all the geometric
objects stored in the row key. Then, an intersection operation
is performed on the obtained geometric objects and the pair of
coordinates of spatial point to obtain the geometric object that
intersects with the spatial point. The pseudocode of spatial
point query is shown in Algorithm 1.
Similar to spatial point query, when performing spatial

range query, firstly, an intersection operation is performed
on the spatial range to be queried and the index range of all

TABLE 1. Instance of column family design model of Quadtree schema for index structure table.

TABLE 2. Instance of column family design model of Quadtree schema for spatial data table.
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quadtree root nodes to find quadtree in the spatial range to
be queried. Then, recursively find the index range of the leaf
node that intersects with the spatial range to be queried in
quadtree. Subsequently, the index range is used as row key.
The geometry objects stored in the row with the row key are
queried. Finally, an intersection operation is performed on the
obtained geometric objects and the spatial range to obtain a
collection of geometric objects that intersect with the spatial
range. The pseudocode of spatial range query is shown in
Algorithm 2.

Algorithm 2 Pseudocode of Spatial Range Query Based
on Quadtree Schema
Input: Spatial range R
Output: Geometric objects collection C

1 Get the input, R
2 Read the stored quadtree index structure for the row
whose row key is ‘‘1’’ in the index structure table

3 Use the list collection to reconstruct quadtree to get the
index range of each node of quadtree

4 Execute intersections between spatial range R and its
root node

5 if intersection exists then
6 Query quadtree until all the leaf nodes that intersect

with spatial range R are found
7 Get the node number collection Find of the above

leaf nodes as row key, respectively, to obtain the
collection of geometric objects, Result, in the spatial
data table

8 Remove duplicate geometric objects in Result
9 for traverse all the geometric objects in Result do
10 Execute intersections between the current

geometry object and query range R
11 if intersection exists then
12 Add the current geometric object to the

collection C
13 end
14 end
15 end

B. STORAGE SCHEMA BASED ON R-TREE
(R-TREE SCHEMA)
Compared with Quadtree schema, R-tree schema is different
in terms of their row key design and column family design
whereas their access methods are basically the same. There-
fore, this section just introduces the row key design and
column family design of R-tree schema.

1) ROW KEY DESIGN
In index structure table, information for structure of the estab-
lished R-tree can be stored and indexed. Similar with quadtree
index structure, firstly, a row with the row key value ‘‘2’’ is
used to store the index structure of R-tree. Then, in spatial
data table, the serial number of each non-empty leaf node is

used as row key. In addition, the information of geometric
objects within the index range can be stored in different
column of the same column family in the corresponding row.

FIGURE 3. Third-order Z curve.

FIGURE 4. Instance of spatial data storage model based on R-tree.
(a) Spatial data. (b) Structure of R-tree.

2) COLUMN FAMILY DESIGN
Here, similar to the storage structure of quadtree index,
in index structure table, three column families are needed
for storing information about R-tree structure, R-tree non-
leaf node information, and nodes range, respectively. Nev-
ertheless, difference exists. In detail, the geometric objects
in the original index space needs to be mapped in the Z
curve according to the barycentric coordinates of its MBR
for obtaining its one-dimensional code. As shown in Fig. 1,
the barycentric of the MBR of geometric object M is point K,
which corresponds to the code 24 in the third-order Z curve
shown in Fig 3. Thus, the one-dimensional code of M is 24.
After the one-dimensional code of all the geometric objects is
obtained in the original index space range, the code is sorted
in ascending order. In theory, adjacent geometric objects in
coding positions are adjacent in actual geographical posi-
tions. Therefore, all the MBRs with adjacent coding position
are combined to form a large rectangular range as the leaf
node of R-tree. Then, quadtree is built from bottom layer to
top layer. In Fig 4 (a), the second-order Z-curve codes of
geometric objects A-N are 0, 0, 2, 3, 4, 6, 7, 9, 8, 12, 11,
10, 9, 15, or 0, 0, 2, 3, 4, 6, 7, 8, 9, 9, 10, 11, 12, 15 if
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TABLE 3. Instance of column family design model of R-tree schema for index structure table.

TABLE 4. Instance of column family design model of R-tree schema for spatial data table.

TABLE 5. Instance of column family design based on Z curve schema.

sorted in ascending order. The column family design model
of the storage schema is shown in Table 3. In each spatial data
table, only a column family is needed for storing geometric
object information. According to Fig. 4, quadtree index can
generate the column family of the spatial data table presented
in Table 4.

