
Received April 26, 2019, accepted May 26, 2019, date of publication June 13, 2019, date of current version July 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2922766

Vehicular Network Simulation Environment
via Discrete Event System Modeling
LE WANG , RENATO IIDA, AND ALEXANDER M. WYGLINSKI , (Senior Member, IEEE)
Wireless Innovation Laboratory, Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA

Corresponding author: Le Wang (lewang@wpi.edu)

This work was supported by the MathWorks Inc.

ABSTRACT A vehicular ad-hoc network (VANET) enables vehicles to communicate with each other
directly or via roadside infrastructure in order to improve road safety and efficiency. Within a VANET,
communications can potentially alter vehicular mobility and conversely, that the mobility could potentially
influence vehicular communications. Therefore, a VANET simulator environment is needed that can accu-
rately model interactions between vehicular mobility and network protocols. In this paper, we present a novel
vehicular network simulation environment designed using the MATLAB discrete event system (DES) in the
SimEvents toolbox. The proposed simulation environment is a bit-accurate, discrete event simulator that
integrates vehicular mobility operations with wireless network communication. This paper provides details
on the design of the proposed simulator. Its computational costs are evaluated in terms of events quantities and
execution time. The physical (PHY) layer of the proposed simulator shows a more realistic packet success
rate (PSR) using bit-level processing techniques when compared with the packet-based NS-3 simulator. The
performance of the priority-based media access control (MAC) layer proves the data with different priorities
that can coexist in the same channel.

INDEX TERMS Vehicular network simulation, vehicular mobility models, discrete-event system.

I. INTRODUCTION
The vehicular inter-communication concept is motivated
by the opportunity to improve road safety and efficiency.
Several safety applications benefit by supporting direct
vehicle-to-vehicle (V2V) communications [1], including
accident prevention applications and lane changing applica-
tions. In vehicle-to-infrastructure (V2I) communications [2],
the roadside unit (RSU) can gather and analyze traffic status
information, as well as guide vehicles within an area to
improve traffic efficiency [3]. At the 15th Intelligent Trans-
portation System (ITS)World Congress [4], it was mentioned
that vehicular networks have the potential to save time and
save lives. Therefore, vehicular network applications can be
classified into two types: safety applications, and efficiency
applications.

In 2011, the U.S. National Highway Traffic Safety Admin-
istration (NHTSA) released the final report of Vehicle Safety
Communications - Applications (VSC-A), which summa-
rized eight crash scenarios based on the statistics of vehicle

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhiwu Li.

accidents within the U.S. with respect to frequency, cost,
and casualties [5]. To address these crash scenarios,
VSC-A proposed several safety applications such as
Emergency Electronic Brake Lights (EEBL) [6], Blind
Spot Warning (BSW)/Lane Changing Warning (LCW) [7],
and Intersection Movement Assist (IMA) [8]. These safety
applications are often evaluated using vehicular mobility
models [9].

A vehicular network is considered to be a complicated
operating environment since it must account for both vehic-
ular mobility and communication network simultaneously.
The position and speed of vehicles could potentially impact
the quality of wireless communications, and the informa-
tion shared over the vehicular communication network could
influence vehicular path and mobility decisions. This inter-
action requires having the traffic mobility simulators to work
closely with vehicular network simulators [10].

In general, these types of simulators have often been
created and controlled separately from one another, and
thus their interactions have rarely been considered. Over
the past several years, vehicle networking researchers have
worked on creating an interface between these two simulation

87246
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-3119-3664
https://orcid.org/0000-0002-3357-0064

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

environments and several approaches have been
proposed [11]–[14]. Based on the level of interaction,
we classify the simulators as joint simulators and integrated
simulators.

For the joint simulator approach, an interface is created
to associate the existing traffic mobility simulators with the
network simulators. An example is the iTetris [11] project,
which associates the traffic simulator SUMO [15] with the
network simulator NS-3 [16], or OMNet++ [17] simula-
tion environment. Another example is using TraCI [18] to
connect SUMO with another simulator such as OMNet++
orMATLAB. The interface here performs the role of relaying
messages between the simulators. Traffic flows are extracted
from SUMO and sent to the network simulator through the
interface, and conversely the instructions from the network
simulators are sent to SUMO in order to alter the traffic
behavior. The advantage of this cross-layer joint approach is
that one is able to enjoy the benefits of both well-developed
simulators. However, one limitation of this approach is the
design complexity of the interface since it needs to let both
simulators operate simultaneously. Another limitation of this
approach is the configuration complexity, since the users
often need to tweak a large number of parameters for both
simulators in order to make the overall simulation experiment
work correctly.

The alternative approach to combine the network and
traffic simulators is to use them into one single simulator
in order to achieve full interaction. This type of simulator
is called an integrated simulator, which has the capabil-
ity having both simulators directly work and interact with
each other. Several examples include MoVes [12], NCTUns
simulator [14], and VISSIM [13]. The limitations for this
approach mainly come from an over-simplified communi-
cation network. For example, several simulators only have
a basic radio propagation model with Carrier-sense mul-
tiple access with collision avoidance (CSMA/CA) as the
MAC layer [19].

