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ABSTRACT This paper investigates a finite-time control problem of nonlinear quantized systems with
actuator dead-zone in a non-strict feedback form. By combining a simplified dead-zone model and the
sector-bound characteristic of a hysteretic quantizer, the control difficulties caused by the coexistence of
unknown actuator dead-zone and control signal quantization effect are overcome. By applying the approx-
imation ability of neural network systems, an novel neural adaptive controller is constructed, which can
compensate the unknown control gain. The designed neural controller can ensure the transient performance
of nonlinear quantized systems with actuator dead-zone in finite-time. Based on the Bhat and Bernstein
theorem, the finite-time stability of system is proved. Finally, a numerical example is given to verify the
validity of the proposed approach.

INDEX TERMS Adaptive neural control, backstepping technique, unknown dead-zone, nonlinear quantized
systems, finite-time stability.

I. INTRODUCTION
Over the past few decades, the adaptive fuzzy or neural con-
trol based on approximation has received extensive attention.
In [1]–[15], fuzzy logical or neural network systems were
used to model the unknown nonlinear functions, and the
adaptive controllers were designed by combing adaptive tech-
nique with backstepping. Although some achievements have
been made in [1]–[15], signal quantization was neglected.
Therefore, the problem of quantized control for linear and
non-linear systems has also caught the attention of many
scholars. The stability of a category of linear quantized sys-
tems was investigated in [16], [17]. In addition, the quantized
control of a kind of uncertain nonlinear systems was stud-
ied in [18]- [22]. Compared with the schemes in [16], [17],
the system models in [18]–[22] do not need to be com-
pletely known by the designer. By applying the backstep-
ping technique, [23]–[27] proposed some input quantization
approaches to compensate the unknown control gain. Unlike
some existing control strategies for input quantized nonlinear
systems, the proposed control schemes in [23]–[27] do not
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require the global Lipschitz condition, and the quantization
parameters can be unknown to the designer. It is noteworthy
that the adaptive fuzzy control in [23] and [25] requires that
the systems have strict-feedback or pure-feedback forms,
respectively. In theory, when the system does not meet
such structural conditions, the system can not be con-
trolled by the controller by employing the adaptive fuzzy
method. Furthermore, [28] discussed the adaptive tracking
control issue for a more general category of non-strict feed-
back systems with quantized input. Although some achieve-
ments have been made, the above literatures [16]–[28] on
quantized work do not consider the problem of actuator
dead-zone.

It is well known that the actuator dead-zone can degrade the
systems performance and even lead to the system instability.
In order to deal with the dead-zone nonlinearity, a variety
of approaches have been proposed in [29]–[32] to design
the controllers. Among them, there are two main methods
are usually employed. One method, as shown in [33]–[35],
is to compensate the impact by creating a slick inverse of
dead-zone. The another method, as described in [36]–[39],
is facilitate the control design by establishing a simplified
dead-zone model. The above achievements are based on the
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implicit assumption that the control commands transmitted
between the physical actuator and the controller does not
exhibit quantization phenomena. The work [40] investigates
the issue of stochastic nonlinear quantized systems with
actuator dead-zone, the closed-loop system was verified to
be bounded in probability by using the Lyapunov synthesis.
However, the aforementioned control researches in [16]–[40]
focus on the problem of the infinite time stability. In theory,
the control schemes in [16]–[40] can not ensure the transient
response of the system in finite-time.

As a class of time-optimal control, the finite-time control
has been caught more andmore attention by scholars in recent
years. The key characteristic of the finite-time control is to
make the system reach equilibrium in finite-time and keep
equilibrium thereafter. Reference [41] constructed a sliding
controller by establishing a terminal mode sliding manifold.
In order to solve the flutter phenomena caused by discontin-
uous controller, the Lyapunov theory of finite-time stability
has been built for the first time in [42], [43]. On the base
of the Lyapunov stability theory in [42], [43], the finite-time
stability issues of the systems were discussed in [44]–[48].
Reference [49] discussed the problem of adaptive-robust sta-
bilization of the Furuta’s pendulum around unstable equilib-
rium, [50] designed a robust control for stabilization of a kind
of nonlinear perturbed system with matched and unmatched
disturbances, the controllers in [49] and [50] guarantee the
ultimate uniform bound stabilization or controllers based on
attractive ellipsoid method. In order to ensure the finite-time
stability of nonlinear systems, some control programs were
designed in [51]–[53] for a kind of nonlinear systems with
hysteretic characteristics. By employing more appropriate
Lyapunov-Krasovskii functional, the finite-time stability of
time-varying delay systems was discussed, see [54], [55].
Furthermore, [56]–[58] presented some finite-time control
strategies for a category of nonlinear systems with actuation
failures. In addition, for a kind of nonlinear systems with
dead-zone, several finite-time tracking control programswere
investigated in [59]–[65]. In [66], a new adaptive finite-time
output-feedback control method was proposed for a kind
of nonlinear quantized systems with unmeasurable states.
However, the scheme in [66] does not take into account the
influence of the actuator dead-zone on the control perfor-
mance. To the best of our knowledge, up to now, the finite-
time quantized control problem of a category of non-strict
feedback nonlinear systems with actuator dead-zone has not
been studied, although it has a great potential in networked
control systems. For the above-mentioned discussions, this
manuscript is devoted to solving the finite-time control prob-
lem of non-strict feedback nonlinear quantized systems with
actuator dead-zone. The contributions of this paper are high-
lighted as follows.

