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ABSTRACT Due to the complex and time-varying network environments, traditional methods are difficult
to extract accurate features of intrusion behavior from the high-dimensional data samples and process the
high-volume of these data efficiently. Even worse, the network intrusion samples are submerged into a
large number of normal data packets, which leads to insufficient samples for model training; therefore it
is accompanied by high false detection rates. To address the challenge of unbalanced positive and negative
learning samples, we propose using deep convolutional generative adversarial networks (DCGAN), which
allows features to be extracted directly from the rawdata, and then generates new training-sets by learning
from the rawdata. Given the fact that the attack samples are usually intra-dependent time sequence data,
we apply long short-term memory (LSTM) to automatically learn the features of network intrusion behaviors.
However, it is hard to parallelize the learning/training of the LSTM network, since the LSTM algorithm
depends on the result of the previous moment. To remove such dependency and enable intrusion detection in
real time, we propose a simple recurrent unit based (SRU)-based model. The proposed model was verified
by extensive experiments on the benchmark datasets KDD’99 and NSL-KDD, which effectively identifies
normal and abnormal network activities. It achieves 99.73% accuracy on the KDD’99 dataset and 99.62%
on the NSL-KDD dataset.

INDEX TERMS Network security, deep learning, intrusion detection system (IDS), simple recurrent unit,

deep convolutional generative adversarial networks.

I. INTRODUCTION
The Network Intrusion Detection System (NIDS) is an indis-
pensable component in the security infrastructure in net-
worked computing and communication systems, providing
defense against Internet-based attacks, misuse, or negligent
practices. Nowadays, with the increasing number of measure-
ments on networked systems, learning based NIDS systems
have been developed [1]-[5] to identify various legitimate
network activities and the potential hidden threats. However,
there are several major challenges in the design and imple-
mentation of the learning-based NIDS:

(1) To handle the complexity when dealing with large-
scale, high-dimensional data points, traditional network
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intrusion detection approaches tend to apply dimension
reduction, compression, and filtering techniques to remove
noise in measurements. Consequently, it is likely to remove
hidden but significant information when extracting features
for intrusion behaviors. This may cause high false detection
rate.

(2) Learning based NIDS usually requires a large num-
ber of labeled data samples to obtain accurate features of
intrusion behaviors. The performance of the NIDS heavily
depends on the quality and size of the labeled training sets.
Traditionally, we label the training samples manually, which
is labor intensive and error prone, thus it is difficult to gener-
ate high-quality large-scale training samples.

(3) A NIDS needs to respond to intrusion behaviors in
real time to reduce the loss under an attack. For example,
the Overflow attacks are often hidden in the network traffic
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that can pass through the firewall. If such attacks cannot be
detected and blocked in time, the attacker can use it as a
springboard to send a large number of aggressive messages
to the intranet and leave a back door in the system that has
been attacked. This requires a real time intrusion detection
system which is implemented with parallelization design and
system optimization to achieve time efficiency.

To address the above challenges, we propose a simple
recurrent unit model for intrusion detection and discuss the
design and implementation of real-time NIDS.

In recent years, deep learning model has been gradu-
ally applied to network security applications [6] because of
its excellent performance in high dimension data process-
ing, automatic feature extraction, and evolutionary learning
ability. Given the fact that the attack samples are usually
intra-dependent on time sequence data, we apply LSTM
(Long Short-Term Memory) to automatically learn the effec-
tive features of time sequence measurements. The Naive
LSTM establishes a structure with a gate, or cell, to decide
whether to keep or discard the information. In this paper,
we adopt the LSTM algorithm to learn the intrusion behavior
with intra-sequence correlation and automatically extract the
hidden information that cannot be captured by the traditional
method.

To alleviate the shortage of correctly labeled training sam-
ples, we employ a deep convolutional generative adversar-
ial network (DCGAN) [7] to generate satisfactory training
data from original samples. Since DCGAN was originally
designed for and more suitable for image processing, we use
Mahalanobis Distance to map one-dimensional measurement
into two-dimensional data, therefore, we can apply DCGAN
to the measured threat samples.

For the sake of efficiency, we apply a simple recurrent
unit (SRU) algorithm, so that the proposed NIDS can be
easily parallelized on GPU servers. This enables real-time
NIDS.

The three contributions of this paper are summarized as
below:

1. A multichannel SRU-based network intrusion detec-
tion model is proposed. It extracts the features automati-
cally through repeated multi-level learning and outperforms
the LSTM algorithm in terms of speeding up the classi-
fication process. This model also improves the classifica-
tion efficiency and detection accuracy against network threat
behaviors.

2. A generative adversarial model for generating cyber
threat samples is proposed. This method is used to generate
new training samples. It solves the common problem faced by
traditional intrusion perception methods, such as insufficient
and unbalanced samples. It also improves the system detec-
tion rate and reduces false alarm rates.