C. STORAGE SCHEMA BASED ON Z CURVE
(Z CURVE SCHEMA)
Because foreign key is not used in HBase, it is necessary to
visit the HBase data table twice when using a storage schema
with tree, a structure may affects the efficiency of a spatial
query. The deeper the index structure is, the higher the time
complexity becomes. Hence, design of the index tree is a
key step. Against the above background, the storage schema
based on Z curve is proposed by us.

1) ROW KEY DESIGN
First, the index space is divided into 4m grids by the m-th
order Z space-filling curve. Meanwhile, all grids are num-
bered according to the order of the curves. Then, the MBR of
each geometric object needs to be obtained to find the covered
grid according to the barycentric coordinates of the MBR.
After that, the grid number is used as row key. For the
geometric object M shown in Fig. 3, its barycentric of the
MBR is point K and the Z curve code of the grid where point
K is located is 24. Therefore, the row key of the geometric
object stored in HBase is 24.

2) COLUMN FAMILY DESIGN
Adjacent geographical positions lead to adjacent codes for
the Z space filling curves. Therefore, the use of the Z curve
to encode the row keys can partially ensure that spatial vector
data with adjacent geographical location have adjacent loca-
tions in physical storage in Hbase. However, if the spatial

vector data, geometric objects, around a geographical loca-
tion are very dense, there are usually many geometric objects
in the range of the Z curve code although the Z curve order
is sufficiently high. Therefore, the Z curve code of multiple
geometric objects may be the same. To solve this problem,
when the columns of the Z curve schema are designed, it is
necessary to design multiple columns in a column family.
Instead of being predefined, columns are stored sequentially
in different columns of the same column family when the
same encoded geometric object is acquired. The column
names are encoded incrementally. The column family design
model for the Z curve schema appears in Table 5.

3) ACCESS METHOD
In Z curve schema, row key is the Z curve code of the grid
where the barycentric of the MBR of the stored geometric
object is located. Therefore, when performing spatial point
query, the grid code corresponding to the spatial point first
needs to be obtained. Then, all the geometric objects stored
in the spatial grid are obtained. Finally, intersections between
the obtained geometric objects and the spatial point are done
to obtain the geometric objects that intersect accurately with
the spatial point. The pseudocode of this access method is
shown in Algorithm 3. Spatial range query is similar to spatial
point query. The pseudocode of this access method is shown
in Algorithm 4.

D. STORAGE SCHEMA BASED ON IMPROVED Z CURVE
(IMPROVED Z CURVE SCHEMA)
In Z curve schema, row key is the grid code where the
barycentric of the MBR of the geometric object is located.
Further, each geometric object is stored only once. However,
in this storage schema, the geographical location information
of each geometric object is transformed into the barycentric
coordinates of its MBR for storage. To some extent, part of
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Algorithm 3 Pseudocode of Spatial Point Query for Z
Curve Schema
Input: Index space range IR and query spatial point M
Output: A geometric object or None

1 Get the input IR and M
2 Divide IR into orders
3 Obtain the spatial grid code of the spatial point under
query as row key

4 Get the Result collection that stores the geometric object
information according to the row key

5 for traverse all the geometric objects in Result do
6 Execute intersections between the pair of

coordinates of spatial point M and the current
geometric object

7 if intersection exists then
8 Give the output
9 end
10 end

Algorithm 4 Pseudocode of Spatial Range Query for Z
Curve Schema
Input: Index space range IR and query range QR
Output: Geometric objects collection C

1 Get the input IR and QR
2 Divide IR into orders
3 Get the spatial grid code collection, Code, covered by
the query range

4 Cluster all the codes to get the scan coding range
collection, Find

5 for traverse each scan in Find do
6 Query the data table to get the collection Result that

stores the geometric object information
7 for Traverse all the row key in Result do
8 if Row key exists in Code then
9 Add geometric object to the collection

Sum_geoms
10 end
11 end
12 end
13 Remove duplicate geometric objects in Sum_geoms
14 for Traverse all the geometric objects in Sum_geoms do
15 Execute intersections between all geometric objects

and query ranges
16 if intersection exists then
17 Add geometric object to the collection C
18 end
19 end

the information of the original geometric object is lost in
this course. For example, Fig. 5 reveals several problems that
occur when storing special geometric objects such as large or
narrow-shaped objects.