(1) Compared with the researches of nonlinear quantized
systems with actuator dead-zone, a finite-time control strat-
egy is developed. The proposed control scheme ensures
the transient performance of quantized system with actua-
tor dead-zone in finite-time, and a valid finite-time solution

is obtained for nonlinear quantized systems with actuator
dead-zone in this article.

(2) According to the structural properties of radial basis
function (RBF) neural networks (NNs), the structure of the
plants in this manuscript is in non-strict feedback form.
Hence, the control scheme is more challenging and the con-
trol system is more common.

The rest of this manuscript is arranged as follows.
The second part provides necessary preparation and problem
statement. The third part addresses a tracking problem of
non-strict feedback nonlinear quantized systems with actua-
tor dead-zone, and the finite-time convergence is proved. The
fourth part verifies the effectiveness of the controller through
an example. The fifth part gives the conclusion and points out
the future research direction.

II. PREREQUISITES AND PROBLEM FORMULATION
A. PREREQUISITES
Lemma 1 (see [63]): Considering the nonlinear system ρ =

f (ρ, ς), for smooth positive definite function V (ρ) ∈ C1,
if there exist scalars c > 0, d > 0, and 0 < σ < 1 satisfying
that

V̇ (ρ) ≤ −cV σ (ρ)+ d, t ≥ 0. (1)

then, the nonlinear system ρ̇ = f (ρ, ς) is SGPFS.
Remark 1: Similar to the finite-time investigates in [50]

and [67], Lemma 1 gives an important criterion of SGPFS,
which will be employed in the subsequent finite-time stability
analysis.
Lemma 2 (see [56]): For ιk ∈ R, k = 1, . . . , n, 0 < p ≤

1, one has:( n∑
k=1

|ιk |
)p
≤

n∑
k=1

|ιk |
p
≤ n1−p

( n∑
k=1

|ιk |
)p
. (2)

Lemma 3 (see [68]): For ∀ξ ∈ R and ∀ε > 0, the following
relationship can be obtained:

0 ≤ |ξ | − ξ tanh
(ξ
ε

)
≤ κε. (3)

where κ is a constant that meets κ = e−(κ+1), i.e., κ =
0.2785.
Lemma 4 (see [23]): For ˙̂θ (t) = −γ θ̂ (t)+κν(t), if ν(t) > 0

and θ̂ (t0) ≥ 0 are satisfied, we have θ (t) ≥ 0 for ∀t ≥ t0,
where γ > 0 and κ > 0 denote the design parameters.
Lemma 5 (see [69]): For any real variables υ andω, the fol-

lowing inequality holds:

|υ|τ |ω|γ ≤
τ

τ + γ
λ|υ|τ+γ +

γ

τ + γ
λ
−τ
γ |ω|τ+γ . (4)

where τ > 0, γ > 0 and λ > 0 represent the design
parameters.
Remark 2: Same as the finite-time studies in [1], [2], [66],

Lemma 2 and Lemma 5 will be used widely to cope with the
inequality (61) and (63).
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B. PROBLEM DESCRIPTION
Think about the non-strict feedback nonlinear system as fol-
lows: 

ẋi = xi+1 + fi(x), 1 ≤ i ≤ n− 1,
ẋn = 0(Q(u))+ fn(x),
y = x1.

(5)

where x = [x1, x2, . . . , xn]T ∈ Rn represents the state vector,
y ∈ R represents the system output, u ∈ R represents
the control signal. fi(.) : Rn

→ R represents an unknown
smooth nonlinear function. 0(Q(u)) denotes the system input
influenced by quantization and actuator dead-zone, which can
be designed as follows:

0(Q(u)) =


kr (Q(u)− br ), Q(u) ≥ br ,
0, bl < Q(u) < br ,
kl(Q(u)− bl), Q(u) ≤ bl .

(6)

where bl and br stand for the breakpoints of the actuator
nonlinearity. The parameter kr represents the right slope of
the actuator dead-zone and the parameter kl denotes the left
slope of the actuator dead-zone. The quantizer Q(u(t)) is the
hysteretic, which can be expressed as follows:

Q(u) =



uisgn(u),
ui
1+δ < |u| ≤ ui, u̇ < 0, or
ui < |u| ≤

ui
1−δ , u̇ > 0.

ui(1+ δ)sgn(u), ui < |u| ≤
ui
1−δ , u̇ < 0,

ui
1−δ < |u| ≤

ui(1+δ)
1−δ , u̇ > 0.

0, 0 ≤ |u| < umin
1+δ , u̇ < 0, or

umin
1+δ ≤ |u| ≤ umin, u̇ > 0.

Q(u(t−)), othercases.
(7)

where sgn(.) is a signum function, which is defined as fol-
lows:

sgn(u) =
u
|u|
=


1, u > 0
0, u = 0
−1, u < 0

(8)

ui = ρ1−iumin(i = 1, 2, . . .), ρ ∈ (0, 1) represents a measure
of quantization density, the parameters umin > 0, and δ =
1−ρ
1+ρ . Therefore, Q(u) ∈ U = {0,±ui,±ui(1 + δ), i =
1, 2, . . .}. In the hysteresis quantizer (7), umin determines the
range of dead-zone for Q(u).
Remark 3:What needs to be pointed out is, compared with

the existing quantized researches, this paper considers the
unknown actuator dead-zone of the non-strict feedback non-
linear system. And this study will provide a stability analysis
scheme for the actuator nonlinearity based on quantitative
control system.
Assumption 1:There exist a smoothmonotonously increas-

ing function βi: R+ −→ R+, i = 1, 2, . . . , n, under the initial
value of βi(0) = 0, we have:

|fi(x)| ≤ βi(‖x‖).