3. A preprocessing method of mapping the network data
into a 2-D matrix using Mahalanobis Distance is proposed to
ensure that the data can be processed by our model with high
efficiency, it offers high-quality data input for the proposed
deep learning model.
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Our proposed model achieved a detection accuracy
of 99.73% on KDD datasets and with 99.62% on NSL-KDD
datasets. As contrast, other six popular learning methods
(including SVM, Random-Tree, Random Forest, NB Tree,
Naive, Bayes, and J48) can only achieve less than 94% of
detection accuracy on KDD’99 datasets, and less than 83%
of accuracy on NSL-KDD datasets. In addition, the network
intrusion detection based on multi-channel SRU has greatly
improved the real-time performance of the IDS. It is 10 times
faster than the Naive LSTM based method. The proposed
method significantly improves the capabilities of network
intrusion detection, especially in increasingly complex sce-
narios with severe cyber threats.

The remainder of this paper is structured as follows.
Section II presents relevant background information and
existing research. Section III specifies our proposed solu-
tion. Section IV discusses our experimental results. Finally,
the paper concludes in Section V.

Il. RELATED WORKS

The defects of traditional network intrusion detection meth-
ods have urged people to re-evaluate the existing cyber secu-
rity framework and its technologies. There has been increas-
ing interest in recent years in researching intrusion perception
technologies equipped with capabilities of high-dimensional
data processing, automatic feature extraction, and evolution-
ary learning. In addition, deep learning has gradually been
applied in the field of cyber security. In 2015, at the USENIX
conference, Shin et al. [8] proposed a deep learning RNN
(Recurrent Neural Network) method to analyze the start and
end of functions in Windows binary files as a manner to detect
the malware. In the same year, Pascanu et al. [9] applied deep
learning RNN to malware detection, and they established a
two-layer malware detection system architecture based on
dynamic analysis. The first layer is used by RNN to learn
the feature representation of API events, and the second layer
is a logistic regression classifier, which performs classifica-
tion using features learned by RNN. In 2016, Huang and
Stokes [10] adopted a deep learning DNN method to extract
the features of malware that reduced the classification false
rate of malware significantly. In the same year, Kolosnjaji
et al. [11] constructed a deep learning network with convo-
lutional and circular layers, to detect and analyze the system
call of malware dynamically. Bauer et al. [12] implemented
a lightweight password cracker by using the deep learning
LSTM algorithm which increased the speed of password
cracking. In 2017, Rhodea et al. [13] applied a deep learn-
ing RNN method to predict malicious behavior in the early
stage of malware execution and reached an accuracy of 98%.
This greatly exceeds the highest accuracy of 90% that was
achieved by other traditional machine learning algorithms.
In addition, Putchala [14] applied the deep learning GRU
method to intrusion detection in the field of Internet of Things
(IoT). Also, Aygun et al. [15] adopted the deep learning
random noise reduction self-encoder to detect intrusions and
reached the accuracy rate of 88.65%. Godefroid et al. [16]
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FIGURE 1. The structure of LSTM.

applied deep learning to a vulnerability mining program and
he adopted the seq2seq architecture to generate fuzzing test
cases for files vulnerability mining.

Long Short-Term Memory (LSTM) was proposed by
Hochreiter and Schmidhuber [17] as a special type of RNN.
In this model, the normal neurons (i.e., the unit that applies
the sigmoidal activation function to the linear combination of
its input) are replaced by the memory cells to avoid the long-
term dependency issue. Naive LSTM establishes a structure
known as a gate, or cell, to decide whether to keep or discard
the information. It outperforms ordinary RNNs in terms of
storing and accessing the historical sequences, and it allows
the information to be kept over a long period of time by
selectively storing or discarding the information [17]. LSTM
has been widely applied to solve various problems in a wide
variety of domains such as handwriting recognition, semantic
recognition, natural language understanding, disease predic-
tion, and weather forecasting. The structure of the LSTM is
shown in Figure 1. The information is processed, discarded,
or controlled by operations of sigmoid function and a point-
by-point multiplication.

Researchers have constantly adjusted and optimized
LSTM. In 2000, Gers and Schmidhuber [18] proposed a
neural network with peephole connections as a variation of
LSTM. This means the gate connection layer can receive the
state of the cell. In 2009, Martin and Eyben [19] proposed
a new technique for robust keyword spotting that uses bidi-
rectional long short-term memory (BLSTM) recurrent neural
nets to incorporate contextual information in speech decod-
ing. In 2011, Wollmer and Blaschke [20] proposed a novel
technique for online detection of driver’s distraction based
on a variation of LSTM, modeling the long-range temporal
context of driving and head tracking data. In 2013, Derek
presented [21] a new technique Recurrent Neural Collective
Classification-RNCC which avoided arbitrary summariza-
tion, and learned to leverage larger relational neighborhoods
around each entity. In 2014, Cho et al. [22] proposed the
Gated Recurrent Unit (GRU) model, an important variation of
LSTM. It combines the forget gate and input gate into a single
update gate that consists of the cell state and hidden state.
In 2014, Yao K et al. [23] proposed the Depth Gated RNNs
model, and Koutnik J. et al. [24] proposed the Clockwork
RNNs model which aims to solve long-term dependency
problems.
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FIGURE 2. The structure of our model.