According to the storage schema shown in the previous
section, the Z curve code of Polygon A, the larger polygon,

FIGURE 5. Storage instance of (a) large area and (b) narrow shape
geometric objects based on Z curve schema.

in Fig. 5 (a) is 37, whereas the grid code of the spatial point
M is 51. Actually, it can be seen that spatial point M is inter-
sected with polygon A. However, they are assigned different
Z curve codes. Since the geometric information of polygon A
is only stored in the column numbered 37, M cannot intersect
with polygon A in response to a query. That is, query result
cannot reflect the fact. Similarly, in Fig. 5 (b), the Z curve
code of polygon C - a narrow and long polygon - is 26.
Actually, an intersection exists between spatial query range
N and polygon C. Because the grid codes covered by query
range N do not contain 26, in the query result of this storage
schema, query range does not intersect with polygon C.

The inability of the Z curve storage schema to effectively
store geometric objects with a larger area or a longer shape led
us to propose an improved Z curve storage schema to avoid
these errors. The improved schema mainly improves the row
key design and the column family design of the Z curve
schema, and its access method is similar to the traditional Z
curve storage schema.

1) ROW KEY DESIGN
In our improved Z curve schema, grid codes that intersect
with geometric object is used as row keys. That is, first,
MBR of geometric object is used to conduct intersection
operation with each grid to obtain the grids intersect with it.
Then, the actual geometric object is used to conduct the
intersection operation with the grids obtained in the previous
step. After obtaining grids that intersect with the geometric
object, grid codes are used as row keys to store geometric
object. In the improved Z curve schema, there is a possibility
that a geometric object is stored in multiple grids provided
that these grids intersect with it.

This schema effectively avoids the problem described in
the previous section when storing objects that are either
geometrically large or have a narrow shape. As shown in
Fig. 6 (a), first, the MBR of polygon A is used to conduct
an intersection operation with each grid to find the grids that
intersect with it. The Z curves of these grids are encoded from
0 to 63. Then, polygon A conducts an intersection operation
with the index region represented by all 64 spatial grids.
Removing the grids that do not intersect with polygon A -
0, 1, 2, 3, 4, 8, 10, 20, 21, 22, 23, 29, 32, 34, 62, and 63
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TABLE 6. Instance of column family design based on the improved Z curve schema.

FIGURE 6. Storage instance of geometric objects with a (a) large area and
(b) narrow shape based on the improved Z curve schema.

(as shown in the gray rectangle in Fig. 6 (a)), the remaining
48 spatial grids are used as the grid range that intersects with
polygonA.At the same time, the Z curve code of each of these
grids is used as a row key to store polygon A in each grid,
respectively. When performing spatial point query as shown
in Fig. 6 (a), the grid code covered by the spatial pointM is 51,
while the storage unit with row key 51 contains polygon A.
The intersection operation can be performed to determine
that point M is intersected with polygon A. Similarly, for
polygon C, as shown in Fig. 6 (b), the Z curve code of each
of the 22 grids with which it intersects is used as a row key to
store polygon C in each grid, respectively. When performing
spatial range query, the grid codes covered by query range
N are 19, 22, 23, 25, 28, 29, 27, 30, 31, 49, 52, 53, 51,
54, and 55. The codes of the common grid of spatial query
range N and polygon C are 49, 51, and 54. Querying the
geometric objects in the corresponding storage unit can find
both spatial query range N and polygon C to intersect with
each other. This storage schema can accurately determine the
spatial location of geometric objects. Therefore, the accuracy
of spatial queries relating to special geometric objects such
as those with a large area or narrow shape is improved.

2) COLUMN FAMILY DESIGN
In practice, one grid could be covered by more than one
geometric object. Therefore, in our improved Z curve schema,
row keys are the Z curve codes of the spatial grids covered
by the geometric object. In this schema, a geometric object
may be stored in multiple grids provided that these grids all
intersect with it. That is, there is a possibility of redundancy
in storage. Similar to Z curve schema, the number of columns
in the column family named Geometry is dynamic in our
proposed improved Z curve schema. Moreover, the names of
these columns are sorted in ascending order. The model of
the column family design in this storage schema is presented
in Table 6.

TABLE 7. Configuration of experimental environment.

IV. EXPERIMENTAL STUDY
A. EXPERIMENTAL ENVIRONMENT
In our experiments, Infrastructure as a Service (IaaS) is pro-
vided by twoDELLR720 servers. Details of the hardware and
software configuration are provided in Table 7. Virtualization
is employed to provide 12 nodes for our IaaS, ten of which
are used as DataNodes to provide the HDFS service.