In this paper, we present an integrated vehicular network
simulation environment, which we refer to as VANET Tool-
box, that functions in the MATLAB/Simulink environment
as shown in Figure 1. The proposed simulator consists of a
Simulink library with custom-built blocks covering the main
stack of vehicular network protocols including the application
(APP) layer, the medium access control (MAC) layer, and the
physical (PHY) layer as shown in the figure. Several mobil-
ity operations including car following model, lane changing
model, as well as intersection management that are embed-
ded in the APP layer. The design objective of the proposed
simulator is to provide a vehicular simulation environment
to enable research and development in this expanding field.
Table 1 provides a summary of the acronyms used in this
paper.

The contributions of this paper include the followings:
• The proposed novel vehicular network simulation envi-
ronment is an integrated type simulator combining
both vehicle traffic simulation and network simulation

FIGURE 1. VANET Toolbox consists of a Simulink library containing
vehicular network blocks. One can create simulation models by dragging
the needed blocks from the library to an empty Simulink model.

together. It supports a hybrid of time-driven and event-
driven simulation environment.

• A PHY layer that precisely models bit-level processing
techniques, which is essential to emulate precise and
realistic wireless channels.

• Performance evaluation of vehicular networks across the
PHY layer and the MAC layer. The results proves the
effectiveness of the proposed simulation environment.

The rest of paper is organized as follows: Section II pro-
vides an overview to the Discrete Event System (DES) theory
and MATLAB DES framework. Section III describes the
design architecture of the proposed simulation environment
including PHY, MAC and APP layers. Section IV shows
several simulation scenarios with different mobility models.
Testing results and performance evaluations of the proposed
simulator are shown in Section V. Section VI concludes the
paper.

II. OVERVIEW TO DISCRETE EVENT SYSTEM
A. DISCRETE EVENT SYSTEM
A system is a set of interacting components which behave
together to perform a function and this function cannot be
performed by any of the individual parts [20]. At a specific
time, a system’s behavior can be described in a measurable
way, i.e., state. The state of a system at time t0 is defined as the
output y(t) of a system for all t >= t0 is uniquely determined
by the system status at t0 and system input u(t), t >= t0.
Given the initial condition Ex(t0) = x0 and the input Eu(t) for all
t >= t0, the state Ex(t) is presented by state equations shown

VOLUME 7, 2019 87247

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

TABLE 1. Acronyms used in this paper arranged in alphabetical order (A-Z).

FIGURE 2. Systems overview and Discrete Event Systems. Discrete Event System is classified as a discrete-state event-trigger
system. A hybrid system including both time-driven and event-driven DES is suitable for network PHY layer simulation.

in Eq. (1):

Ėx(t) = f (Ex(t), Eu(t), t), (1)

Then the output Ey(t) is determined by state equations,
input, and time shown by:

Ey(t) = Eg(Ex(t), Eu(t), t), (2)

The state space of a system is a set of all possible values
a state may take. Based on the type of states in a model,
a system can be classified into either a continuous-state sys-
tem or a discrete-state system, as shown in Figure 2 [21].
In a continuous-state system, the time variable, t , enables
the system to transit from one state to another state con-
tinuously. A system with such property is referred to as

87248 VOLUME 7, 2019

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

time-driven system. A continuous-state system is considered
to be time-driven.

In a discrete-state system, the states are only allowed to
change from one discrete state value to another. The state
transitions are either synchronized by a clock or occurred
asynchronously at some special time point due to events.
An event can occur instantaneously and cause state
transitions.

If state transitions in a discrete-state system are synchro-
nized by clock ticks, it is a discrete-state, time-driven system.
Otherwise, if state transitions occur asynchronously at vari-
ous random time instants due to events, this system is referred
as a discrete-state, event-driven system or, shortly, a discrete-
event system (DES) as shown in Figure 2 . The set of events
serves the purpose of driving a DES since each event may
cause a state transition.

Even though a DES is defined as a discrete-state event-
driven system, it may be modeled as event-driven and/or
time-driven. In fact, a hybrid DES when both time-driven
and event-driven are present is more general, as shown
in Figure 2. For example, the operating system (OS) in a
computer is designed to not only respond to asynchronous
events that have occurred at any time but also process func-
tions synchronized by the computer clock.

A continuous state system can be modeled either by dif-
ferential equations (continuous time) or difference equations
(discrete time), while a discrete-state event driven can be
analyzed by automata. For instance, suppose we have an
event set E = {a, b, g}. The state space of the automation
is X = {x, y, z}. The transition function of the automation
is denoted as f : X × E → X . For example, f (x, g) = y
means that the automation is in state x, after event g hap-
pened, the automation transits the state to y, i.e., x → y.
The trigger event g may be either an external input to the
system, or an event generated by the system itself. The initial
state is denoted by x0. A deterministic automation, denoted
by G, is defined in Eq. (3) [21]:

G = (X ,E, f , 0, x0), (3)

where 0 is the active event set of G at x. Each state has a
feasible events set 0(x), the events from 0(x) are the only
events which may occur at this state.

