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ABSTRACT The cloud radio access network (C-RAN) with mobile edge computing (MEC) structure
which consists of a baseband unit (BBU) pool integrating with an MEC server and several remote radio
heads (RRHs) beside the mobile terminals can help users with computational resource-intensive tasks and
bring extra profits to network operator at the same time. This paper presents a novel task-aware C-RAN
with MEC structure and formulates a profit maximization problem by jointly optimizing offloading strategy,
radio and computational resources allocation under the constraints of offloading latency, fronthaul capacity
along with limited bandwidth and computational resource. To solve this NP-hard optimization problem in a
distributed and efficient way, we propose a spectrum efficiency (SE)-based joint optimization for offloading
and resource allocation (SJOORA) scheme which decomposes the original problem into two sub-problems.
A SE-based offloading strategy is proposed with confirmed resource allocation, and on the other hand,
bandwidth and computational resource allocation problem is solved by using a Lagrangianmultiplier method
with predetermined offloading strategy. Finally, by solving these two sub-problems iteratively, a suboptimal
solution is obtained for the original problem. The simulation results show that the proposed SJOORA scheme
can effectively increase the profit of network operator with relative lower complexity.

INDEX TERMS Offloading strategy, resource allocation, cloud radio access network, mobile edge comput-
ing, spectrum efficiency.

I. INTRODUCTION
With the exponentially increasing of the mobile devices such
as smart phones, tablets and hand-held terminals, the corre-
sponding mobile traffic is also growing rapidly which is pre-
dicted doubling every year [1]. The mobile service providers,
wireless network operators, and even mobile users are facing
not only opportunities but also tough challenges. Obviously,
traditional wireless cellular networks are becoming incapable
to meet the exponentially growing demand in high data rate.
In addition, the hugely increasing of computational resource
intensive tasks, such as multimedia applications, high def-
inition video playing and gaming that appear in our daily
life, causes a heavy load to the mobile terminals (MTs) with
limited computing capability and radio resource [2].

To tackle the data rate issue, both novel network
architectures (e.g., heterogeneous network (HetNet) and
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ultra-dense network (UDN)) and techniques (e.g., mm-Wave,
massive-MIMO etc.) are applied to promote the network
throughput [3]. In the process of increasing data rate, overall
spectrum efficiency (SE) and energy efficiency (EE) are also
considered with limited radio resource constraints [4]–[8].
Reference [4] jointly optimizes the subchannels and resource
allocation problem aiming to maximize the EE of the HetNet
with multi-homed users. References [5] and [6] concentrate
on the resource allocation scheme to maximize both EE and
SE. Reference [7] considers the effect of interference in
formulating a global EE maximization resource allocation
metric. The authors in [8] investigate the subchannels and
power allocation in a multiple downlink NOMA system with
considering queue stability, and the formulated problem is
solved by using a Lyapunov optimization.

Especially, a new promising network infrastructure, i.e., a
cloud radio access network (C-RAN) architecture is proposed
which soon draws a lot of attention in both academia and
industry these years [9]. The C-RAN divides a traditional
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base station (BS) into three parts: a baseband unit (BBU)
pool, several remote radio heads (RRHs) and the fronthaul
links between them. Concretely, most of the baseband sig-
nal processing techniques are implemented by the virtual
machines (VMs) in BBU, thus RRHs can be distributed close
to users easily due to the light design with only limited radio
functions such as A/D, D/A conversion, frequency conver-
sion and signal amplification [10]. Thus, the C-RAN can
facilitate costs saving, better SE and interference manage-
ment due to the feature of the centralization of BBU pool
and the distribution of RRHs [11]. Reference [12] considers
a multitenant heterogeneous C-RAN structure and jointly
optimizes user association, bandwidth allocation, power allo-
cation and virtual BBU capacity allocation to maximize
the weighted network throughput where tenants’ priorities,
baseband resource, fronthaul and backhaul capacities, qual-
ity of service (QoS), as well as interference are taken into
account. Reference [13] jointly optimizes the RRH selection,
user-RRH association and beamforming vectors to minimize
the total network power consumption while the channel state
information (CSI) is incomplete.

Then, to deal with the computational capability issue,
a mobile cloud computing (MCC) system is proposed in
which a centralized cloud can help dealing with the com-
putational intensive tasks for the MTs [14], [15]. However,
the MCC system also causes huge additional transmit loads
on radio and backhaul of mobile networks and gives rise to
high latency as well, since the cloud servers which help com-
puting the offloading tasks are far away from the MTs [16].
To address the problem of the long latency, the cloud servers
should be placed close to the MTs, that motivates the devel-
opment of the mobile edge computing (MEC) system which
combines the mobile cloud computing and wireless network
service so that the MTs can get nearby distributed compu-
tational resource with much lower latency [17]. Compared
with anMCC system, theMEC system has several advantages
such as lower latency, saving energy for mobile devices, sup-
porting context-aware computing, and enhancing privacy and
security for mobile users [18]. The computation offloading
strategy is one of the key challenges and research focuses for
mobile computing which always couples with computational
and radio resources allocation problem.