In brief, Deep learning [25]-[27] has drawn wide attention
from universities, research institutes, and industries. It is of
paramount importance to conduct research on network intru-
sion detection based on deep learning for developing the field
of cyber security.

llIl. SRU-DCGAN MODEL

The framework of SRU-DCGAN model is shown in Figure 2.
The complete architecture decomposes to three main sub-
components: the Multichannel SRU-based network intrusion
detection component (Subsection A), the generation of net-
work intrusion training-samples based on DCGAN compo-
nent (Subsection B), and the preprocessing of network data
component (Subsection C) as following. Moreover, it should
be noted that the output component of the whole model is
introduced in Subsection A.

A. THE MULTICHANNEL SRU-BASED NETWORK
INTRUSION DETECTION
Due to the lack of automatic feature extraction capability
from complex and high dimensional data, the performance of
existing approaches is not satisfactory. Particularly, judging
an intrusion behavior depends on a sequence of measure-
ment samples, such as the counterfeit legitimate user and
the behavior of unauthorized use of system resources. This
implies that a deep neural network with memory units such as
LSTM is well-suited for intrusion detection. Because a LSTM
network usually has a deep structure and each layer contains
many units, it requires significant time to train the network.
To accelerate the training, we prefer to parallel the training
procedure using the GPU. Unfortunately, naive LSTM does
not support the implementation of parallelization, because in
the calculation, the model state at time ¢ depends on its previ-
ous state at t — 1. To enable the parallelization, we introduce
a Simple Recurrent Unit (SRU) structure as a variation of
LSTM, which accelerates the training speed 10 times than
the optimized LSTM [28].
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FIGURE 3. The structure of SRU cell. where, x; represents the input at
time t; W and b represent weight and bias, respectively;f; represents the
forget gate at time t;ry represents the reset gate ate time t; A¢ and H;
represent the state and the final output at time t, respectively;

o and g represent Sigmoid and the Activation function (tanh or relu);

@ represents the operation of the matrix corresponding to the elements.

Figure 3 is the structure of the SRU cell. The SRU model
uses a complete drop connection, which removes the depen-
dence of the input H;_;. The following is the model of

SRU:
fi = o(Wrx, + br) (D
1y = o (Wix¢ + by) 2)
Yo = Wix 3)
Ar=HOA1 +(0-f) Oy 4)
Hi =10 g(A) + (1 — 1) O %t (5

where Wy, W} and W* are parameter matrices and by, by are
parameter vectors to be learnt during training.

The complete architecture contains two components: light
recurrence (Equation 1, 3 and 4) and highway network
(Equation 2 and 5). From Equation 1 to 3, we can see that
the dependency of H;_; has been removed, and formulas
Equation 4, 5 can be implemented quickly and concisely,
because the output is no longer dependent on input from
the H,_1.

In our implementation of SRU-based NIDS, we adopt a
Highway Network component between recurrent layers to
alleviate the vanishing gradient or exploding gradient prob-
lem. In addition, we use Adamax optimizer and variational
dropout during training. The connection between the Gate
of ¢ is removed to accelerate the recurrence calculation.
Therefore, we enable parallel training for the proposed NIDS.
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FIGURE 4. The structure of the multichannel SRU Model.

The performance of deep neural networks depends on the
quality and size of the labeled samples. It is usually hard to
capture positive samples (i.e., samples in attack scenarios),
because positive threat samples are usually submerged into a
large amount of normal data packets in reality. In this paper,
two approaches are used to address the problem with unbal-
anced samples: One is to generate more specific samples
and supplement them in the training set. This approach will
be discussed in the later section. Another is to adopt the
multi-channel SRU model, which collects several balanced
sample sets by sampling the unbalanced data multiple times
and train the SRU model using multiple balanced samples.

The framework of the multi-channel SRU neural network
classifier is illustrated in Figure 4. Firstly, we under-sampled
the training sample n times for each category. The number
of under-sampled samples is the number of the minimum
training samples every time. In the n groups of balanced
samples obtained, the network threat categories of each group
of corresponding location samples are the same. The n groups
of different samples can be regarded as n groups of different
feature representations corresponding to m kinds of Network
Threat categories. We use all of the eigenvectors of the n
training samples as the input of the model simultaneously, and
each group of input is used to train every single-channel SRU
cell. As shown in Figure 4, the SRU cell,, was learned from
the n™ set of training samples. The output of the model can
represent the input features in a better way. In our experiment,
we let n = 4, to ensure that most of the input features in the
labeled samples can be selected.