What needs to be pointed out is that βi is a monotone
increasing function, which satisfies βi(0) = 0, that means
βi(
∑n

k=1 ak ) ≤
∑n

k=1 βi(nak ), where ak > 0. There exists a
smooth function hi(s) such that βi(s) = shi(s). which results
in

βi(
n∑

k=1

ak ) ≤
n∑

k=1

nakhi(nak ) (9)

This inequality will be widely applied in the following
processes.
Assumption 2: There are design parameters $ > 0 and

$̄ > 0, such that:

0 < $ ≤ kl ≤ $̄ , 0 < $ ≤ kr ≤ $̄ .

The existence of quantization and dead-zone increases the
difficulty of controller design, it is necessary to introduce the
following Lemma.
Lemma 6 (see [40]): 0(Q(u)) can be broken down as

follows:

0(Q(u)) = H̄ (u)u+ Ḡ(t). (10)

where

$ (1− δ) ≤ H̄ (u) ≤ $̄ (1+ δ),

|Ḡ(t)| ≤ $̄ max{|br |, |bl |} + $̄umin. (11)

C. NEURAL NETWORK SYSTEMS
Since system (5) contains the unknown function fi(.) :
Rn
→ R, therefore, radial basis function (RBF) neural

networks (NNs) will be adopted to approximate fi(.). The
RBF NNs is described in the following form:

fnn(X ) = 8T ξ (X ).

where X ∈ �x ⊂ Rq represents the input vector,
8 = [φ1, . . . , φl]T ∈ Rl denotes the weight vector of
RBF NNs, l(> 1) denotes the number of nodes, ξ (X ) =
[ξ1(X ), . . . , ξl(X )]T ∈ Rl represents the basis function vec-
tor, and ξi(X ) as shown below:

ξi(X ) = exp[−
(X − vi)T (X − vi)

ζ 2
], 1 ≤ i ≤ l.

where vi = [vi1, . . . , viq]T is the center of the receiving field,
and ζ > 0 denotes the width of the Gaussian function.
f (X ) is a continuous function define on a compact set �x .

For ∀ε > 0, there exists an RBF NNs 8∗T ξ (X ), makes the
following formula holds:

f (X ) = 8∗T ξ (X )+ δ(X ), ∀X ∈ �x . (12)

where δ(X ) is the approximation error,8∗ represents the ideal
weight vector, and the inequality |δ(X )| < ε holds. when the
number of nodes l is large enough, one has:

8∗ = arg min
8∈Rl
{ sup
X∈�x
|f (X )−8T ξ (X )|}.

Lemma 7 (see [10]): Let ξ (X ) = [ξ1(X ), . . . , ξl(X )]T

denotes the basis function vector of an RBF NNs, and X =
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[x1, . . . , xn]T denotes the input vector. For ∀m ≤ n, let Xm =
[x1, . . . , xm], we have:

‖ξ (X )‖2 ≤ ‖ξ (Xm)‖2.

Remark 4: The above lemma provides a simple but useful
structural property of RBF NNs, which is helpful to handle
thewhole state variable in the process of backstepping design.

III. CONTROLLER DESIGN PROCESS
In this part, an adaptive controller for the system (5) will be
designed. In order to begin the backstepping design proce-
dure, 8∗i (Xi) will be employed to approximate the unknown
nonlinear function, define θi = ‖8∗i ‖

2, i = 1, 2, · · · , n,
where 8∗i represents the ideal weight vector of RBF NNs.
Define θ̂i as the estimate of θi, θ̃i = θi − θ̂i as an estimation
error. Then, define the error variables as follows:

z1 = x1 − yd ,

zi = xi − αi−1, i = 2, · · · , n. (13)

where αi represents the virtual control function, it can be
expressed as follows:

αi = −ciz
2σ−1
i −

1

2a2i
θ̂iziξTi (Zi)ξi(Zi), (14)

where ξi(Zi)
(
Zi = [x̄Ti ,

¯̂
θTi−1, ȳ(i)Td ]T with ¯̂θi−1 =

[θ̂1, θ̂2, . . . , θ̂i−1]T , ȳ(i)d = [yd , y
(1)
d , . . . , y

(i)
d ]T , i =

1, 2, . . . , n.
)
denotes the basis function vector of RBF NNs.

ci > 0, ai > 0, and σ = 2l−1
2l+1 (l > 2, l ∈ n) represent the

design parameters.
The controller can be expressed as follows:

u = −
cn

1− δ
z2σ−1n −

znθ̂nξTn (Zn)ξn(Zn)
2a2n(1− δ)

, (15)

where cn > 0 and an > 0 are two parameters.
The adaptive law of θ̂ is chosen as:

˙̂
θi =

qi
2a2i

z2i ξ
T
i ξi − γiθ̂i, θ̂i(0) ≥ 0, i = 1, 2, . . . , n. (16)

where qi > 0 and γi > 0 denote the design parameters.
Assumption 3: For the desired trajectory yd and its i-th

derivative y(i)d , i = 1, 2, . . . , n, one has:

|y(i)d | ≤ d, i = 0, 1, 2, . . . , n.

where d ≥ 0 denotes a constant.
Lemma 8: For zi = xi − αi−1, i = 1, 2, . . . , n, one can get

the relation as follows:

‖x‖ ≤
n∑
i=1

|zi|ωi(zi, θ̂i)+ d (17)

where ωj(zi, θ̂i) = 1 + ciz
2σ−2
i +

1
2a2i
θ̂iξ

T
i (Zi)ξi(Zi),

ωn(zn, θ̂n) = 1, i = 1, 2, . . . , n− 1.