The main objective of the extensive works that focus on the
offloading decision is to minimize offloading latency, energy
consumption, or to maximize the utility while users’ QoS and
resource constraints are satisfied. In [19], the authors consider
the case that the computational resource allocated to each user
is stationary and then jointly optimize the offloading strategy
and radio resource allocation to minimize the total network
energy consumption. In [20], the allocation of computational
resource, spectrum resource and cache resource are jointly
optimized with considering the offloading strategy, and the
aim is to maximize the utility. Authors in [21] propose aMEC
system with multiple users and tasks where not only users
but also small BSs can offload tasks to a particular MEC
server or to a small BS and/or the macro BS respectively,

and a total energy consumption minimization problem is
formulated with jointly optimizing computation offloading
and users association. In [22], not only mobile cloud users
but also ordinary communication users without offloading
demand are considered and the authors jointly optimize radio
and computational resources to minimize the overall energy
consumption at users’ side with the constraints of trans-
mit power and offloading latency, however, only radio and
computational resources are optimized while the MEC users
are fixed and no offloading strategies are concerned. Refer-
ence [23] considers a single-user single-MEC system with
multiple independent computation tasks offloading requests,
in this scene, tasks’ offloading order and corresponding trans-
mit power are jointly optimized on purpose of minimizing
the execution delay and devices energy consumption. Refer-
ence [24] considers the maximization of users’ total utility
in the heterogeneous MCC network. Specifically, bandwidth
and computational resource allocation are jointly optimized
and the combinatorial optimization problem is solved by the
proposed evolutionary approaches.

Typically, MEC servers are data centers integrated within
the BSs that distributed at the edge of mobile network,
and they are normally accessible by nearby mobile users
via one-hop wireless connection [25]. Considering the com-
putational and storage resources in the BBU pool and the
distribution of the RRHs that close to mobile users, a C-
RAN may facilitate the implementation of the MEC sys-
tem. Actually, several researches have been dedicated to
the combination of the MEC system and the C-RAN struc-
ture [11], [26], [27]. Reference [11] proposes a novel mobile
cloud radio access network (MC-RAN) structure, where in
the BBU pool VMs are divided into two kinds: virtualized
BBU (vBBU) as the communication computing providing
unit (CCPU) and virtualized mobile clone (vMC) as the
service computing providing unit (SCPU), and then the VMs
computational resource allocation between CCPU and SCPU
is considered to minimize the overall computation power
consumption. In reference [26] a mobile clone structure is
proposed where users’ task information and data are on board
in advance so that only indication signal and configuration
information are needed for user task execution instead of
uploading bulk data, then a total energy minimization prob-
lem is formulated which is solved by jointly optimizing
the computational resource and transmit power allocation
under the constraints of task latency, and fronthaul capacity.
Reference [27] integrates the C-RAN with an MEC sys-
tem and concentrates on the power-performance tradeoff of
mobile service provider (MSP) by jointly allocating the radio
resource and the computational resource in theMEC server to
maximize the revenue of the MSP, however, only electricity
costs are considered in this article while radio resource and
computational resource costs are omitted.

Different from the previous works, this paper jointly opti-
mizes the offloading strategy, bandwidth allocation, and
computational resource assignment in the C-RAN with
MEC structure to maximize the profit of network operator.

VOLUME 7, 2019 79057



Z. Jian et al.: Joint Computation Offloading and Resource Allocation in C-RAN With MEC Based on SE

We consider the computational resource consumption and
bandwidth occupation as the cost of a task and the network
operator charges an MT for the task computing and output
transmission. As for theMTs selection of the offloading strat-
egy, the impact of MTs SE on the network operator profit is
analyzed. In particular, the latency constraint is also analyzed
in respect to the maximizing of the network operator profit.
The main contributions of this paper are listed as follows.

1) A task-aware C-RAN with MEC structure is proposed
where a cacheable MEC server is integrated in the BBU pool
of the C-RAN.With caching capability in the edge cloud, task
data can be prepared in the MEC server in advance by storing
data from the Internet purposely or receivingMTs’ uploading
files. In addition, the MTs that sharing the same MEC server
are always closely located and they may prefer similar appli-
cations and caching data, hence we can deduce that the MTs
of the same MEC server may have similar offloading tasks
within a specified period of time which makes the caching
more efficient.

2) Communication model and computation model are ana-
lyzed respectively, and then the expression of profit function
is presented. After that, an optimization problem is formu-
lated by jointly considering the computation offloading strat-
egy policy, bandwidth allocation and computational resource
assignment. The objective of the optimization problem is to
maximize the economic profit of the network operator while
satisfying MTs’ QoS (i.e., a minimum time limit for total
execution time of task offloading) and kinds of resources
constraints. Concretely, network bandwidth, computational
resource in the MEC server, and fronthaul capacity of the
RRH are limited which will be discussed in more detail
below.

3) The optimization problem is decomposed into two
sub-problems due to the NP-hard property. On one hand,
we propose an SE based offloading strategy policy after
analyzing the impact of MTs SE on network operator
profit. On the other hand, we use a Lagrangian multiplier
method to jointly allocate wireless bandwidth and computa-
tional resource for the offloading permitted MTs assuming
the offloading strategy is definite. A distributed SE based
Joint Optimization for Offloading and Resource Alloca-
tion (SJOORA) scheme is proposed to solve the optimization
problem by the mutual iteration of the two sub-problems.
In addition, the simulation results show the effectiveness of
the proposed algorithm.

The remainder of this paper is organized as follows.
In Section II, systemmodel and optimization problem are pre-
sented. Section III introduces a distributed SJOORA scheme
to solve the NP-hard problem efficiently. In Section IV,
the simulation results are shown and discussed. Finally, con-
clusions are given in Section V.

II. SYSTEM MODEL
In this section, a task-aware C-RAN with MEC structure
is presented. Specifically, a C-RAN model consisting of a
BBU pool and several RRHs is considered as the radio access

TABLE 1. Notations.

network and the MEC server is integrated in the BBU pool.
First of all, we introduce the network structure and system
design, then communication model and computation model
are described, and the profit optimization problem is formu-
lated at last. Table 1 shows the main notations to be used in
the following sections.