B. EXPERIMENTAL DATA
Land changing survey in China produces a tremendous num-
ber of polygon parcels every day. Data of land changing
survey, which covers an area of approximately 166 square
kilometers, is chosen as the spatial vector data in our exper-
iment. About four million polygons are contained in our
chosen data, the format of polygon is specified asWell-known
text (WKT), a text markup language defined by the Open
Geospatial Consortium(OGC) [27]. Fig. 7 shows a part of the
data. Table 8 shows the details of store format of polygon and
multipolygon.

C. EXPERIMENTAL METHOD
In our experiment, for point query and region query, on dif-
ferent scales, the query response time, memory usage, and
query accuracy is measured under the control of different
storage schemas. This approach for comparison is expected
to verify whether the improved Z curve schema could provide
an effective storing and indexing service for massive amounts
of spatial vector data.

Twenty spatial points are selected for our spatial point
query experiment. The query is repeated 30 times to calculate
the average for each spatial point. The 20 selected spatial
points are listed in Table 9.
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TABLE 8. Storage format of a polygon.

FIGURE 7. Part of the polygons in the district.

TABLE 9. Points selected for the experiments.

For spatial range query, we randomly select 20 spatial
points as the lower left corner of a square query range. The
basic side length of each square s is 200 meters. In this
experiment, side length of query is s, 2 · s, 4 · s, or 8 · s.
Query is repeated 30 times to calculate the average. The
selected spatial points are listed in Table 10. Using spatial

TABLE 10. Chosen points of the square query range.

FIGURE 8. Example of different query rectangles.

point (29465757.845621, 4887395.665123) as an example,
Fig. 8 shows the different square query ranges.

As mentioned above, the three evaluation indicators,
the query response time, memory usage, and query accuracy
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are used to test the efficiency of spatial point query and spatial
range query under different storage schemas. As Formula 1,
query response time T consists of the time for accessing
the HBase data table Tt , and the time for performing the
intersection operation Ti on the spatial point or the spatial
range with the geometric object.

T = Tt + Ti. (1)

Memory usage in spatial point query and spatial range
query under the control of the four storage schemas is cal-
culated, respectively. Since query result of R-tree schema is
always correct, query accuracy of the Z curve schema and the
improved Z curve schema is calculated based on the query
result of R-tree schema for comparison. As Formula 2, query
accuracy S is represented by the ratio of Nz to Nr , where Nz
and Nr are the number of geometric objects obtained by the
Z curve schema and R-tree schema, respectively.

S = Nz/Nr . (2)

TABLE 11. Response time of spatial point query.

FIGURE 9. Response time of spatial point query.

D. ANALYSIS ON EXPERIMENTAL RESULTS
1) ANALYSIS FOR SPATIAL POINT QUERY
a: QUERY RESPONSE TIME T
Qesponse time for spatial point query is listed in Table 11.
Based on Table 11, Fig. 9 is given. As shown in Fig. 9,
response time of spatial point query is mainly affected by Tt .
The value of Tt mainly changes with the number of geometric
objects involved in query, whereas the value of Ti depends
on the number of geometric objects involved in query. Both
Tt and Ti of different schemas can be sorted in descending
order as follow: R-tree schema, Quadtree schema, improved
Z curve schema, and Z curve schema. So does response
time T .

TABLE 12. Memory usage of spatial point query.

FIGURE 10. Memory usage of spatial point query.

TABLE 13. Query accuracy of spatial point query.

b: MEMORY USAGE M
Memory usage for spatial point query is included in Table 12.
Based on Table 12, we give Fig. 10. As shown in Fig. 10,
memory usage of the four storage schemas can be sorted in
descending order as follow: R-tree schema, Quadtree schema,
improved Z curve schema, and Z curve schema. Memory
usage is related to the number of geometric objects that satisfy
the query conditions.

According to the memory usage results and query response
time results, memory usage is proportional to query response
time. Moreover, the efficiency of spatial point query of
either tree-based index is lower than that of two storage
schemas based on Z curve. The efficiency of the four storage
schemas can be sorted in descending order as follow: R-tree
schema, Quadtree schema, our improved Z curve schema, and
Z curve schema.

c: QUERY ACCURACY S
Query accuracy for spatial point query is presented
in Table 13 and are plotted in Fig. 11. As shown in Fig. 11,
the average accuracy of spatial point query based on Z curve
schema is 90.7%. That is, Z curve schema may lead to
query error at a rate. Meanwhile, the query results of the
proposed improved Z curve schema are completely correct.
In short, although spatial point query by Z curve schema
has the highest efficiency among the four storage schemas,
this schema produces query error under certain conditions.
Therefore, our improved Z curve schema delivers superior
performance.
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TABLE 14. Query response time of spatial range query.