Proof: Let x = [x1, . . . , xn]T , z = [z1, . . . , zn]T , and α =
[α1, . . . , αn]T . Then, one has

‖x‖ ≤
n∑
i=1

|xi| =
n∑
i=1

|zi + αi−1|

≤

n∑
i=1

|zi| +
n−1∑
i=1

|αi| + yd (18)

≤

n∑
i=1

|zi|+|yd |+
n−1∑
i=1

|zi|
(
ciz

2σ−2
i +

1

2a2i
θ̂iξ

T
i (Zi)ξi(Zi)

)
≤

n∑
i=1

|zi|ωi(zi, θ̂i)+ d . (19)

Step 1: For the non-strict feedback nonlinear system (5),
the derivative of z1 is

ż1 = ẋ1 − ẏd = x2 + f1(x)− ẏd . (20)

Think about Lyapunov function candidate as follows:

V1 =
z21
2
+
θ̃21

2q1
, (21)

where q1 > 0 represents a design parameter.
Differentiating V1 yields:

V̇1 = z1(z2 + α1 + f1(x)− ẏd )−
θ̃1
˙̂
θ1

q1
. (22)

According to Young’s inequality, Assumption 1, (9) and
Lemma 8, the following inequality can be obtained:

z1f1 ≤ |z1|β1(‖x‖) ≤ |z1|β1
( n∑
l=1

|zl |ωl(zl, θ̂l)+ d
)

≤

n∑
l=1

|z1|β1
(
(n+ 1)|zl |ωl(zl, θ̂l)

)
+ |z1|β1

(
(n+ 1)d

)
≤
n
2
z21 +

n∑
l=1

z2l β̄
2
1 (zl, θ̂l)

+ |z1|β1
(
(n+ 1)d

)
, (23)

where

β̄21 (zl, θ̂l) =
1
2
(n+ 1)2ω2

l (zl, θ̂l)h
2
1

(
(n+ 1)|zl |ωl(zl, θ̂l)

)
.

Then, the following inequality can be obtained by using
Lemma 3 to the term |z1|β1

(
(n+ 1)d

)
in (23)

|z1|β1((n+ 1)d) ≤ tanh
( z1β1((n+ 1)d)

ε1

)
×z1β1

(
(n+ 1)d

)
+ κε1. (24)

where ε1 > 0 denotes a design parameter.
Applying Young’s inequality, one has:

z1z2 ≤
z21
2
+
z22
2

(25)
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Substituting (14), (23)–(25) into (22), we have:

V̇1 ≤ −
1
2
z21 − c1z

2σ
1 −

1

2a21
θ̂1z21ξ

T
1 (Z1)ξ1(Z1)

+ z1 f̄1 −
θ̃1
˙̂
θ1

q1
+

n∑
l=2

z2l β̄
2
1 (zl, θ̂l)

− z21

n−1∑
k=2

k∑
j=1

β̄2j (z1, θ̂1)+
z22
2
+ κε1, (26)

where

f̄1 =
(n+ 2)z1

2
+ z1β̄21 (z1, θ̂1)− ẏd

+β1

(
(n+ 1)d

)
tanh

( z1β1((n+ 1)d)
ε1

)
+ z1

n−1∑
k=2

k∑
j=1

β̄2j (z1, θ̂1).

It is clear that f̄1 is a function of β̄j. There exist an RBF
NNs 8∗T1 ξ1(X1), it can be used to approximate f̄1. Namely,
for ∀ε1 > 0,

f̄1 = 8∗T1 ξ1(X1)+ δ1(X1), |δ1(X1)| ≤ ε1. (27)

where X1 = (x1, . . . , xn, yd , ẏd ).
By combining (27), Young’s inequality and Lemma 7, the

following inequality can be obtained:

z1 f̄1 = z1(8∗T1 ξ1(X1)+ δ1(X1))

≤ |z1|(‖8∗1‖‖ξ1(X1)‖ + ε1)

≤
1

2a21
z21θ1ξ

T
1 (Z1)ξ1(Z1)

+
1
2
a21 +

1
2
z21 +

1
2
ε21. (28)

where θ1 = ‖8∗1‖
2, Z1 = (x1, yd , ẏd ), and a1 > 0 denotes a

design parameter.
Substituting (16) and (28) into (26), the following inequal-

ity holds:

V̇1 ≤ −c1z2σ1 +
a21
2
+
ε21

2
+
γ1

q1
θ̃1θ̂1 +

z22
2
+ κε1

+

n∑
l=2

z2l β̄
2
1 (zl, θ̂l)− z

2
1

n−1∑
k=2

k∑
j=1

β̄2j (z1, θ̂1). (29)

Furthermore, according to θ̃1 = θ1 − θ̂1 and Young’s
ineuqality, the following inequality can be obtained:

γ1

q1
θ̃1θ̂1 =

γ1

q1
θ̃1(θ1 − θ̃1)

=
γ1

q1
θ̃1θ1 −

γ1

q1
θ̃21

≤
γ1

2q1
θ̃21 +

γ1

2q1
θ21 −

γ1

q1
θ̃21

= −
γ1

2q1
θ̃21 +

γ1

2q1
θ21 . (30)

Then, the inequality (29) can be rewritten as follows:

V̇1 ≤ −c1z2σ1 −
γ1

2q1
θ̃21 +

n∑
l=2

z2l β̄
2
1 (zl, θ̂l)

− z21

n−1∑
k=2

k∑
j=1

β̄2j (z1, θ̂1)+
z22
2
+ λ1. (31)

where

λ1 = κε1 +
a21
2
+
ε21

2
+
γ1

2q1
θ21 .