B. DISCRETE EVENT SIMULATION
In order to perform DES simulation, the events sequences
need to be associated with clocks. Suppose we have a
DES with a single event E = {α}. The feasible event set
0(x) = {α} for all x ∈ X . The event sequence in this DES
is Ee = {e1, e2, . . . , ek} and e1 = e2 = . . . = ek = α.
Event Lifetime denoted by vk is defined as the length of the
time interval of the two successive events. For the single event
DES, the kth lifetime of the event is defined as:

vk = tk − tk−1, k = 1, 2, . . . , k, vk ∈ R+, (4)

At time tk−1, the kth event, ek , is enabled with a life-
time vk . A timer attached to ek starts to count down from vk .

At time tk = tk−1 + vk , the timer reaches 0, ek has to
occur, a state transition is caused from xk−1 to xk . Then,
the same process repeats with the (k+1)th event, ek+1. Thus,
a DES can be specified by the clock sequence of events, that
is, Ev = {v1, v2, . . . , vk}.

A state x, including the initial state x0, has clock
values yi where i ∈ 0(x). The triggering event e′ is the next
event which will occur at that state x, i.e., the event chosen
with the smallest clock value defined by:

e′ = arg min
i∈0(x)
{yi}, (5)

When event e′ occurs at state x, a new state x ′ is generated
from the state transition function f (x, e′). The inter-event
time, y∗, represents the amount of time spent at state x and
is calculated by:

y∗ = min
i∈0(x)
{yi}, (6)

The updated time is obtained by t ′ = t+ y∗. Once the new
state x ′ is generated, the clock values for all feasible events
are updated. If an event i ∈ 0(x ′) and i 6= e′ remains feasible
in the new state x ′, the new clock value is y′i = yi − y∗. For
all events which are not feasible in x but become feasible
in x ′, i.e., e′ ∈ 0(x ′) but e′ /∈ 0(x), a set of new lifetimes
are supplied by the DES.
From a computer implementation standpoint, a DES simu-

lator should have an event scheduling scheme, i.e., a variation
of timed state automaton DES model, such that whenever an
event i is enabled at time tn, its next occurrence is scheduled at
time tn+vi, where vi is a lifetime sample supplied by the DES.
Thus, a Scheduled Event List (SEL) replaces maintaining the
clock values yi, i ∈ 0(x) defined by:

L = {(ek , tk)}, k = 1, 2, . . . ,mL , (7)

where m is the number of events in the events set E ,
mL is the number of feasible events for the current state,
i.e., m = |E|,mL = |0(x)|,mL ≤ m. The SEL is always
ordered on a smallest-scheduled-time-first basis. Additional
research efforts on DES simulation concepts can be found in
references [21]–[26].

C. MATLAB DES SIMULATION FRAMEWORK
In order to simulate a specific DES of interest, there are
two options: either build a DES simulator or use an existing
DES simulator. Based on the event scheduling scheme and/or
process-oriented scheme, it is possible to create a DES model
using standard computer languages such as C++. However,
building a DES simulator is outside of the scope of this
paper. As our goal is to simulate vehicular network behaviors,
choosing an existing DES simulator is preferred.

In this paper, the vehicular network simulator is developed
using SimEvents, which is a MATLAB toolbox from The
MathWorks, Inc. SimEvents needs to work with Simulink in
a time-driven simulation environment. The MATLAB DES
system object inside the SimEvents library allows users
to create an event-driven system using MATLAB object

VOLUME 7, 2019 87249

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

oriented programming (OOP) languages. Thus, a system
developed by SimEvents with MATLAB DES supports
both time-driven and event-driven components via a hybrid
approach. The DES model created using SimEvents is a
timed DES model with a event scheduler, which maintains
a scheduled event list (SEL) as we have discussed in the
previous section. A DES model might contain more than one
DES object. A DES object can customize the event
type and its life cycle by overloading the methods, i.e.,
member functions, inherited from the base class mat-
lab.DiscreteEventSystem.

A MATLAB DES has three elements: Entity, Event and
Action.

1) ENTITY
The elements flow in a DES are called entities. The entities
contain static information, which can be MATLAB built-in
data type or structured/bus data types. A MATLAB DES
may have one or more entity storages, with each storage
containing entities in certain order, such as a first-in, first-out
(FIFO) queue or a priority queue. A MATLAB DES can take
entities as input or output and entities can leave a MATLAB
DES and enter another MATLAB DES.

2) EVENT
Multiple types of events can be scheduled and executed
to an entity. These events model activities such as entity
creation, destroy, forward (send/receive), delay and search.
As of MATLAB/Simulink R2018a, MATLAB DES supports
five types of events:

• Generate: obj.eventGenerate() can generate an entity in
the target storage.

• Destroy: obj.eventDestroy() can destroy an entity in the
target storage.

• Timer: obj.eventTimer() delays an entity to a period of
time.

• Iterate: obj.eventIterate() iterates entities in the target
storage with conditions.

• Forward:obj.eventForward() forwards entities to a stor-
age or an output port.

3) ACTION
When an event is due for execution, actions are invoked.
These actions are conducted by user-defined methods, which
may contain the algorithms. The flexibility characteris-
tics of actions make the developers to create varieties of
DES modules.