A. NETWORK MODEL
In this paper, a C-RAN with MEC structure is considered.
Motivated by [11], the VMs in the BBU pool are divided
into two kinds: conventional vBBUs that are responsible for
communication and an MEC server that takes charge of task
offloading. Here we equip the MEC server with a limited
storage pool for caching task data. As mentioned before,
the MTs of the same MEC server that located closely may
have similar offloading tasks. For example, the MTs located
within the areas like museums, shopping malls, airports or
railway stations, may have the similar tasks such as Virtual
Reality tasks, real-time local information querying and pro-
cessing. Normally, the same applications are used in these
cases. Attribute to the same applications and similar tasks,
the caching efficiency and storage space saving are apprecia-
ble. Generally, the MTs get these task data from the Inter-
net, and obviously, these data are transmitted from the core
network to the BBU pool and then transmitted to the users
through RRHs. By the aid of cache capacity of the BBU pool
and some previously indication signals or user requests, these
task data may be stored in the MEC system temporarily in
the transmission process. Besides these task data from the
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FIGURE 1. System structure of C-RAN with MEC.

Internet, the task computing in the MEC server may need
some personal configuration files that come from the MTs
themselves, we think that these personal files are small in
size and could be uploaded to the edge cloud in idle time
purposefully or be settled by a full-duplex mode. In this
paper, the cost of personal files’ uploading is omitted and
only task execution in MEC and computing result trans-
mission are considered. The system structure is illustrated
in Fig. 1.

In the C-RAN structure, we denote N = {1, 2, . . . ,N } as
the RRHs connecting to the BBU pool through high-speed
fiber fronthaul link, which are deployed as Poisson Point Pro-
cess (PPP) and equipped with single antennas for simplicity.
The MTs are also equipped with single antennas and are ran-
domly distributed in the geographical region of the C-RAN,
similarly we denote the MTs set as M = {1, 2, . . . ,M}.
The offloading strategy matrix of MTs is defined as A =
{am,n}M×N , m ∈M, n ∈ N , where am,n is a binary variable,
i.e., am,n = 1 implies that MT m is permitted to draw support
from MEC server to execute its task by accessing RRH n
and otherwise am,n = 0. Here we consider a task-awareness
case in which the task data of the MTs have already been
cached in the MEC server. Similar to [26], we assume that
the computational intensive task Wm expected to be accom-
plished in the MEC server for an MT m is denoted as
follows:

Wm = (Fm,Dm,Tm,max), m = 1, 2, . . . ,M (1)

where Fm denotes the total number of the CPU cycles needed
to accomplish task Wm in the MEC server; Dm is the whole
size of the task’s output data transmitted to MTm through the
C-RAN after task execution in the MEC server, and Tm,max is
the latency constraint of task Wm, which is the baseline that
the MT m can tolerate for its task Wm.
In addition to the neglect of the cost of personal files’

uploading, the time cost in the fronthaul link is also omit-
ted. However the fronthaul capacity is considered as a con-
straint of the RRH’s total data rate which will be discussed
later.

B. COMMUNICATION MODEL
In this paper, we consider the full frequency reuse case where
the spectrum used by the RRHs is overlaid, thus there exists
inter-RRH interference. However, spectrum is orthogonally
assigned to each MT that accesses the same RRH, hence
intra-RRH interference is ignored here. We assume that all
RRHs have the full CSI of all downlinks from any RRH to
any MT. The signal-to-interference-plus-noise ratio (SINR)
for RRH n to transmit to MT m can be expressed as:

SINRm,n =
pngm,n

σ 2 +
N∑

j=1,j6=n
pjgm,j

(2)

where pn is the transmit power of RRH n; gm,n represents
the channel gain from RRH n to MT m; σ 2 is defined as the
power of the additive white Gaussian noise(AWGN) which
is assumed to be distributed as XN (0, σ 2). According to
Shannon bound, the spectrum efficiency of MT m is given
by:

em,n = log2(1+
pngm,n

σ 2 +
N∑

j=1,j 6=n
pjgm,j

) (3)

The total spectrum bandwidth available is B Hz and we
denote bm,n ∈ [0, 1], ∀m, n, as the percentage of radio spec-
trum allocated to MT m by RRH n, thus we have b= {bm,n},
m ∈M, n ∈ N , as the bandwidth allocation set. Obviously,∑

m∈M bm,n ≤ 1,∀n ∈ N. Then the achievable instantaneous
rate of MT m accessing RRH n, i.e., Rm,n is calculated as

Rm,n = am,nbm,nBem,n (4)

Consider the fronthaul capacity constraint, we have∑
m∈M

Rm,n ≤ Ln, ∀n ∈ N (5)

where Ln is the fronthaul capacity of RRH n.
Finally, the time cost of output data transmission back to

MT m from RRH n is given by

T Trm = am,n
Dm
Rm,n

(6)

C. COMPUTATION MODEL
Assuming the offloading strategy has been decided and an
MT m is permitted to have task executed in the cloud,
the MEC server who receives the request signal will find the
corresponding cached task data and allocate computational
resource to start the execution.

We denote F as the total computational resource (i.e., CPU
cycles per second) in theMEC server. Here we think all of the
computational resource are shared and available for all MTs
who are permitted for offloading. Thus we define cm ∈ [0, 1],
∀m, as the percentage of the computational resource assigned
to MT m with the constraint of

∑
m∈M cm ≤ 1. Similarly,

we have c = {cm}, m ∈M, as the computational resource
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allocation set. Then the execution time for task Wm in the
MEC server is given by

T exem =
∑
n∈N

am,n
Fm
cmF

(7)

Thus the total time cost of the task offloading progress for
MT m is given by

Tm = T Trm + T
exe
m (8)

In addition, MT m has his locally computation ability
which we define as f localm .Obviously, the computational capa-
bility assigned to MT m need to be larger than its local com-
putation ability, or else the offloading will be meaningless.
Hence we have the constraint:

cmF ≥ am,n f localm (9)

D. PROFIT FUNCTION
In this paper, we set the maximization of the economic profit
of network operator as our optimization target. Concretely,
we figure out the revenue and cost of the offloading tasks
respectively, and then the profit is their difference.