Step i (2 ≤ i ≤ n− 1): Let us assume that

Vi−1 =
i−1∑
j=1

(
1
2
z2j +

1
2qj
θ̃2j ),

satisfies

V̇i−1 ≤ −
i−1∑
j=1

(
cjz2σj +

γj

2qj
θ̃2j

)
+

i−1∑
s=1

s∑
k=1

n∑
l=i

z2l β̄
2
k (zl, θ̂l)

−

i−1∑
s=1

n−1∑
k=i

k∑
j=1

z2s β̄
2
j (zs, θ̂s)+

z2i
2
+ λi−1, (32)

where

λi−1 =

i−1∑
j=1

(κεj +
a2j
2
+
ε2j

2
+
γj

2qj
θ2j ).

And then, let us consider a Lyapunov function candidate as
follows:

Vi = Vi−1 +
1
2
z2i +

1
2qi
θ̃2i . (33)

Differentiating zi yields:

żi = ẋi − α̇i−1 = xi+1 + fi(x)− α̇i−1. (34)

where

α̇i−1 =

i−1∑
j=1

∂αi−1

∂xj

(
xj+1 + fj(x)

)
+

i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj

+

i−1∑
j=0

∂αi−1

∂y(j)d
y(j+1)d . (35)

Differentiating Vi yields:

V̇i = V̇i−1 + zi(zi+1 + αi + fi(x)− α̇i−1)−
1
qi
θ̃i
˙̂
θi. (36)

According to Assumption 1, Lemma 5, (9) and Lemma 8,
the following inequality can be obtained:

zifi ≤ |zi|βi(‖x‖) ≤ |zi|βi
( n∑
l=1

|zl |ωl(zl, θ̂l)+ d
)

≤

n∑
l=1

|zi|βi
(
(n+ 1)|zl |ωl(zl, θ̂l)

)
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+ |zi|βi
(
(n+ 1)d

)
≤
n
2
z2i +

n∑
l=1

z2l β̄
2
i (zl, θ̂l)+ |zi|βi

(
(n+ 1)d

)
,

(37)

zi
i−1∑
j=1

∂αi−1

∂xj
fj ≤ |zi|

i−1∑
j=1

|
∂αi−1

∂xj
|βj

( n∑
l=1

|zl |ωl(zl, θ̂l)+ d
)

≤ |zi|
i−1∑
j=1

|
∂αi−1

∂xj
|βj

(
(n+ 1)d

)

+ |zi|
i−1∑
j=1

|
∂αi−1

∂xj
|

×

n∑
l=1

βj

(
(n+ 1)|zl |ωl(zl, θ̂l)

)
≤ |zi|

i−1∑
j=1

|
∂αi−1

∂xj
|βj

(
(n+ 1)d

)

+
n
2
z2i

i−1∑
j=1

(
∂αi−1

∂xj
)2

+

i−1∑
j=1

n∑
l=1

z2l β̄
2
j (zl, θ̂l). (38)

where

β̄2j (zl, θ̂l) =
1
2
(n+ 1)2ω2

l (zl, θ̂l)h
2
j

(
(n+ 1)|zl |ωl(zl, θ̂l)

)
.

Let

χi = βi((n+ 1)d)+
i−1∑
j=1

∣∣∣∂αi−1
∂xj

∣∣∣βj((n+ 1)d
)
,

and using Lemma 3, one can get the relationship as follows:

|zi|χi ≤ κεi + ziχi tanh
( ziχi
εi

)
. (39)

where εi > 0 denotes a design parameter.
Meanwhile, applying Young’s inequality, the following

inequality can be obtained:

zizi+1 ≤
z2i
2
+
z2i+1
2
. (40)

Substituting (14), (32), (35) and (37)–(40) into (36),
the following inequality can be obtained:

V̇i ≤ −
i−1∑
j=1

(
cjz2σj +

γj

2qj
θ̃2j

)
+ λi−1

+
1
2
z2i+1 − ciz

2σ
i −

1
2
z2i + zi f̄i

−
θ̂i

2a2i
z2i ξ

T
i (Zi)ξi(Zi)−

1
qi
θ̃i
˙̂
θi

+ κεi +

i∑
s=1

s∑
k=1

n∑
l=i+1

z2l β̄
2
k (zl, θ̂l)

−

i∑
s=1

n−1∑
k=i+1

k∑
j=1

z2s β̄
2
j (zs, θ̂s), (41)

where

f̄i = −
i−1∑
j=1

∂αi−1

∂xj
xj+1 −

i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj

+
n
2
zi

i−1∑
j=1

(∂αi−1
∂xj

)2
+
n+ 3
2

zi

+χi tanh
( ziχi
εi

)
+ zi

n−1∑
s=1

s∑
j=1

β̄2j (zi, θ̂i)

−

i−1∑
j=0

∂αi−1

∂y(j)d
y(j+1)d .

Similarly, there exist an RBF NNs 8∗Ti ξi(Xi), it can be
used to approximate f̄i. Namely, for ∀εi > 0, one can get the
relation as follows:

f̄i = 8∗Ti ξi(Xi)+ δi(Xi), |δi(Xi)| ≤ εi. (42)

where Xi = (x1, . . . , xn, θ̂1, . . . , θ̂i−1, yd , ẏd , . . . , y
(i)
d ).