Partial code of the PHY layer implementation is shown
in Figure 3. In a communication environment, the transmitter
sends out a waveform, which flows through the wireless
channel link and arrives at the receiver. The wireless chan-
nel link can be modeled as a discrete-event system. In the
figure, the Entry action is triggered when a waveform entity
enters the DES and stays inside the storage. In the Entry
action method, a series of channel sensing related actions are

FIGURE 3. Example code on the implementation of the PHY links. The
PHY link DES receives a waveform entity, delays it for a predefined
period, and forward out to the receiver. The operations are achieved by
alternately activated events and actions.

performed and, according to the type of the waveform entity,
i.e., data or Acknowledgment (ACK), two separate Timer
events are created to delay the entity for a period. Once the
delay is done, the Timer action is activated, in which the
waveform collision is simulated and the waveform entity is
forwarded out of the DES via Forward event. After the wave-
form entity left the DES, the Exit action is triggered to reset
the channel status. More details about the implementation of
the PHY layer are provided in Section III.

A MATLAB DES environment is suitable for simulating
network behaviors since the data flowing through differ-
ent network layers can be treated as entities. For example,
the data units of the PHY layer waveforms can be mod-
eled as waveform entities. The data generation, movement,
and destroy functions within a network can be implemented
by events. Users can further define more dynamic behav-
iors, such as media access for the MAC layer and channel
model for the PHY layer, using actions. In the next section,
the implementation of each component in the proposed sim-
ulation environment is presented with details.

III. PROPOSED DES V2x SIMULATOR: VANET TOOLBOX
Generally, a vehicular network simulation is a combination
of a time-driven system and an event-driven system. Figure 4
illustrates the design structure of two vehicular nodes com-
municating over a wireless channel. The framework consists

87250 VOLUME 7, 2019

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

FIGURE 4. Design Structure of VANET Toolbox. The APP layer integrating network model and vehicle mobility model is a hybrid of event-driven and time
driven. The MAC layer focuses on EDCA and is purely event-driven. The wireless channel link in PHY layer is a time-driven DES module.

of three DES modules: APP Layer DES Module (APP DES),
MAC Layer DES Module (MAC DES) and PHY Layer DES
Module (PHY Link DES), among which APP DES inte-
grates vehicle mobility models with APP message generation
operations, MAC DES includes MAC layer activities and
PHY transmitter (Tx) / receiver (Rx) on bit-level processing
and PHY Link DES only simulates wireless propagation
channels.

The mobility models are integrated in the APP DES, which
makes our proposed simulator an integrated type simulator.
This design facilitates the information exchange between the
vehicle mobility activities and the network communication
operations. Themovements of vehicles are controlled by vari-
eties of mobility models such as car-following model (CFM)
and lane-changing model (LCM). The mobility models are
implemented by different safety-related or non-safety appli-
cations. According to the vehicular traffic scenario, the appli-
cations may generate messages and share with other vehicle
nodes. This situation is event-driven pattern. Additionally,
the applications may create beacon messages such as Basic
safety messages (BSMs) at 10 Hz, which is time-driven
pattern. Thus the APP DES is a hybrid of event driven and
time driven. These generated messages are disseminated via
wireless network communication and reciprocally the perfor-
mance of network communication could affect the vehicle
operations. The section only focuses on the design of network
communication simulation environment, the discuss of the
mobility models is presented in Section IV.

The MAC layer of a vehicular network is different com-
pared to other WLAN devices since it grants priorities to
various messages such that the messages with higher priority
have shorter deference in channel contentions. This mecha-
nism is referred to as Enhanced Distributed Channel Access
(EDCA) and it is defined in the IEEE 802.11 standard [27].

Furthermore, the MAC layer is responsible for generating
frames, waiting for ACKs, and initiated retransmissions when
timeouts occur. All of these MAC layer behaviors are event-
driven. Additionally, the transmitter (Tx) and receiver (Rx)
of the PHY layer are integrated with the MAC Layer DES
Module. The PHY Tx is responsible for converting the binary
message information into wireless waveform symbols, while
the PHY Rx is used to reverse the process. Both operations
from the PHY Tx and Rx are based on bit-level processing,
i.e., users can manipulated every single bit of then data when
necessary. The integration design of the MAC DES has two
purposes. First, the PHY operations of the bit-level process-
ing is time-continuous instead of event-driven, thus the PHY
Tx/Rx cannot be implemented using DES. In our proposed
simulator, a series of functions are created to perform the bit-
level processing operations. The second reason is to constrain
the total number of DES units in the simulation model in
order to enable simulation efficiency. The creation of a DES
involves overhead computational costs, including assigning
input/output ports and allocating queue memories. This over-
head may potentially lower the simulation speed. Thus, in our
design process one of the most basic requirements is to use
as few DES units as possible.

The PHY link DES module only simulates the wireless
channel links since both PHY Tx and Rx are integrated
with the MAC DES module. The PHY link is a relatively
straightforward DES, as it is only responsible for accepting
the incoming waveforms from the PHY transmitters and for-
warding them to the PHY receivers after an air propagation
delay. This process is an event-driven pattern. During the
air propagation delay, channel models such as AWGN and
two-ray ground reflection model can be applied to the wave-
forms and this process is implemented by functions instead
of DES.