Firstly, we consider the task revenue. In the MEC server,
network operator will charge an MT for the task computing
and data caching. As for task computing charge, we con-
sider that the price is related with the task computational
complexity and the unit price being charged is defined as
pf per CPU cycle; similarly we define the fee of original
task data caching as Sm which is related with the task data
size. Then the network operator will charge the MTs for the
wireless transmission of output data. Concretely, referring to
mobile operators like China Mobile, Vodafone, etc., users are
charged by transmission data size rather than user data rate,
thus the unit price being charged is defined as pt per bit. Then
the whole revenue for offloading taskWm that involves these
three parts is given as.

�m =
∑
n∈N

am,n(pf Fm + ptDm + Sm) (10)

Actually, �m is just related with the task itself instead
of allocated spectrum and computational resource, which is
reasonable and practical.

As for the cost, we consider the spectrum and computa-
tional resource occupation for completing the offloading task.
Concretely, spectrum resource cost is related to the bandwidth
assigned to MT m with the unit price of qb per Hz and
computational resource cost is related to the computational
resource assigned to task Wm with the unit price of qc per
CPU cycle/second.

Finally, with the revenue and cost analyzed above, we for-
mulate the profit function of the network operator as:

U =
∑
m∈M

∑
n∈N

(am,n�m − am,nκcmFqc − am,nωbm,nBqb)

=

∑
m∈M

∑
n∈N

am,n(�m − κcmFqc − ωbm,nBqb) (11)

where ω and κ denote the impact factors which represent
the tradeoff of scarcity and price fluctuation between the
spectrum resource and computational resource respectively.
For simplicity, we define 0Cm = κFqc and 0

T
m = ωBqb, then

(11) can be rewritten as

U =
∑
m∈M

∑
n∈N

am,n(�m − cm0Cm − bm,n0
T
m) (12)

Then we have the objective function of the optimization
problem

max
am,n,bm,n,cm

∑
m∈M

∑
n∈N

am,n(�m − cm0Cm − bm,n0
T
m)

s.t. C1 :
∑
m∈M

am,nbm,n ≤ 1, ∀n ∈ N ,

C2 :
∑
m∈M

∑
n∈N

am,ncm ≤ 1

C3 : T exem + T
Tr
m ≤ Tm,max, ∀m ∈M

C4 : cm ≥ am,n
f localm

F
, ∀m ∈M, ∀n ∈ N

C5 :
∑
m∈M

Rm,n ≤ Ln, ∀n ∈ N

C6 : am,n ∈ {0, 1}, ∀m ∈M, ∀n ∈ N (13)

Constraint C1 guarantees that in each RRH, the sum of
bandwidth allocated to all the offloading MTs cannot exceed
the total available bandwidth of that RRH. Similarly,C2 guar-
antees that all computational resource allocated to execute
tasks cannot exceed total computational capability of the
MEC server. C3 is the latency constraint which means that
the total execution time of the task offloading should satisfy
the MT’s QoS requirement. C4 guarantees that the assigned
computational resource to a permitted MT should be more
than its local computation capability. Constraint C5 means
the sum data rate of all the MTs that access a RRH n cannot
exceed the fronthaul capacity of the RRH.

For the problem (13), we see that {am,n} are binary vari-
ables, and noticing the product relationships between {am,n}
and {bm,n} as well as {cm}, all of this make (13) a mixed
integer programming problem which is not convex. With the
radically increasing of MTs number, it’s extremely complex
to solve this non-convex and NP-hard problem directly, thus
we have to find an efficient and simplified solution.

III. SE BASED JOINTLY OPTIMIZATION FOR OFFLOADING
STRATEGY AND RESOURCE ALLOCATION
In this section, a distributed SJOORA scheme is proposed
to solve the optimization problem. Concretely, we firstly
analyze the offloading strategy with considering the SE of the
MTs and decouple it with the rest resource allocation prob-
lem temporarily; then we concentrate on the spectrum and
computational resource allocation problem which is solved
by Lagrangian multiplier method with specially constraints
relaxing; and finally an iterative algorithm is applied to
achieve the eventual solution.
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A. OFFLOADING STRATEGY ANALYSIS WITH
CONSIDERING MTS SE
Considering that A = {am,n}, m ∈M, n ∈ N , is a set of
discrete variables, we try to decouple the offloading strategy
A with the spectrum resource allocation factor b and the
computational resource allocation factor c. From the network
operator’s perspective, the purpose of handling an MEC sys-
tem is to win more profit from tasks offloading, hence we
can roughly conclude that tasks which consume less resource
and/or produce more profit will be preferred when resource
shortage situation occurs.
Proposition 1: MTs with higher SE tend to be permitted to

offload tasks to the MEC server.
Proof: We define the profit rate for an offloading per-

mitted task as the ratio of task profit and its cost.