By combining Young’s inequality and Lemma 7, which is
similar to the derivation in (28), the following inequality can
be obtained:

zi f̄i = zi(8∗Ti ξi(Xi)+ δi(Xi))

≤ |zi|(‖8∗i ‖‖ξi(Xi)‖ + εi)

≤
1

2a2i
z2i θiξ

T
i (Zi)ξi(Zi)

+
1
2
a2i +

1
2
z2i +

1
2
ε2i . (43)

where Zi = (x1, x2, . . . , xi, θ̂1, θ̂2, . . . , θ̂i−1, yd , ẏd , . . . , y
(i)
d ),

θi = ‖8
∗
i ‖

2 and ai > 0 denotes the design parameter.
Substituting (16) and (42)–(45) into (41), one has:

V̇i ≤ −
i−1∑
j=1

(
cjz2σj +

γj

2qj
θ̃2j

)
+ λi−1 +

1
2
z2i+1 − ciz

2σ
i

+
1

2a2i
z2i θiξ

T
i (Zi)ξi(Zi)+

1
2
a2i +

1
2
ε2i + κεi

−
θ̂i

2a2i
z2i ξ

T
i (Zi)ξi(Zi)−

1
qi
θ̃i(

qi
2a2i

z2i ξ
T
i ξi − γiθ̂i)

+

i∑
s=1

s∑
k=1

n∑
l=i+1

z2l β̄
2
k (zl, θ̂l)

−

i∑
s=1

n−1∑
k=i+1

k∑
j=1

z2s β̄
2
j (zs, θ̂s)

= −

i−1∑
j=1

(
cjz2σj +

γj

2qj
θ̃2j

)
+ λi−1 +

1
2
z2i+1 − ciz

2σ
i

+
1
2
a2i +

1
2
ε2i + κεi +

γi

qi
θ̃iθ̂i
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+

i∑
s=1

s∑
k=1

n∑
l=i+1

z2l β̄
2
k (zl, θ̂l)

−

i∑
s=1

n−1∑
k=i+1

k∑
j=1

z2s β̄
2
j (zs, θ̂s). (44)

Furthermore, by employing Young’s inequality and θ̃i =
θi − θ̂i, the following inequality can be obtained:

γi

qi
θ̃iθ̂i =

γi

qi
θ̃i(θi − θ̃i)

=
γi

qi
θ̃iθi −

γi

qi
θ̃2i

≤
γi

2qi
θ̃2i +

γi

2qi
θ2i −

γi

qi
θ̃2i

= −
γi

2qi
θ̃2i +

γi

2qi
θ2i . (45)

Then, the inequality (44) can be rewritten as:

V̇i ≤ −
i−1∑
j=1

(
cjz2σj +

γj

2qj
θ̃2j

)
+ λi−1 +

1
2
z2i+1 − ciz

2σ
i

+
1
2
a2i +

1
2
ε2i + κεi −

γi

2qi
θ̃2i +

γi

2qi
θ2i

+

i∑
s=1

s∑
k=1

n∑
l=i+1

z2l β̄
2
k (zl, θ̂l)

−

i∑
s=1

n−1∑
k=i+1

k∑
j=1

z2s β̄
2
j (zs, θ̂s)

≤ −

i∑
j=1

(
cjz2σj +

γj

2qj
θ̃2j

)
+
z2i+1
2
+ λi

+

i∑
s=1

s∑
k=1

n∑
l=i+1

z2l β̄
2
k (zl, θ̂l)

−

i∑
s=1

n−1∑
k=i+1

k∑
j=1

z2s β̄
2
j (zs, θ̂s), (46)

where

λi = λi−1 + κεi +
a2i
2
+
ε2i

2
+
γi

2qi
θ2i

=

i∑
j=1

(κεj +
a2j
2
+
ε2j

2
+
γj

2qj
θ2j ).

Step n. According to (5), (10), (13), we have:

żn = H̄ (u)u+ Ḡ(t)+ fn(x)− α̇n−1, (47)

where

α̇n−1 =

n−1∑
j=1

∂αn−1

∂xj

(
xj+1 + fj(x)

)
+

n−1∑
j=1

∂αn−1

∂θ̂j

˙̂
θj

+

n−1∑
j=0

∂αn−1

∂y(j)d
y(j+1)d . (48)

Choose the Lyapunov function candidate as follows:

Vn = Vn−1 +
1
2
z2n +

1
2qn

θ̃2n , (49)

According to (46), the following inequality can be
obtained:

V̇n ≤ −
n−1∑
j=1

(
cjz2σj +

γj

2qj
θ̃2j

)
+
z2n
2
+ λn−1 −

1
qn
θ̃n
˙̂
θn

+

n−1∑
s=1

s∑
k=1

z2nβ̄
2
k (zn, θ̂n)−

n−1∑
s=1

n∑
k=1

z2s β̄
2
k (zs, θ̂s)

+ zn(H̄ (u)u+ Ḡ(t)+ fn(x)− α̇n−1). (50)

Applying Young’s inequality and (11), one has:

znḠ(t) ≤
1
2
z2n +

1
2
u2min. (51)

Substituting (51) into (50), we have:

V̇n ≤ −
n−1∑
j=1

(cjz2σj +
γj

2qj
θ̃2j )+ λn−1 + zn f̄n

−
1
2
z2n + znH̄ (u)u+

1
2
u2min −

1
qn
θ̃n
˙̂
θn, (52)

where

f̄n = fn(x)− α̇n−1 + zn
n−1∑
s=1

s∑
k=1

β̄2k (zn, θ̂n)

−

n−1∑
s=1

n∑
k=1

z2s β̄
2
k (zs, θ̂s)+

3
2
zn. (53)

Similarly, there exist an RBF NNs 8∗Tn ξn(Xn), it can be
used to approximate f̄n. Namely, for ∀εn > 0, one can get the
relation as follows:

f̄n = 8∗Tn ξn(Xn)+ δn(Xn), |δn(Xn)| ≤ εn. (54)

where Xn = (x1, . . . , xn, θ̂1, . . . , θ̂n−1, yd , ẏd , . . . , y
(n)
d ).