VOLUME 7, 2019 87251

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

FIGURE 5. VANET PHY Link Modeling. The PHY Tx and Rx are for the data
encoding and decoding on bit-level processing. Wireless channel link is a
DES module with two-ray ground reflection model and AWGN as default.

A. PHY LAYER IMPLEMENTATION
In vehicular network simulations, a precise representation of
the PHY layer is necessary in order to obtain reliable results
for comparison with real hardware performance. Popular
vehicular network simulation tools includingVEINS [28] and
iTETRIS [29], [30], which usually have a simplified PHY
layer. The network simulators they adopted, NS-3 and/or
OMNet++, employ abstracted PHY layer [31], where the
smallest indivisible data unit used is the packet, i.e., the
packet is either received entirely or not at all. Several details
of the wireless communication implementation, such as chan-
nel estimation, frequency offset estimation and correction,
waveform modulation and demodulation, are omitted due to
this abstraction. However, individual bits inside a waveform
are necessary to perform accurate simulations of the PHY
layer and channel models. In this section, we will introduce
the proposed PHY layer with bit-level processing techniques.
The performance of the PHY layer in terms of packet success
rate (PSR) is evaluated in Section V.

1) DESIGN THE PHY LAYER ON BIT LEVEL
Figure 5 illustrates a basic wireless PHY link model that con-
verts the received frame from the MAC layer into a wireless
waveform and lets the waveform pass through the wireless
channel. The interaction between the PHY layer and theMAC
layer is handled by the Physical Layer Convergence Protocol
(PLCP). A PLCP Service Data Unit (PSDU) is generated by
serializing the MAC layer frame into a binary bit stream.
The PSDU bits along with the PLCP preamble and header
according to the IEEE 802.11 [27] are grouped into sym-
bols and finally becomes a waveform. The wireless chan-
nel consists of a two-ray Ground Reflection Channel model
and an Additive White Gaussian Noise (AWGN) model by
default. This design is based on the research of line-of-sight
(LOS) conditions specified in [32]. Additional channel mod-
els including Rural_LOS and Urban_NLOS can be selected
during the simulation. The received waveform is decoded and
verified using the bit-level receiver design in [33]. Only the
PHY channel link is designed in DES, both PHY Tx and Rx
are implemented using functions from WLAN Toolbox and
are integrated with the MAC DES module.

Figure 6(a) illustrates the process of generating awaveform
at the transmitter (Tx) at the bit level. The IEEE 802.11p
PHY layer is derived from the IEEE 802.11a Non-HT

FIGURE 6. Modeling the Tx and Rx of the PHY layer on bit level. The data
unit flows in the channel is wireless symbols exactly the same as the real
radio transmission. (a) Bit-level processing on transmitting a waveform.
The frame is converted into bits and based on the configuration on
Non-HT transmission, the bits are converted into symbols and sent to the
wireless channel. (b) Bit-level processing on receiving a waveform. The
waveform goes through packet detection, frequency offset detection and
correction, channel estimation, decoding, CRC check and finally being
converted to a frame to the MAC layer.

transmission specifications. In MATLAB, wlanNonHTCon-
fig creates a Non-HT object in order to configure the
transmission parameters. It is configured for a 10MHz chan-
nel bandwidth with a single transmit antenna according to
the IEEE 802.11p standard [27]. A Non-HT Orthogonal
Frequency-Division Multiplexing (OFDM) symbol consists
of 64 sub-carriers with a 10 MHz bandwidth and symbol
period of 6.4µs. A 1.6µs guard interval (GI) is inserted
between each symbols in order to prevent inter-symbol inter-
ference (ISI). A PLCP header, including information of data
rate and PSDU length, is prepended to the PSDU. From the
perspective of a waveform, the PLCP header is the Legacy
Signal (L-SIG) field and the PSDU along with a tail and
padding becomes the data field. Ahead of the L-SIG field,
a PLCP amble is attached, which includes a Legacy Short
Training Field (L-STF) and a Legacy Long Training Field
(L-LTF). L-STF is used for the packet detection, initial fre-
quency offset estimation, and coarse timing synchroniza-
tion. The L-LTF is used for the fine time synchronization,
channel estimation, and fine frequency offset estimation.
Thus, a complete waveform consists of a L-STF, a L-LTF,
a L-SIG, as well as a data field. These fields are gener-
ated separately and concatenated to form a complete Non-
HT transmit waveform. The Non-HT configuration object

87252 VOLUME 7, 2019

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

FIGURE 7. Modeling the PHY link using MATLAB DES. The waveform
entity enters the DES module, stays for a period and then left the module.
Only one waveform type storage is created. waveformEntry(),
waveformTimer() and waveformExist() are actions.

specifies the parameters for generating the data fields of
a waveform. The cfgnonHT.PSDULength property indi-
cates the length of bytes to be sent in the Non-HT data
field. A Non-HT waveform is then generated by function
wlanWaveformGenerator according to the configuration of
wlanNonHTConfig.