γm =
�m − cm0Cm − bm,n0

T
m

cm0Cm + bm,n0Tm
(14)

For a given task Wm = (Fm,Dm,Tm), �m, 0Cm , and 0
T
m

are constant, hence γm just varies with cm and bm,n. Here we
concentrate on the relationship between SE and profit rate.
Since the task computing environment is just the same inside
the MEC server, computational resource allocation does not
impact the computing cost and latency, for simplicity, we set
cm = c with assuming that C2 and C4 are satisfied in (13).
Then we concentrate on the spectrum resource allocation
factor bm,n. For a constant revenue �m, the profit of taskWm
reaches a maximum when bm,n reaches a minimum and thus
is its profit rate γm. Ignore C1 and C5, and transform C3,
according to (6), (7), and (8) we can get:

bm,n ≥
Dm

Bem,n(Tm,max −
Fm
cF

)
(15)

From (14) and (15), it is easy to get

γm ≤
�m

c0Cm +
Dm0Tm

Bem,n(Tm,max−
Fm
cF

)

− 1 (16)

And then we have

γmax
m =

�m

c0Cm +
Dm0Tm

Bem,n(Tm,max−
Fm
cF

)

− 1 (17)

Fig.2 visually shows the relationship between the upper
bound of profit rate and SE. Obviously, the MT with higher
SE has higher profit rate. When the MTs are sparsely dis-
tributed or in other words, the resource is sufficient, an MT is
offloading permitted as long as its task profit is positive. Here
we consider a resource limited situation, where numerous
MTs compete for task offloading and the network opera-
tor makes use of the finite resource to maximize its profit.
We analyze (14) from another perspective like this: 0Cm , and
0Tm can be regarded as the impact factors for cm and bm,n
respectively, then γm can be considered as the profit for a
weighted unit resource consumption. In other words, higher

FIGURE 2. Profit rate versus SE for an MT with a given task.

γm means higher profit per unit resource. Thus in a resource
limited situation, theMTswith higher SE contribute to a lager
profit for network operator and proposition 1 is proved. Note
that, this conclusion is not applicable forMTs associated with
different RRHs.

Normally, the offloading of computational intensive tasks
will cause some additional bandwidth and energy costs, and
even unacceptable transmit latency for MTs with poor wire-
less channel. In some cases, the MTs prefer to execute those
tasks locally when additional offloading costs are hard to
take, and in these cases the network operator always gains
very little profit from the offloading tasks. Based on propo-
sition 1, we set preferentially selecting MTs with higher
SE as the main idea of our offloading strategy. Note that,
the computational resource in the cloud are shared by the
whole offloading permitted MTs, in this section we assume
computational capability allocation factor {cm} and spectrum
resource allocation factor {bm,n} are known and constant
where�m− cm0Cm − bm,n0

T
m > 0 is satisfied. For simplicity,

the MTs access RRHs that offering the maximum SE in this
paper.We iteratively choose part of theMTswith higher SE as
the candidates and check whether the constraints in (13) are
satisfied. In order to converge faster, half of the unchecked
MTs are chosen in each iteration. If the constraints are satis-
fied, these candidates are permitted for task offloading, or else
the candidate with minimum profit is rejected and so are other
MTs who access the same RRH with MT m while having
lower SE. The detail is shown in Algorithm 1.

After all MTs have been checked, a temporary maximum
of profit can be reached with the predefined resource allo-
cation. Next we will introduce the optimization of the spec-
trum and computational resource allocation under a given
offloading strategy in section III-B, and the overall algorithm
is described in detail in section III-C .

B. RESOURCE ALLOCATION USING LAGRANGIAN
MULTIPLIER METHOD
In this section, we will jointly solve the spectrum and com-
putational resource allocation problem to maximize the profit
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of network operator in the premise that offloading strategyA
is known. Hence only {bm,n} and {cm} are concentrated and
the optimization problem (13) will become

max
bm,n,cm

∑
m∈M

∑
n∈N

am,n(�m − cm0Cm − bm,n0
T
m)

s.t. C1 :
∑
m∈M

am,nbm,n ≤ 1, ∀n ∈ N ,

C2 :
∑
m∈M

∑
n∈N

am,ncm ≤ 1

C3 : T exem + T
Tr
m ≤ Tm,max, ∀m ∈M

C4 : cm ≥ am,n
f localm

F
, ∀m ∈M, ∀n ∈ N

C5 :
∑
m∈M

Rm,n ≤ Ln, ∀n ∈ N (18)

Since�m− cm0Cm −bm,n0
T
m are linear with respect to bm,n

and cm, hence the objective function is concave. In addition,
constraint C3 of problem (18) is concave on its domain and
the rest constraints are linear, thus problem (18) is a convex
optimization problem [28].

Algorithm 1 SE Based Offloading Strategy Optimization
With Confirmed Resource Allocation

Input: Wm, F , B, Sm, pf , pt , qc, qb, ω, κ , b, c
Output: A
1. Initialize: S1 = Ø;S2 = Ø; S3 = {m|∀m ∈M}; K = ||

S3||0; X = {xm,n = 0}M×N ; A =
{am,n = 0}M×N ;

2. For m = 1: M
3. em,n = max

i∈N
em,i; xm,n = 1;

4. End for
5. Repeat:
6. Select [K /2] MTs with higher SE in S3 to be the

under testing set, which is denoted as S∗, and let
{am,n = 1|m ∈ S∗, xm,n = 1}

7. Check whether constraints in (13) are satisfied
8. If constraints are satisfied
9. The [K /2] MTs that in S∗ will be transferred to S1 and

excluded from S3
10. Else
11. Calculate Um and reset {am,n = 0|m ∈ S∗, xm,n = 1}
12. The MT m with minimum profit in S∗ and other MTs

who access the same RRH with MT m while having
lower SE will be transferred to S2 and excluded from
S3; The rest MTs in S∗ will be transferred back to S3;

13. End if
14. Update S1; S2; S3; K = ||S3||0; S∗ = Ø;
15. Until K =0
16. The offloading strategy A is obtained.

Proposition 2: The establishment of latency constraint
equation in C3 is a necessary condition for achieving the
maximum profit when the offloading strategy is known.

Proof:When the offloading strategyA is known, the rev-
enue�m in (18) is constant, and so are0Cm and0Tm. Obviously,
bm,n and cm should be small enough to reach a maximum
profit, however C1, C2, and C5 are the maximum constraint
conditions for bm,n and cm. With the known A, we consider
the offloading permitted MTs, i.e., am,n = 1. Assuming b∗m,n
and c∗m are the optimal resource allocation scheme for an MT
m where constraints C1, C2, C4, and C5 are satisfied.