The output features of the above-mentioned n sets of
SRU models are merged at the Merge layer. The Dropout
layer takes the output of the Merge layer as the input, and
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its function is the same as that in the single-channel SRU
neural network. The back propagation method is adopted to
update the network parameters. The softmax output layer
is the last layer of the network. During model training,
it requires the mean square error of the predicted and actual
values to be minimized. Given a set of training samples,
X = {x(l),x(z), o xD .,x(’”)}, the true tags are {y =
y D y@ Dy thenf (x, @) gives the prediction
value of sample x, and the loss function can be defined as
shown in Equation (6):

1 m . .
_ o o) _ O
LEX.»=3-3" 7 (x©.0) -y

The back-propagation algorithm [29], based on the gradi-
ent descent method, is applied to learn the model parameters
during the training process, and eventually determine the
category of attacks.

2

Q)

B. THE GENERATION OF NETWORK INTRUSION
TRAINING-SAMPLES BASED ON DCGAN

In addition to multi-channel SRU, we exploit using a gener-
ative adversarial network model, DCGAN to generate ade-
quate and balanced data samples. We build the dynamic
equilibrium (Nash equilibrium) in the high dimensional and
non-convex continuous game by constructing the competitive
adversarial relationship. The DCGAN model significantly
reduces the false positive detection rate.

In 2016, Goodfellow [30] proposed the Generative Adver-
sarial Networks (GAN), aimed at solving the problem of
generating new samples from the training samples. In the
GAN model, the generator G continuously generates fake
samples close to the real samples to confuse the discriminator,
and the discriminator D filters out the fake samples generated
by the generator G. In such a process, the discriminator
D is trained and continuously improving the discriminating
ability, so the generated samples which are close to real-
world measurements are left and involved in the training set.
There are a few mainstream generation models, including
DCGAN (Deep Convolutional Generative Adversarial Net-
works)[7], WGAN(Wasserstein GAN), and Least Squares
GAN (LSGAN), etc. Among those DCGAN is the most
suitable to the network intrusion detection because it has rel-
atively less training time and higher accuracy. With DCGAN
we obtain adequate training samples for NIDSes, therefore
the threat detection rate can be significantly improved.

We utilize the idea of DCGAN to generate new samples
through Generative-Adversarial process, which achieves the
dynamic equilibrium in the high-dimensional and non-convex
continuous adversary process (NASH equilibrium). The
new samples can be generated by learning from existing
attack samples and keep as much information as possi-
ble that appeared in the raw sample data. The outstanding
features of DCGAN can extract the correlations of data
in high-dimensionality instantly, without labeling the tar-
get categories. Moreover, it can generate training samples
by automatically capturing the distribution of sample data.
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on DCGAN.

The diagram of sample Generation and the Discrimination
model is shown in Figure 5.
DCGAN is formalized as shown in Equation (7):

A4 (D’ G) = Exwpdata(x) [l()gD (x)]
+E .0 [log(1 = D (G@)] ()

where X ~pdata (X) shows that x is from the real distribution,
and z ~ p; (z) shows that z is from the simulated distribu-
tion. G indicates the generation model, and D represents the
classification model.

1) GENERATOR NETWORK

The generator continuously generates data, aiming to gener-
ate the samples that can ““cheat” the discriminator and make
it appear real. We construct generator G with the CNN, and
replace the pooling layer with the fractional srided convo-
lutions. Then, we remove the fully connected layer, apply
the ReLU for all layers except the output layer, and use
tanh at the output layer. We also use batchnorm to solve
the poor initialization problem and propagate the gradient
to each layer. G is optimized to minimize V(D, G), that is
ming(V (D, G)).

2) DISCRIMINATOR NETWORK

The discriminator continually receives data and judges
whether the data comes from real samples or the gener-
ated ones. The discriminator is also constructed by using
CNN. And the CNN layer contains pooling layer, but does
not include a fully connected layer. Batchnorm is used to
propagate the gradient to each layer to avoid the generator
converging all samples to the same point. LeakyReLU is used
at all layers. During the process of training the discriminator,
the generator needs to be paused, i.e., stopping the training
of the generator (no backpropagation is performed). D is
optimized to maximize V(D,G), i.e., maxp(V (D, G)).

3) GENERATION OF SAMPLES

There are two phases involved in the process of sample
generation: One phase continuously optimizes G to make the
samples confused with D as much as possible. In the other
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phase, D is optimized to make it recognize the "fake" samples
as much as possible. Next, as D can no longer distinguish
whether the sample is a real threat or a fake sample generated
by G, and G can no longer generate a different sample,
comes the moment when these two sides have achieved the
Nash equilibrium. Then, it is deemed that the new samples
generated by G have the same distribution of the raw samples.
In this condition, the adversarial between the generator and
the discriminator can be terminated and the DCGAN train-
ing is finished. The generated samples are inserted into the
sample base as training samples.