By combining Young’s inequality and Lemma 7, which
is similar to the derivation in (28) and (43), the following
inequality can be obtained:

zn f̄n = zn(8∗Tn ξn(Xn)+ δn(Xn))

≤ |zn|(‖8∗n‖‖ξn(Xn)‖ + εn)

≤
1
2a2n

z2nθnξ
T
n (Zn)ξn(Zn)

+
1
2
a2n +

1
2
z2n +

1
2
ε2n. (55)

where Zn = (x1, . . . , xn, θ̂1, . . . , θ̂n−1, yd , ẏd , . . . , y
(n)
d ), θn =

‖8∗n‖
2 and an > 0 denotes a design parameter.

Applying Lemma 4, (11) and (15), one has:

znH̄ (u)u ≤ −cnz2σn −
1
2a2n

z2nθ̂nξ
T
n ξn. (56)
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Combing (16), (45), (55) and (56) to (52), we have:

V̇n ≤ −
n−1∑
j=1

(cjz2σj +
γj

2qj
θ̃2j )+ λn−1

+
1
2a2n

z2nθnξ
T
n (Zn)ξn(Zn)

+
1
2
a2n +

1
2
ε2n − cnz

2σ
n −

1
2a2n

z2nθ̂nξ
T
n ξn

+
1
2
u2min −

1
qn
θ̃n(

qn
2a2n

z2nξ
T
n ξn − γiθ̂i)

= −

n−1∑
j=1

(cjz2σj +
γj

2qj
θ̃2j )+ λn−1 +

1
2
a2n

+
1
2
ε2n − cnz

2σ
n +

1
2
u2min +

γn

qn
θ̃nθ̂n, (57)

Furthermore, by employing Young’s inequality and θ̃n =
θn − θ̂n, the following inequality can be obtained:

γn

qn
θ̃nθ̂n ≤ −

γn

2qn
θ̃2n +

γn

2qn
θ2n . (58)

Then, the inequality (57) can be rewritten as:

V̇n ≤ −
n−1∑
j=1

(cjz2σj +
γj

2qj
θ̃2j )+ λn−1 +

1
2
a2n

+
1
2
ε2n − cnz

2σ
n +

1
2
u2min −

γn

2qn
θ̃2n +

γn

2qn
θ2n ,

= −

n∑
j=1

(
cjz2σj +

γj

2qj
θ̃2j

)
+ λn (59)

where

λn = λn−1 +
1
2
a2n +

1
2
ε2n +

1
2
u2min +

γn

2qn
θ2n (60)

Theorem 1: Under Assumptions 1-3 and bounded initial
conditions, the non-strict feedback nonlinear quantized sys-
tem (5) preceded by input defined in (6) is considered. If the
controller (15) and parameter adaptive law (16) are chosen,
then there exists two constant o and ϑ , such that |zi| ≤ o

and |y − yd | ≤ o, where o =
√
2
[

d
(1−%)c

]1/2σ
, ϑ is defined

in (66) and c = min{2σ cj, γj, j = 1, 2, . . . , n}, d = λn+ (1−
σ )σ

σ
1−σ

∑n
i=1 γi.

proof: Applying lemma 5, let ω = 1, τ = σ, v =
1
2qi
θ̃2i , γ = 1 − σ, λ = 1

σ
, the following relationship can

be obtained:

(
1
2qi
θ̃2i )

σ
≤ (1− σ )σ

σ
1−σ +

1
2qi
θ̃2i (61)

Combining (59) and (61), one has:

V̇n ≤ −
n∑
j=1

cjz2σj −
n∑
j=1

γj

( 1
2qj
θ̃2j

)σ
+ d

≤ −c
n∑
j=1

(
1
2
z2j )

σ
− c

n∑
j=1

( 1
2qj
θ̃2j

)σ
+ d (62)

where c = min{2σ cj, γj, j = 1, 2, . . . , n}, d =
∑n

i=1
γi
2qi
θ2i +∑n

i=1
1
2 (a

2
i +ε

2
i )+

∑n−1
i=1 κεi+

1
2u

2
min+(1−σ )σ

σ
1−σ

∑n
i=1 γi.

Furthermore, according to Lemma 2, we have:

V̇ = V̇n ≤ −c
( n∑
j=1

( z2j
2
+

1
2qj
θ̃2j

))σ
+ d

≤ −cV σ + d . (63)

Define

�z =

{
(z, θ)

∣∣∣V (t) < [ d
(1− %)c

]1/σ
,
1
2
< % < 1

}
.

Based on Bhat and Bernstein, if ∀(z, θ)∈�z for ∀t ∈ [0, tδ].

We have V ≥
[

d
(1−%)c

]1/σ
≥

(
d
%c

) 1
σ
, namely, d ≤ %cV σ

for ∀t ∈ [0, tδ]. Hence, according to (63), for ∀t ∈ [0, tδ],
the following relationship can be obtained:

V̇ ≤ −c(1− %)V σ . (64)

combining V ≥
(
d
%c

) 1
σ
and (64), we have:

tδ ≤
[V (t0)]1−σ

c(1− %)(1− σ )
. (65)

Let

ϑ =
[V (t0)]1−σ

c(1− %)(1− σ )
, (66)

then

V (t) ≤
[ d
(1− %)c

]1/σ
, ∀t ≥ ϑ. (67)

In view of the definition ofV (t), we come to the conclusion

that for o =
√
2
[

d
(1−%)c

]1/2σ
, we have |zi| ≤ o and |y−yd | ≤

o. The proof is thus completed.
Remark 5: The research status of adaptive quantization

control for non-strict feedback nonlinear systems can only
ensure the stability of infinite-time. It should be mentioned
that, its stability in finite-time can be proved by Therefrom 1,
i.e., the tracking performance of the non-strick feedback non-
linear quantized system can be achieved when t ≥ ϑ .