Figure 6(b) shows the process of payload extraction when
a waveform arrives at the receiver (Rx). The first field that
needs to be processed is the L-STF. In the vehicular network,
L-STF has a length of 16µs with 10 repetitions. Due to its
correlation properties, the first seven repetitions are used for
time synchronization purposes by performing self-correlation
calculations. The rest of the sequence is used for packet detec-
tion, coarse frequency offset (CFO) detection, and correction
and setting the automatic gain control (AGC). The second
field that needs to be examined is the L-LTF, which is
composed of a cyclic prefix (CP) equaling to the period of
two GIs, i.e., 3.2µs, followed by two identical long training
symbols, i.e, 2 × 6.4µs. Channel estimation, fine frequency
offset estimation, and fine symbol offset estimation all rely on
the L-LTF.With all estimation and correction stages executed,
the L-LTF demodulator and channel estimator operations are
performed based on the demodulated L-LTF. Note that the
demodulated L-LTF is also used for noise power estimation.
Finally, the Non-HT data field is extracted and recovered into
the PSDU. The integrity of received PSDU, rxPSDU, is veri-
fied by the Cyclic Redundancy Check (CRC). Consequently,
the rxPSDU is sent to the MAC layer if it passes the CRC.
The above operations of both PHY Tx and Rx are based on
the bit-level processing features. This is exactly the same
process when an actual waveform is transmitted among radio
hardwares. Thus the PHY layer in our proposed simulator is
more realistic and accurate.

2) MODELING THE PHY LINK IN MATLAB DES
The discrete-event implementation of the PHY layer link
using MATLAB DES is shown in Figure 7. In the PHY DES
module, only one storage resource is created to contain the
waveform type entities. When a waveform entity enters the

DES module, it stays in storage. An action called wavefor-
mEntry() is activated due to this ‘entering’ activity. In the
body code of thewaveformEntry(), a timer event is associated
with the waveform entity creating a delay for a predefined
period. This delay is to simulate the air propagation delay.
Once the delay is completed, the corresponding timer action,
waveformTimer(), is triggered in which the waveform entity
is processed by customized actions, such as simulating chan-
nel collision and passing through multipath channel model.
When the timer action has been completed, the waveform
entity is forwarded to the output port of the PHY DES
module. After the waveform entity has left the DES module,
the waveformExit() action is called to reset the channel status.

B. MAC LAYER IMPLEMENTATION
Vehicular networking architecture supports vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) commu-
nications. The implementation of a MAC layer should be
able to cope with all communication modes. For example,
after receiving a frame from the other nodes, the MAC
layer should find out whether it comes from another peer
vehicle or from infrastructure. Furthermore, the MAC layer
should also check the type of the received frame, i.e., broad-
cast, multicast, or unicast, and prepare for an ACK response
to unicast type frames.

1) BRIEF INTRODUCTION TO V2x AND EDCA
One fundamental difference of IEEE 802.11p when com-
pared to other types of IEEE 802.11 networks is the usage of
EDCA for the purpose of Quality-of-Service (QoS). Different
frames are granted with different priorities. Eight priorities
are defined and can be placed in four possible Access Cate-
gories (ACs): AC0, AC1, AC2 AC3. Each frame is assigned
one of the AC descriptions by the application that created
the message depending on the importance and urgency of
the content. Specifically, AC0 denotes regular access, AC1 is
for non-prior background traffic, while AC2 and AC3 are for
prioritized messages, e.g., critical safety messages.

IEEE 802.11 channels are all contention-based, where all
nodes need to compete with each other for channel access.
During the contention process, the data is required to wait
for a random period of time prior to transmitting, which
is referred to as defer access. The defer access process
includes an Arbitration InterFrame Spacing (AIFS), which
is a replacement for Distributed coordination function(DCF)
InterFrame Space (DIFS), and a backoff period, which is
calculated based on a contention window (CW) value. After
sensing a busy medium, a node will wait for an AIFS period
before sensing the channel again. If the channel is idle,
the node will start to backoff, otherwise the node has to wait
for another AIFS period. During the backoff period, the node
keeps monitoring the channel status. In the event that a busy
channel is detected, the node will immediately pause the
backoff and restart the AIFS channel sensing step. In short,
both AIFS and backoff define the waiting period for a node
before accessing the channel.

VOLUME 7, 2019 87253

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

FIGURE 8. Flow chart of EDCA based MAC layer design. MAC outbound
indicates the process of receiving a payload from the APP layer and
sending a waveform to the PHY layer. MAC inbound is vice versa. (a) MAC
layer outbound: Data flow from the APP layer to the PHY layer. A payload
is received from the APP layer, converted into a frame, experience
channel access backoff and finally converted into a waveform. (b) MAC
layer inbound: Data flow from the PHY layer to the APP layer. Drop the
corrupt frame entity, or extract the payload from intact frame and send to
the APP layer. Reply an ACK frame if necessary.

In EDCA, the ACs decide different (AIFS, backoff) pairs.
Therefore, the frames with different priorities own different
defer access periods. In general, the higher priority the shorter
the defer period and vice versa. The design purpose of EDCA
is to enable the frames the with higher priority to gain channel
access more frequently.