4) THE WHOLE PROCESS OF GENERATING DATA
The detail of data reproduced by the model proposed in this
paper is listed below:

o Step I: select benign and malicious examples from the
KDD’99 randomly;

o Step 2: Obtain G(Z) by generative network G and obtain
an example Z by mask;

o Step 3: Label x or z according to the discrimination result
of T;

o Step 4: Calculate loss according to the D’s discrimina-
tion result;

o Step 5: Update weights of D;

o Step 6: Update weights of G;

o Step 7: Loop step 2 to step 6 if the authentication module
is failed.

C. PREPROCESSING OF NETWORK DATA

In order to speed up the training speed and reduce the pro-
cessing time of the system, we propose a data preprocessing
method suitable for deep learning processing.

By collecting the network flow data (firewalls,
vulnerability scanning systems, terminal security manage-
ment systems, security management platforms, and the secu-
rity operation centers) in real-time, some of the essential
features are selected. These features include the source IP
address, destination IP address, source port number, destina-
tion port number, protocol type, domain name, total number
of data packets, the interval of packet arrival, stream duration,
number of concurrent streams, number of reconnections,
the length of the first packet, the total number of bytes,
the average number of bytes per packet, the number of
empty packets, the ratio of the number of incoming and
outgoing packets, the average interval of packets arrival,
average packet length, average number of bits per second,
average number of packets per second, etc. However, in real
scenarios, the optional features are much more numerous than
the above-mentioned basic ones.

To satisfy the training requirements of deep learning
model, a network data mapping method is proposed during
the stage of data preprocessing after collecting the data. In this
paper, n network flow eigenvectors are defined as X =
[x1,x2, ..., %, ..., %] (e.g., if the KDD’99 or NSL-KDD
dataset is used for training, and the 41 attributes of raw data
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are regarded as the essential features, then n = 41. Different
values of n correspond to different data sources.).

1 2 n
Wl Wl DR W]
1 2 n
W2 W2 e W2
Then X =
W]!l’l W2m PR Wl’nl‘l

where ), is the value of the k™ feature of the j™ network
flow eigenvector, j = 1,2,...,m;k = 1,2,..., m. Next,
the x; is converted to a matrix x; with m rows and m columns,
to take advantage of the correlation between different fea-
tures, as shown in Equation (8).

1 0 0
, o 0 1 0
X = xTT=[whwh,. . wh ] :
0 0 1
) mXxm
w0 0
0 w, - 0
=1 . . . ®)
0 0 - wh e

The diagonal elements of x; represent the values of the m-
dimensional feature, as shown in Equation (9), where each
column of X; is demonstrated as the m-dimensional vector

wy.

o .
- j - Wp, t=
W{, =| %> |, where ai,t =1{"P P 9)
’ 0, t#p
O m

SO,X‘]{ = WJ,WJ,...,WJy'n
To define the correlation between different features of
the network flow eigenvectors, the Mahalanobis Distance is

adopted in this paper as shown in Equation (10):

P = {\/(ij_waS_l(wj"_W{‘)’ AP (10
’ 0, t=p

The advantage of using the Mahalanobis distance is that it
is not related to dimension, and it allows a balance between
the probability of the two categories by the introduced covari-
ance parameters. This parameter illustrates the degree of
point density and can eliminate the interference caused by the
correlation between variables. As a result, the jth flow data is
converted into a symmetric Hallow matrix E with m rows and
m columns, as shown in Equation (11), where

j J j
,31,1 ,31,2 ﬂl,m
i i e B
Be=| 0 Y an
:Bﬂnk :Bﬂnk ,Bgnm
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Whether it is a normal or abnormal network flow,
the Mahalanobis distance is used to map to E, which can be
used in the next step as the input of the SRU-based intrusion
detection model.

IV. EXPERIMENTAL RESULTS

A. DATASET AND EXPERIMENTAL ENVIRONMENT

The experiment involves 3 datasets, the KDD’99 [31] dataset,
the NSL-KDD [32] dataset and CICDS2017 dataset [33].

The KDD’99 dataset is guided by the ACM Special Interest
Group on Data Mining and Knowledge Discovery, and counts
as a tool to collect data in diverse types publicly. It is the
leading data mining competition in the world. This dataset in
this study involves numerous and various intrusions that are
simulated under the condition of a military network, and it is
virtually a dataset to evaluate and benchmark IDS tools [34].
Each record in the KDD’99 dataset consists of 41 charac-
teristics and is labeled with either normal or a particular
kind of attack. The raw data collected by these TCP-Dump
are divided into two parts: training data for 7 weeks which
probably contains more than 5,000,000 network connection
records, and the remaining 2 weeks of test data probably
containing 2,000,000 network connection records. There are
two kinds of datasets in KDD’99, the original full dataset, and
a section containing 10% of the original dataset samples.