IV. SIMULATION EXAMPLE
Example 1: Think about the non-strict feedback nonlinear

system as follows:

ẋ1 = x2 + (1− sin2 x1)x2,

ẋ2 = 0(Q(u))− 3.5x2 + x21x
2
2 ,

y = x1, (68)

where 0(Q(u)) represents the input of the system, andQ(u) is
defined in (7).

In order to examine the validity of Theorem 1, let yd =
sin(0.5t) + 0.5 sin(1.5t). The corresponding parameters are
set as δ = 0.5, umin = 0.2, kl = kr = 1.2, bl = br = 0.6.
Consider the following control law and adaption law:

α1 = −c1z
2σ−1
1 −

1

2a21
θ̂1z1ξT1 (Z1)ξ1(Z1).
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FIGURE 1. y and yd of Example 1.

FIGURE 2. State variable x2 of Example 1.

FIGURE 3. θ̂1 and θ̂2 of Example 1.

u = −
c2

1− δ
z2σ−12 −

z2θ̂2ξT2 (Z2)ξ2(Z2)

2a22(1− δ)
.

˙̂
θi =

qi
2a2i

z2i ξ
T
i ξi − γiθ̂i, θ̂i(0) ≥ 0, i = 1, 2.

where z1 = x1 − yd , z2 = x2 − α1.
In order to construct the basis vector function ξi(Xi), for

each input variable, the center of the receptive field is taken
as v = [−1.5,−1,−0.5, 0, 0.5, 1, 1.5]T and the width of
Gaussian function is ζ =

√
2. Select the design parameters

as follows: c1 = 8, c2 = 6, a1 = 0.8, a2 = 1, q1 = 20,
q2 = 25, γ1 = 1, γ2 = 2. Select the initial conditions
as [x1(0), x2(0)]T = [0.5,−0.3]T and [θ̂1(0), θ̂2(0)]T =
[0.1, 0.2]T . Fig.1-Fig.4 display the corresponding simulation
results.

FIGURE 4. u and 0(Q(u)) of Example 1.

FIGURE 5. y and yd of Example 2.

FIGURE 6. State variable x2 of Example 2.

Example 2: To demonstrate the utility of the proposed
scheme, consider a non-strict feedback nonlinear quantized
system as follows:

ẋ1 = x2 +
x21

1+ x21 + x
2
2

,

ẋ2 = 0(Q(u))− x2 + sin(x1)x22 ,

y = x1, (69)

where 0(Q(u)) represents the input of the system defined
in (6), and Q(u) is defined in (7).
To examine the effectiveness of Theorem 1, the reference

signal is set as yd = sin t . The corresponding parameters are
set as δ = 0.4, umin = 0.2, kl = kr = 1.2, bl = br = 0.6.
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FIGURE 7. θ̂1 and θ̂2 of Example 2.

FIGURE 8. u and 0(Q(u)) of Example 2.

Think about the following control law and adaption law:

α1 = −c1z
2σ−1
1 −

1

2a21
θ̂1z1ξT1 (Z1)ξ1(Z1).

u = −
c2

1− δ
z2σ−12 −

z2θ̂2ξT2 (Z2)ξ2(Z2)

2a22(1− δ)
.

˙̂
θi =

qi
2a2i

z2i ξ
T
i ξi − γiθ̂i, θ̂i(0) ≥ 0, i = 1, 2.

where z1 = x1 − yd , z2 = x2 − α1.
To construct the basis vector function ξi(Xi), for each input

variable, the center of the receptive field is taken as v =
[−1.5,−1,−0.5, 0, 0.5, 1, 1.5]T and the width of Gaussian
function is ζ =

√
2. Select the design parameters as fol-

lows: c1 = 10, c2 = 12, a1 = 1, a2 = 1, q1 = 20,
q2 = 25, γ1 = 1, γ2 = 2. The initial conditions are
chosen as [x1(0), x2(0)]T = [0.6, 0.2]T and [θ̂1(0), θ̂2(0)]T =
[0.2, 0.3]T . The corresponding simulation results are display
by Fig.5-Fig.8.

V. CONCLUSION
In this article, a finite-time control design method is
addressed for a category of non-strict feedback nonlinear
quantized systems with actuator dead-zone. By using the
relationship between the system input and the control signal,
the problem of nonlinear quantized control is transformed
into a conventional control problem of a nonlinear system
with bounded perturbation and unknown control gain. By

employing the structural properties of RBF NNs, a back-
stepping design method is extended from strict-feedback sys-
tems to a category of more common nonlinear systems. By
applying the adaptive neural control based on approxima-
tion, an neural adaptive controller is constructed, which can
ensure that the system output converges into a small enough
neighborhood of the reference signal in finite-time, and all the
signals of the closed-loop system remain bounded. According
to the Bhat and Bernstein theorem, the finite-time stability
of the nonlinear quantized system is proved. However, how
to realize adaptive finite-time control of a class of stochastic
nonlinear quantized system with actuator dead-zone is still a
challenging problem, which may be considered in our future
research topic.
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