2) FLOW CHART OF MAC LAYER DESIGN IN DES
In order to depict more clearly the implementation of the
MAC layer, we define the data flow from the PHY layer to
the APP layer as the inbound flow, as shown in Figure 8(b),
and the flow from the APP to the PHY layer as the outbound
flow, as shown in Figure 8(a).

For the outbound flow, a payload from the APP layer is
converted into a frame by adding the necessary MAC layer
headings, then forwarded to the AC0-3 queues. Frames from
the four AC queues will perform deferred access simulta-
neously. It might be possible that more than one of the

FIGURE 9. Modeling the MAC layer using MATLAB DES. The MAC DES
module involves threes types of entities: Payload entity, frame entity and
waveform entity. It is responsible for the data streams sending to the PHY
layer and receiving from the PHY layer.

AC queues has frames the are ready to send after the
deference period, thus a contention is created. Since this
situation happens inside the same node, this type of con-
tention is called an internal contention, which is unique for
nodes using EDCA. Whenever an internal contention occurs,
the frame with the highest priority will be the first one to be
sent out, while the other frames have to redo the defer access.

If a frame is of the unicast type and requires an ACK
from the receiver, i.e., Reliable Data Transmission (RDT),
a replica is created inside the buffer and it waits for the ACK.
If the ACK is not received within a predefined time period,
the replica will be sent again until an ACK is received or the
maximum retransmission limit is reached. If the ACK is still
not received by then, this frame will be dropped.

For the inbound flow, a waveform is received from the
PHY layer. The MAC layer will first check if the frame is
intact. The CRC is performed by the PHY Rx, but the action
of discarding a corrupted waveform is performed by theMAC
layer since the MAC layer is implemented by the MATLAB
DES, which is the only option to destroy a data entity. If the
waveform is intact, theMAC layer needs to check if it is being
sent to the correct node by checking the fromDS/toDS and
srcAddress/dstAddress fields.
The type of waveform that could be sent is either a

data or an ACK. If it is an ACK, theMAC layer needs to make
sure if it is a valid ACK since replicated ACKs in response
to the same data may be received due to the congestion of
the channel. If it is a data type waveform, the MAC layer
extracts the payload and sends it to the APP layer. If it is a
RDT waveform, i.e., an ACK is required, the MAC layer will
generate the correspondingACK and send it to the PHY layer.

3) MODELING THE MAC LAYER USING MATLAB DES
Figure 9 illustrates the design of a MAC DES module,
in which one payload type storage, six frame type storages,

87254 VOLUME 7, 2019

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

and one waveform type storage are defined to contain pay-
load, frame, and waveform entities, respectively. The payload
type entity enters into the MAC layer from the APP layer and
stays in the payload storage. In the corresponding payload-
Entry() action, a new event frameGenerate() is called, which
converts the payload entity to a frame entity by adding the
necessary header and trailer.

Depending on its priority, the frame entity is forwarded to
different AC queues. Here, the frame entity experiences the
channel access deference, backoff, internal contention, and
finally is forwarded to aHybrid Coordination Function (HCF)
storage. The waveformGenerate() action is triggered in the
HCF storage, the frame entity is converted into a waveform
entity using the bit level processing technique we introduced
in the above section, i.e., PHY (Tx) activities, and finally sent
to the PHY layer DES module.

In a reliable data transmission (RDT) environment, a uni-
cast message is required to have an ACK returned. Unlike
the broadcast scenario, the frame entity is directly converted
to a waveform entity, the unicast frame creates a replica of
itself, which is converted into a waveform entity and sent to
the wireless channel. The original unicast frame entity stays
in the HCF storage with a timer attached to it. If the ACK is
not received within the timer period, the unicast frame entity
creates another replica, converts it to a waveform entity, and
retransmits. If the ACK is still not received after the maxi-
mum retransmission limit is reached, the unicast frame entity
is destroyed in order to prevent further retransmission. If the
needed ACK arrives in time, an iteration event is called and
its corresponding action frameIterate() destroys the original
unicast frame in the HCF storage.

The purpose of above design is because in a DES, an event
is associated with an entity. If this entity is no longer existing
in the DES object, all the associated events become invalid
and will never be triggered. Two causes will result in this
‘not existing’ situation. First, an entity is destroyed by event
eventDestroy(). Second, the entity has left the DES object,
i.e., it is forwarded to the output port via event eventFor-
ward(’output’). The replica case mentioned above is the sec-
ond situation. A timer is required for retransmissions, and this
timer is a event associated to the unicast frame entity. If this
frame entity is converted to a wavefrom entity and forwarded
to the PHY Link DES module, the timer will become invalid
along with the retransmission activity. Thereby, a replica is
necessary to be sent meanwhile the original frame entity stays
in the HCF storage with its associated timer activated.