If we have

am,n
Fm
c∗mF
+ am,n

Dm
b∗m,nBem,n

< am,nTm,max (19)

then exist b
′

m,n < b
∗

m,n that makes

am,n
Fm
c∗mF
+ am,n

Dm
b′m,nBem,n

= am,nTm,max (20)

where constraints C1-C5 are also satisfied.
According to (12), we can easily get U (b

′

m,n, c
∗
m) >

U (b∗m,n, c
∗
m). Hence b

∗
m,n and c

∗
m are not the optimal solution

which stands in direct contradiction with the hypothesis, and
then proposition 2 is proved.

According to proposition 2, C3 can be relaxed as

am,n
Fm
cmF
+ am,n

Dm
bm,nBem,n

= am,nTm,max, ∀m ∈M

(21)

So the optimization problem (18) will become

max
bm,n,cm

∑
m∈M

∑
n∈N

am,n(�m − cm0Cm − bm,n0
T
m)

s.t. C1 :
∑
m∈M

am,nbm,n ≤ 1, ∀n ∈ N ,

C2 :
∑
m∈M

∑
n∈N

am,ncm ≤ 1

C3 : am,n
Fm
cmF
+ am,n

Dm
bm,nBem,n

= am,nTm,max, ∀m ∈M

C4 : cm ≥ am,n
f localm

F
, ∀m ∈M, ∀n ∈ N

C5 :
∑
m∈M

Rm,n ≤ Ln, ∀n ∈ N (22)

Considering the given offloading strategyA, the optimiza-
tion problem may have no valid solution. To make sure we
can get a usable solution, we omit constraint C2 temporarily
which will be checked separately later. And the optimization
problem will be transformed as:

max
bm,n,cm

∑
m∈M

∑
n∈N

am,n(�m − cm0Cm − bm,n0
T
m)

s.t. C1 :
∑
m∈M

am,nbm,n ≤ 1, ∀n ∈ N ,

C3 : am,n
Fm
cmF
+ am,n

Dm
bm,nBem,n

= am,nTm,max, ∀m ∈M
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C4 : cm ≥ am,n
f localm

F
, ∀m ∈M, ∀n ∈ N

C5 :
∑
m∈M

Rm,n ≤ Ln, ∀n ∈ N (23)

Then we can write the Lagrangian function of (23) as:

L(b, c,β,µ, η,ϕ)

=

∑
m∈M

∑
n∈N

am,n(�m − cm0Cm − bm,n0
T
m)

+

∑
n∈N

βn(1−
∑
m∈M

am,nbm,n)

+

∑
m∈M

∑
n∈N

µm,n(am,n(Tm,max −
Fm
cmF
−

Dm
bm,nBem,n

))

+

∑
m∈M

ηm(cm −
∑
n∈N

am,n
f localm

F
)

+

∑
n∈N

ϕn(Ln −
∑
m∈M

am,nbm,nBem,n) (24)

where βn, µm,n, ηm and ϕn are the nonnegative Lagrange
multipliers corresponding to constraintsC1,C3,C4, andC5,
respectively.

Then, we can write the Lagrangian dual function of (23) as

D(β,µ, η,ϕ) = max
bm,n,cm

L(b, c,β,µ, η,ϕ) (25)

and thus, the dual optimization problem can be formulated as

min
βn,µm,n,ηm,ϕn

D(β,µ, η,ϕ) (26)

Next we suppose {cm} have been allocated to the MTs and
the partial derivative of (24) with respect to bn,m gives the
following Karush-Kuhn-Tucker (KKT) condition:

∂L
∂bm,n

=−am,n0Tm−am,nβn+
am,nµm,nDm
b2m,nBem,n

−am,nϕnBem,n=0

(27)

And the radio spectrum resource allocation can be per-
formed as

bm,n =

√
am,nµm,nDm

(0Tm + βn + ϕnBem,n)Bem,n
(28)

Again, we suppose {bn,m} have been allocated to the MTs
and the same as (27), taking the partial derivative of (24) with
respect to cm yields another KKT condition:

∂L
∂cm
= −am,n0Cm +

am,nµm,nFm
c2mF

− am,nηm = 0 (29)

Similarly, the computational resource allocation can be
acquired as

cm =

√
am,nµm,nFm
(0Cm + ηm)F

(30)

At last, together with the third KKT condition i.e., for-
mula (21), we can get bm,n, cm and µm,n by jointly solving
(21), (28), and (30).

According to reference [29], we can solve the dual problem
in (26) by using an iterative subgradient method with updat-
ing the Lagrange multipliers like following:

β t+1n = [β tn − δ1(1−
∑
m∈M

am,nbm,n)]+ (31)

ηt+1m = [ηtm − δ2(cm −
∑
n∈N

am,n
f localm

F
)]+ (32)

ϕt+1n = [ϕtn − δ3(Ln −
∑
m∈M

am,nbm,nBem,n)]+ (33)

where β tn, η
t
m and ϕtn are the values of βn, ηm and ϕn at the t-th

iteration respectively, and δ1, δ2 and δ3 are the positive step
sizes that satisfy the infinite travel conditions. The process of
updating the spectrum and computational resource allocation,
as well as Lagrange multipliers is repeated until convergence
or a predefined maximum number of iterations i.e., Imax is
reached.