NSL-KDD is a new data set which is to solve some of the
inherent problems of the KDD’99 data set. NSL-KDD counts
as a dataset proposed to reckon with some underlying prob-
lems existing in the KDD’99 dataset. The most significant
weakness in the KDD’99 dataset refers to the considerable
amount of residual records [32]. To reckon with the fore-
going problems, a new dataset NSL-KDD was designed by
Tavallaee et al. [35], not involving any residual records in the
training set and the test set. In this regard, the classifiers shall
not have biased towards records being more frequent, which
increases the efficiency for attaining an accurate evaluation
of diverse learning technologies. Consequently, the evalu-
ation results of diverse research work shall turn out to be
comparable and consistent [36]. This paper adopts the first
20% of the records in KDDTrain+ as the set of training, and
adopts the KDDTest-21, KDDTest+ and KDDTest as sets of
test.

Although the above-mentioned two data sets are the bench-
marks in the research of Intrusion Detection techniques.
These two data sets suffer several weaknesses including their
age, highly skewed targets, non-stationarity between train-
ing and test datasets, pattern redundancy, and irrelevant fea-
tures [35]. So, a state of art dataset named CICIDS2017 which
is provided by Canadian Institute of Cybersecurity was intro-
duced in this paper. This new dataset not only contains up-
to-date network attacks but also fulfills all the criteria of
real-world attacks [37]. The CICIDS2017 contains data cap-
turing period started at 9 a.m., Monday, July 3, 2017 and
ended at 5 p.m. on Friday July 7, 2017, for a total of 5 days.
The data of Monday is the normal and only includes the
benign traffic. The data of Thursday working hour afternoon
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FIGURE 6. The accuracy and loss of SRU-DCGAN model.

and Friday is fit for binary classification. And, the data of
Tuesday, Wednesday and Thursday morning is well suited for
designing multiclass detection model.

The specifications of the hosts adopted in the experiments
are Core 17 6700k 4.2 GHz CPU, 64 GB RAM, Ubuntu 16.04,
NVidia GTX 1080 Ti Device Driver*10, CUDAS.0, CUDNN
5.1, ANACONDA3, and Tensorflow 2.0 were adopted in each
of the hosts.

B. PERFORMANCE OF SRU-DCGAN MODEL IN

KDD’99 DATASET

The first set of tests was designed to ascertain the accuracy of
proposed model, and the final result showed the recognition
accuracy is 99.73% (see Figure 6). The Hyper-parameter
settings were as follows: hidden units = [30, 70, 30, 30], steps
= 400000, batch-size = 20000, epoch = 500, Learning Rate
n = 0.001.

As shown in Figure 6, the detection accuracy increased
from 25% to about 65% at the initial stages of the 1,000 steps,
which is related to the initial stage of learning. The detec-
tion rate was also relatively low in the initial stages. Since
the learning had just started, the accuracy was quite low,
but it increased dramatically. During this period, the value
of loss drastically dropped from 1 to 0.5. This is because
the multi-channel parallel SRU could accelerate processing
and improve learning efficiency. From step 1,000 to 10,000,
the learning rate steadily increased, and the detection rate
increased from 65% to 95%. Meanwhile, the training process
gradually stabilized as the value of loss decreased from 0.5 to
about 0.08. From step 10,000 to 38,000, the accuracy rate
increased from 95% to approximately 99.7%, while the detec-
tion rate increased quite slowly. Moreover, the value of loss
remained at around 0.05, indicating that the learning process
had been completed. Eventually, we terminated the training
at step 400,000.

Figure 7 illustrates the comparison results between the
proposed model as well as the classical algorithm with dataset
KDD’99. Literature[1] describes the performance adopted
by the six learning methods, including SVM, Random-Tree,
Random Forest, NB Tree, Naive, Bayes, and J48. It was found
that SRU-DCGAN model had the highest accuracy than any
of the six methods.
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SRU-DCGAN

Random Tree 92.53%

Random Forest 92.79%

NB Tree 93.51%

Naive Bayes

Jag 93.82%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%
Accuracy

FIGURE 7. Comparing experiment with SRU-DCGAN model and the
classical algorithm.

TABLE 1. Accuracy of SRU-DCGAN model and shallow model.