FIGURE 11. Query accuracy of spatial point query.

FIGURE 12. Response time of spatial range query (line chart).

2) ANALYSIS FOR SPATIAL RANGE QUERY
a: QUERY RESPONSE TIME T
Response time for spatial range query is listed in Table 14
and are additionally compared visually in Fig. 12 and Fig. 13.
As shown in Fig. 12, response time of the four storage
schemas becomes longer when the spatial range to be queried
increases. For all the spatial ranges, query response time of
different schemas can be sorted in descending order as follow:
R-tree schema, Quadtree schema, improved Z curve schema,
and Z curve schema. For each query range, although response
times of the improved Z curve schema is larger than Z curve
schema, the values are very close. As shown in Fig. 13, for
all the spatial ranges, both Tt and Ti of different schemas
can be sorted in descending order as follow: R-tree schema,
Quadtree schema, improved Z curve schema, and Z curve
schema.

b: MEMORY USAGE M
Memory usage for spatial range query is listed in Table 15
and drawn in Fig. 14. As shown in Fig. 14, memory usage
of the four storage schemas increases when the spatial range

FIGURE 13. Response time of spatial range query (bar chart).

FIGURE 14. Memory usage of spatial range query (line chart).

to be queried increases. For all the query range, memory
usage can be sorted in descending order as follow: R-tree
schema, Quadtree schema, improved Z curve schema, and
Z curve schema. For each query range, although memory
usage of the improved Z curve schema is larger than Z curve
schema, the values are very close. Since the four schemas
have difference in thinking, for the same query task, dif-
ference number of geometric objects need be involved in
query. In detail, number of involved geometric objects can
be sorted in descending order as follow: R-tree schema,
Quadtree schema, improved Z curve schema, and Z curve
schema. That is, the efficiency of spatial range query can
be sorted in descending order as follow: Z curve schema,
improved Z curve schema, Quadtree schema, R-tree schema.

c: QUERY ACCURACY S
Query accuracy for spatial range query is presented in
Table 16 and plotted in Fig. 15. Query results in Table 16
indicate that Z curve schema may produce query errors at
a rate. Moreover, there is no significant linear relationship
between accuracy and query range. The same as R-tree
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TABLE 15. Memory usage of spatial range query.

TABLE 16. Accuracy of spatial range query.

FIGURE 15. Accuracy of spatial range query.

schema, the query result of the improved Z curve schema
is 100%. Similarly as results of spatial point query, for spatial
range query, query efficiency and accuracy of the improved Z
curve schema proposed in this paper are more accurate than
those of the other three schemas.

It can be seen from the above results that, for either
spatial point query or spatial range query, query response
time and memory usage can be sorted in descending order
as follow: R-tree schema, Quadtree schema, improved Z
curve schema, and Z curve schema. In tree-based schemas,
multidimensional structures is needed. Nevertheless, NOSQL
databases are not fit for realizing multidimensional structures
compared with relational databases. Z curve, one of the com-
monly used space filling curves, can reduce dimensionality
of multidimensional structures and enhance query efficiency.
Therefore, schemas based on Z curve are better choices than
tree-based schemas. Most importantly, the query results of
the improved Z curve schema are completely correct, while
there exist errors in the results of Z curve schema. Based on an
overall consideration, the improved Z curve schema performs
best among the schemas.

V. CONCLUDING REMARKS
Compared with tree-based methods, storage schemas for spa-
tial vector data based on Z curve are better choices in NOSQL
databases. Based on our early Z curve schema, we propose
the improved Z curve schema in this paper. Now that the

geometric objects of one query result usually are adjacent
in location, the main idea of our method is that adjacent
geometric objects in location are adjacent in physical storage.
Moreover, redundant policy is used for design of column
family avoiding the defects of the previous Z curve storage
schema based on the excellent scalability of HBase for store
large amounts of redundant data. Therefore, the limitations in
our early work are removed. For example, geometric objects
with a large area or narrow shape do not lead to failure in
query any more. Experimental results show that, compared
with tree-based methods, storage schemas based on Z curve
are better choices in NOSQL databases. Further, under the
control of the improved Z curve schema, correct rate of query
is improved to 100%.

The proposed storage method can enlighten the design
for operations other than storage of spatial vector data in
NoSQL Database. For example, index structure based on
the non-primary key, hierarchical storage schema, and query
interface with a higher-level query engine such as Hive [28]
are required to be addressed. We will study these topics later.
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