C. OVERALL ALGORITHM
In this section, an overall optimization algorithm for the
maximization of the network operator’s profit is described
which jointly optimizes the offloading strategy and spectrum
and computational resource allocation.
As shown in Algorithm 2, we divide the MTs into three

sets: offloading permitted set S1, unacceptable set S2 and
undefined set S3. Just the same with Algorithm 1, an MT
accesses the RRH that provides the maximal SE, and we
initialize the offloading strategy A like this: all M MTs are
set into S3, so S1 and S2 are empty. At the beginning of each
iteration, the MTs belong to S3 are ranked by their SE in
the BBU pool and a bisection method is used when choosing
the MTs of S3 as candidates to improve algorithm efficiency,
namely, we choose the half of MTs in S3 with higher SE
which is denoted as S∗. Then we solve problem (23) to get
corresponding suboptimal b∗ and c∗ and the operator profit
is obtained at the same time. After that we check whether the
operator profit is increased and constraint C2 is satisfied or
not. If they are, these MTs with higher SE will be transferred
to S1 and excluded from S3, else reset all MTs in S∗, then
the one with minimum profit is rejected and so are other MTs
who access the same RRH with this MT while having lower
SE, and all of them will be transferred to S2 and excluded
from S3. For each iteration, some MTs are transferred to S1
or S2 from S3, and S∗ will be emptied, hence we update S1,
S2, S3, K and, S∗ in the end of each loop. When S 3 is empty,
we get our expected A, b, and c and the algorithm comes to
an end.
At last, we give a roughly analysis of the complexity of

our proposed algorithm. By using Lagrangian dual method,
the asymptotic computational complexity of jointly solving
bandwidth and computational resource allocation problem
i.e., (23) can be shown as O(Imax((N + 2M) N) + 2N)).
Bisection method is used to update the optimal A, so either
half of S3 are transferred to S1 or one of the RRHs’ offloading
strategy is confirmed in each iteration, thus computational

VOLUME 7, 2019 79063



Z. Jian et al.: Joint Computation Offloading and Resource Allocation in C-RAN With MEC Based on SE

complexity is relatively low. The entire problem will be
solved in less thanO(M + logN) times. Thus the worst-case
complexity of overall algorithm is

O((M + logN )Imax((N + 2M )N )+ 2N )).

IV. SIMULATION RESULTS
In this section, we use Monte Carlo simulations to evaluate
the performance of our proposed SJOORA scheme. In the
following, we firstly introduce the parameter settings, and
then simulation results and analysis are presented one by one.

Algorithm 2 SEBased Joint Optimization for Offloading and
Resource Allocation
Input: Wm, F , B, Sm, pf , pt , qc, qb, ω, κ
Output: {A } = offloading strategy,

{b, c} = resource allocation factors
1. Initialize: S1 = Ø;S2 = Ø; S3 = {m|∀i ∈M};

K = ||S3||0;
X = {xm,n = 0}M×N ; A = {am,n = 0}M×N ;

2. For m = 1: M
3. em,n = max

i∈N
em,i; xm,n = 1;

4. End for
5. Repeat:
6. Select [K /2] MTs with higher SE in S3 which is

denoted as S∗, let {am,n = 1 |m ∈ S*, xm,n = 1};
7. Solve problem (23) to get optimal resource allocation

factors {b∗, c∗} and calculate U =
∑

m∈M
Um

8. Check whether C2 in problem (22) is satisfied.
9. If C2 is satisfied
10. The [K /2] MTs that in S∗ will be transferred to S1

and excluded from S3
11. Else
12. Reset {am,n = 0 |m ∈ S∗, xm,n = 1}
13. The MT m with minimum profit Um in S∗ and other

MTs who access the same RRH with MT m
while having lower SE will be transferred to S2 and
excluded from S3;
The rest MTs in S∗ will be transferred back to S3;

14. End if
15. Update S1; S2; S3; K = ||S3||0; S∗ = Ø;
16. Until K = 0
17. The offloading strategy A and optimal resource

allocation b, c are obtained.

A. PARAMETER SETTINGS
We consider a simulation scenario like following. The cover-
age radius of the C-RAN is set to 500m and N= 10 RRHs are
deployed as PPPwithin the geographical region. TheMTs are
also randomly distributed in the same area where the number
of the MTs varies from 50 to 120 according to the simulation
requirements. For the wireless accessing, the channel band-
width B is set as 10MHz, the transmit power of each RRH
is set as 30dBm and the fronthaul capacity for each RRH is

TABLE 2. Partial parameters.

FIGURE 3. Total profit versus MTs number under different schemes.

set as 10Mbps. For the wireless channel condition, we set the
pass loss model as 37.6 × log(dist) + 148.1 similar to [30],
the shadowing factor is given by a log-normal function with
standard deviation of 8dB and small scale fading model
is independently and identically distributed (i.i.d.) Rayleigh
fading with zero mean and unit variance. As for the AWGN,
we set the noise power as σ 2

= −174 dBm/Hz. For the
MEC server, we set the maximum computation capability
F as 100GHz and local computation ability f localm is set to
0.7GHz [31]. At last, other task parameters as well as price
of charging and cost are summarized in Table 2.

B. PERFORMANCE EVALUATION OF SJOORA SCHEME
1) ALGORITHM COMPARISON WITH COMPARATIVE
METHODS
We evaluate the SJOORA scheme performance to verify its
effectiveness by comparing with several baseline algorithms:
Baseline 1: SE based Fixed Computational Resource Allo-

cation (SFCRA). The MEC server selects the MT with max-
imal SE each time until one of the resource constraints is
triggered. The computational resource allocation factor of the
offloading permitted MT m i.e. cm is fixed, which is related
to the number of MTs, and then corresponding spectrum
resource allocation factor bm,n can be obtained from equa-
tion (21).
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FIGURE 4. SONs (a) and SOPs (b) of different schemes.

FIGURE 5. The usage of wireless (a) and computational (b) resources under different schemes.