Model

T 2-Class 4-Class

(3

P Accuracy DR FAR  Accuracy DR FAR
(%) (%) (%) (%) (%) (%)

SRU-

DeoAN 9973 9979 0.56 9937 9892  2.13

Shallow o517 9750 657 96.75  93.66  4.97

Model

Furthermore, classification accuracy and other indica-
tors were applied to demonstrate the effectiveness of
SRU-DCGAN model and other models in the classification
of network intrusions during the process of evaluation. The
detection rates in Table 1 also illustrate that SRU-DCGAN
model was superior to traditional machine learning for binary
classifications and multiclass classifications. The accuracy
improvement of the multi-channel model that we proposed
is due to the sharing of collaborative learning parameters,
which avoids overfitting of the local parameters. As a result,
the accuracy benefits from this.

As shown in Table 1, the Accuracy (99.73%) is the close-
ness of a measured value to a standard or known value. And
the FAR (False Alarm Rate) of 0.56% of the SRU-DCGAN
model was much lower than the machine learning model
(6.57%). As shown in Table 2, SRU-DCGAN model was
superior to general machine learning models in terms of
performance for each type of intrusion. In addition, the DR
is the Detection Rate.

For the binary classification, the DR Rate of the
SRU-DCGAN model was 99.34%, which is superior to the
traditional model with a DR Rate of 97.50%. Similarly,
the average DR Rate of the deep model was 97.7% in multi-
class classification, which is also higher than the traditional
model at 93.66%.

C. FURTHER EXPERIMENTS ON NSL-KDD DATASET
Figure 8 illustrates the comparison results between the
proposed model as well as the classical algorithm with

VOLUME 7, 2019

TABLE 2. Performance of 2-class and 4-class.

Model

type 2-Class 4-Class

Class  Accuracy DR Class  Accuracy DR

(%) (%) (%) (%)

SRU- Normal  99.86 99.26  Normal 99.57 97.62
DCGAN

Attack  99.73 99.34 DoS 97.31 99.6

Probe 98.97 99.3

R2LU2R 835 943

Shallow  Normal 97.95 9343  Normal  99.35 95
Model

Attack  92.1 97.50 DoS 96.55 99

Probe 87.44 99.48

R2LU2R 42 82.49

SRU-DCGAN .62%

S5VM 69.52%

Random Tree 81.59%

Random Forest

80.67%

NB Tree 82.02%

i

Naive Bayes 76.56%

|

81.05%

E

0.

2
2

20.00% 40.00% 60.00% 80.00% 100.00%

Accuracy

FIGURE 8. Comparing experiment with SRU-DCGAN model and the
classical algorithm based on NSL-KDD dataset.

TABLE 3. Accuracy of SRU-DCGAN model and shallow model on NSL-KDD
dataset.

Model 2-Class 4-Class
Type
Accuracy DR FAR  Accuracy DR FAR
(%) (%) (%) (%) (%) (%)
SRU-
DCGAN 9962 9968 079 9821 9933 36l
Shallow g, 13 9678 837 9413 9251 632
Model

dataset NSL-KDD. The classification accuracy and other
indicators were applied to demonstrate the effectiveness of
SRU-DCGAN model and other models in the classification
of network intrusions during the process of evaluation on
the NSL-KDD dataset, as shown in Table 3 and 4. And the
SRU-DCGAN model also achieved a good performance on
the NSL-KDD.

D. EXPERIMENTS ON CICIDS2017 DATASET

Table 5 demonstrates the experimental result of the proposed
model in this paper. As shown in the Table 5, our model can
detect most of intrusion correctly, which proves the validity
of the model proposed in this paper. F-Measure (F1) is a
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TABLE 4. Performance of 2-class and 4-class on NSL-KDD dataset.

Model 2-Class 4-Class
type
Class Accuracy DR Class  Accuracy DR
(%) (%) (%) (%)
SRU- Normal 99.12 96.26 Normal 98.24 96.72
DCGAN
Attack  98.26 98.61 DoS 96.72 98.13
Probe 94.27 98.23
R2LU2R  82.43 93.26
Shallow Normal 97.95 92.16 Normal 96.2 93.2
Model

Attack  89.15  94.20 DoS 94.85 97.6
Probe 82.45 98.32
R2LU2R 41 81.32

TABLE 5. The results of different evaluation metrics on CICIDS2017
dataset.

Accuracy DR F1

(%) (%) (%)
Normal 99.3 922 95.6
Web Attack 65.1 89.2 753
PortScan 86.2 99.4 92.3
Web Attack 65.1 89.2 75.3
DoS 89.1 89.1 89.1
DDOS 84.5 98.6 91.0
BOT 71.1 79.8 75.2

TABLE 6. The comparative experiments between the Original
kdd’99 dataset and the regenerated Kdd'99 dataset.

Accuracy DR F1

(%) (%) (%)
Regenerated Kdd’99 dataset 99.73 99.79 99.76
Original Kdd’99 dataset 96.17 89.12 92.51

harmonic combination of the precision and recall into a single
measure.