Baseline 2:RandomOffloading with Fixed Computational
Resource Allocation (RFCRA). In this scheme, the com-
putational resource allocation factor is fixed too, which is
the same with SFCRA. The difference with SFCRA is that,
in RFCRA, the MEC server randomly selects an MT to
offload each time until one of the resource constraints is
triggered.
Baseline 3: SE based Exhaustive Search method (SES).

Considering the large number of MTs, simple exhaustive
method is almost impossible to achieve under our existing
condition, hence we use the exhaustive method based on the
MTs SE. Concretely, the MEC server selects MTs in order
of their SE values and solves (22) to check whether they
are suitable for tasks offloading until all MTs have been
traversed.

Fig. 3 shows the comparison of the network operator profit
versus the number of MTs under different schemes. All of
the total profits increase with the growth of the number

of MTs under the four candidate schemes, this is because
the more MTs means the more MTs with higher SE which
make the MEC server have better and more choices to take
full advantage of the wireless and computational resources.
The gap between SJOORA and SES is quite narrow, which
shows that our proposed scheme is quite effective although
the SES scheme cannot reach the optimal profit in theory.
Moreover, the comparison of SFCRA and RFCRA show the
effectiveness of our SE based offloading strategy, and the
comparison of SJOORA and SFCRA show the effectiveness
of our resource allocation solution by using the Lagrangian
multiplier method.

In Fig. 4, we compare the Successful Offloading Num-
bers (SONs) and Successful Offloading Probabilities (SOPs)
of four candidate schemes. SON here means the number of
offloading permitted MTs in strategy A and SOP is the ratio
of SON and the number of all candidate MTs. The initial
SONs of SFCRA and RFCRA are quite few but grow much
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FIGURE 6. Impact of different latency constraints on profit (a) and SOP (b).

FIGURE 7. Impact of task sizes on profit (a) and SOP (b).

faster than that of SJOORA and SES, this is because the
fixed computational resource allocation factors of SFCRA
and RFCRA decrease with the growing of the MTs number
which help with more MTs to offload. All SOPs decrease
with the growing of the MTs number because of the limited
wireless and computational resources. SFCRA and RFCRA
have higher SOPs than SJOORA and SES due to the fact
that the former two schemes fix their computational resource
allocation factors, in other words, their purpose is not to
maximize their profit which is related to the cost prices of cm
and bm,n. In addition, because of the more effective usage of
wireless resource, SOP and SON of SFCRA are higher than
RFCRA’s.

Next, we concentrate on the usage of wireless and com-
putational resources of four candidate schemes as shown
in Fig. 5. Obviously, SJOORA and SES who make better
use of wireless resource expend less wireless resource than
SFCRA and RFCRA, and logically SJOORA and SES con-
sume more computational resource. Concretely, the trend

of computational resource usage for SFCRA and RFCRA
are similar for the reason of fixed computational resource
assignment, however the wireless resource spent in SFCRA is
significantly less than RFCRA while the profit of SFCRA is
higher on the contrary. Thus the effectiveness of our SE based
offloading strategy is verified again. Different with the wire-
less resource whose utilization efficiency is closely related to
MTs’ channel condition, the computational resource is fair to
all MTs. SJOORA and SES make the best of computational
resource and try to avoid overusing the wireless resource
under bad channel condition, which efficaciously promote the
total profit as we wish.

2) THE IMPACT OF LATENCY CONSTRAINT AND TASK SIZE
After the comparison with comparative methods, we study
the impact of different latency constraints and tasks
sizes on the total profit in this subsection. Note that,
the following simulations are executed under the SJOORA
scheme.
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Firstly, the profits under different latency constraints with
the increase of the MTs number are shown in Fig. 6a. Simu-
lation result shows that profit under bigger Tm,max is higher
than that of smaller Tm,max . It is due to the fact that smaller
Tm,max means stricter constraint, so less MTs are suitable to
offload tasks, which will naturally reduce the profit. In addi-
tion, Fig. 6b which shows the SOPs under different latency
constraints directly verifies the fact that smaller Tm,max leads
to less offloading MTs.

Then we examine the impact of task size Dm on the total
profit. Fig. 7a shows the profits for different tasks sizes
Dm and Fig. 7b shows the corresponding SOPs. Obviously,
smallerDmmakesmoreMTs permitted to offload taskswhich
can be seen intuitively from Fig. 7b. However, more offload-
ing MTs does not mean higher profit for the operator due to
the fact that task size is closely related to the cost and revenue.
On the contrary, bigger Dm makes profit higher, which is
shown in Fig. 7a, although in this case fewer MTs participate
in tasks offloading. After comparing and analyzing Fig. 7a
and Fig. 7b, we find the fact that bigger Dm can make better
use of the MTs with higher SE. For example, there are two
MTs where MT 1 has higher SE than MT2, MT1 offloads a
2×D size task will contribute more profit than each of them
offloads a D size task.

V. CONCLUSION
In this paper we proposed a novel task-aware C-RAN with
MEC architecture and formulated a profit maximization
problemwith jointly optimizing offloading strategy and wire-
less and computational resources allocation. Constraints of
offloading task latency, fronthaul capacity, wireless as well
as computational resources limitation were considered when
solving the optimization problem. To solve the NP-hard prob-
lem efficiently, we decoupled the original problem into two
sub-problems, and on one hand, an SE based offloading
strategy was proposed under the assuming of fixed resource
allocation, on the other hand, resource allocation problem
with known offloading factors was solved by using the
Lagrangian multiplier method. At last, by solving these two
sub-problems iteratively, we got a suboptimal solution for the
original problem. Simulation results were presented to show
the effectiveness of our proposed SJOORA scheme, and the
impact of latency constraint and task size were also analyzed.
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