E. THE COMPARATIVE EXPERIMENTS BETWEEN THE
ORIGINAL KDD'99 DATASET AND THE REGENERATED
KDD"99 DATASET
In order to prove the validation of regenerated samples by
the SRU-DCGAN model, we make comparative experiments
between the original kdd’99 dataset and the regenerated
Kdd’99 dataset (by SRU-DCGAN model), and the experi-
ment results are listed below in Table 6.

From Table 6, we can see the Accuracy is improved in
the regenerated dataset which proves the effectiveness of the
method proposed in our model.

F. EXPERIMENTS ON DIFFERENT HARDWARE
The training time is related to the GPU performance, the num-
ber of GPUs, the dataset, and the number of SRU channels.
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TABLE 7. The training time of SRU-DCGAN model on different hardware’s.

Hardware Training Time/Seconds

135.350276
93.3454011

Intel core i7- Core i7 Serial
6700k Parallel

Nvidia GeForce GTX

1080Ti 63.4059697

Intel core i7- Core 17
6700k
+ 74.1890722
Nvidia GeForce GTX
1080Ti

4-channel 1.52

2-channel 3.70

Single-channel 8.10

Time 0.00 5.00 10.00

FIGURE 9. Comparing experiment with single-channel and multichannel
SRU model.

After analyzing the accuracies, we measured the training
time of our model on different platforms. Table 6 shows the
training time needed in our model.

Firstly, we just use the Intel Core i7-6700k which is
4.2GHZ, quad core processors with 8 threads. From the table,
we can see the training time of CPU in parallel mode is very
fast when comparing to CPU in serial mode. Executed serially
is very high when compared to parallel. The training time of
CPU in parallel mode achieved nearly 4x faster in our model
when compared to CPU in serial mode. Then we used GPU
NVidia GTX 1080 Ti to train the model. The training time of
the GPU was faster than that in CPU only execution. Finally,
we combined CPU + GPU to train the model proposed in this
paper. This combination did not gain much performance ben-
efits than GPU only execution. The factor that performance
of the combination mode is not achieved our expected is duo
to the data type we used (Table 7).

G. EXPERIMENTS OF SINGLE-CHANNEL AND
MULTICHANNEL SRU MODEL

The impact exerted by channel number on the processing time
of the proposed model was ascertained in this experiment.
Figure 9 shows the processing time of the Single-channel
SRU, 2-channel SRU, and 4-channel SRU. By comparison,
it indicates that 4-channel was almost 5 times faster than the
Single-channel SRU model.

H. RESULTS AND ANALYSIS
The experimental result showed that our proposed model is
superior to the traditional methods, primarily for two reasons
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that are being considered. On the one hand, the proposed
model is based on a variation of LSTM - the SRU method.
SRU has the same training efficiency as CNN and is 10 times
faster than the optimized LSTM. Moreover, unlike the LSTM
algorithm, SRU is not dependent on the calculation performed
at time ht-1 anymore. This design can realize the parallel
execution of programs and is superior to LSTM. At the same
time, the SRU method is more suitable than CNN to deal
with issues related to network intrusion detection. The pro-
posed multi-channel parallel SRU can accelerate processing
under the premise of ensuring the detection efficiency. On the
other hand, the existing methods of cyber-threat detection
are increasingly ineffective. The core intrusion behaviors are
often difficult to identify and are submerged in many nor-
mal data packets. Fewer intrusions make the threat detection
samples relatively small, which can easily lead to inadequate
training of models and short learning processes. Even worse,
it is impossible to train the model when the training samples
are insufficient. Normally, the collected attack samples have a
serious imbalance, and models trained with these unbalanced
datasets tend to fit the sample categories that have the largest
amount, which causes serious bias in the model. Although
many traditional methods have high overall detection rates on
unbalanced datasets such as KDD’99, they can detect certain
types of intrusions with a high detection rate, while giving
a very low detection rate for other types of intrusions. The
SRU-DCGAN model, however, shows good test results in
both KDD’99 and NSL-KDD datasets with high detection
rates.

V. CONCLUSION

This paper proposes a network intrusion detection model
based on SRU and DCGAN. Firstly, a network data prepro-
cessing method is established for complex, multidimensional
cyber threats, which is suitable for deep learning. It can
provide high-quality data input for the proposed deep learning
model. In addition, an SRU-based intrusion detection model
is proposed, which extracts features automatically through
repeated multi-level learning by taking advantage of the out-
standing features of deep learning. It outperformed the tra-
ditional LSTM algorithms in terms of processing efficiency
and classification accuracy, and improved the classification
efficiency and accuracy of cyber intrusion behaviors. Finally,
a method for generating samples of network threats based
on generative adversarial is presented which extracts features
directly from the raw data and generates new samples from
the training samples. It solves the common problems of inad-
equate training from unbalanced samples and small samples
that are faced by the traditional threat perception methods,
improves the system detection rate, and reduces the false
positive rate.
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