When receiving a waveform type entity from the PHY
layer DES module, MAC DES module stores it to the wave-
form type storage, where the intact waveform is converted to
a rxPSDU, the payload is extracted, and the frame sent to the
APP layer module. The corrupted waveform entity will be
destroyed. If the waveform is an ACK, an iteration event is
triggered inside the HCF storage. The original frame entities
inside the HCF storage will be iteratively check the sequence
number (SN) field until the target frame is found. Then, this
frame entity is destroyed along with all its associated events

FIGURE 10. APP Layer Design using MATLAB DES. The messages from
mobility model applications are converted into payloads and sent to the
MAC layer. When receiving payloads from the MAC layer, the messages
are extracted and dispatched to different mobility models.

such as retransmission timer events. This indicates the whole
reliable data transmission (RDT) process has been completed.

C. APP LAYER IMPLEMENTATION
One significant challenge of implementing this proposed sim-
ulationmodel is that the behavior of theAPP layer depends on
the application itself and there is no comprehensive standard
defining all the application requirements since it is almost
impossible to anticipate all possible future needs. Therefore,
within the scope of this paper, we only focus on the critical
safety applications, which will be discussed in Section IV
with respect to mobility models. In this section, we only
introduce the basic message dissemination functions.

1) MESSAGE DISSEMINATION
A Dedicated Short Range Communication (DSRC) device is
required to transmit at least 300 meters [2], [34], and it is
assumed that the surrounding vehicle positions are changing
frequently in the highly dynamic environment. Consequently,
we can assume the safety messages are physically broadcast
using a single hop. Therefore, packet collisions and packet
loss are major challenges for communication system per-
formance. One solution is to decrease the channel load by
grouping similar messages together, as shown in Figure 10.
A mobility model may involve several safety applica-

tions, such as lane changing, braking, and collision warning.
These applications share different types of messages with
other peers differentiated by application IDs (AppIDs). For
example, a lane changing application creates messages that
include driving direction information, while braking applica-
tions generate messages containing brake status. While both
types of messages may contain the same information, such as
currently location and speed, if these two messages are sent
separately the overlapping information will cause a waste of
transmission resources. The APP layer DESmaintains a mes-
sage list created by map containers. Whenever an application
is activated, it has to register its AppID as well as its message
requirements to the message list. The AppID serves as keys
while the requirements are values.

Once an empty payload is generated, the APP layer assim-
ilates the data requirements from these applications and

VOLUME 7, 2019 87255

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

FIGURE 11. Modeling the APP layer using MATLAB DES. The APP DES
module generates payload entities containing messages from the
mobility models and sends to the MAC DES module. The received
messages may update the traffic information in mobility models. The
mobility models are integrated and make the vehicles move by the rules.

compiles them into one single message using a dictionary
of standardized message construction guidelines. In the last
example, an assembledmessage consisting of position, speed,
driving direction, and brake status is created instead of
two separate messages. Society of Automotive Engineering
(SAE) standards J2735 [35] and SAE J2945 [36] define a
dictionary with over 150 data elements. Each data element
can be indexed using the AppIDs.

When a payload is received, the APP layer is responsible
for separating the data elements according to its appID and
dispatches them to the corresponding applications so as to
finally affect the mobility models.

2) MODELING THE APP LAYER USING MATLAB DES
Figure 11 shows the design of APP DES module. Since the
APP DES is the top layer, it is responsible for generating the
needed entities in order to trigger the whole simulation and
no external input ports are needed. All entities are generated
inside the APP DES module by setupEvents() events.
The vehicular mobility models are integrated with the

APP layer. This means that the APP DES module has two
responsibilities. First, the APP DES module should generate
payload entities containing traffic information and sent to the
MAC layer. As shown in the figure, two payload storages
resource (storage 1 and storage 3) are involved, while the
setupEvents() generates Basic Safety Messages (BSMs). The
0.1 in payloadGenerate(‘BSM’,0.1) event indicates the pay-
load generation intervals since BSMs are generated at a rate
of 10 Hz. Once generated, the payload entities are forwarded
to Storage 3 and finally sent to the MAC DES Module.

When receiving payloads from the MAC DES module,
the APP DES module extracts the message from the payload
entities and forwards to themobilitymodels. The traffic infor-
mation will be updated according to the received message.
A Emergency (EMG) type message can be generated upon
request by the vehicles.

The APP DES module is also responsible for making the
vehicles to move on the road according to mobility models,
thus a new type of entity with a driving tag is created and

stored in Storage 3. This driving entity stays inside Storage 3
forever and will never be sent out. A timer event is recursively
triggered on the driving entity at an interval of 0.1 seconds.
This is the refresh rate of the vehicles moving across the
map. The corresponding timer action payloadTimer(driving)
is called every 0.1 seconds to update the driving information
including vehicle position, speed, and direction. This refresh
rate can be increased at the cost of execution speed.

IV. MOBILITY MODELS AND SCENARIOS
An integrated vehicular network simulator usually consists of
two sections: the vehicular mobility model and the vehicular
network model. An accurate vehicular mobility model is
necessary for representing the real vehicular traffic behaviors
since vehicular mobility significantly impacts the vehicular
network performance. A vehicular network application is
designed to make use of shared traffic information across
the vehicles in order to change traffic patterns, either for the
purpose of road safety or for road efficiency improvements.

Therefore, a vehicular network simulator should describe
the interactions between the network protocols and vehicular
mobility. In the proposed simulation environment, the vehic-
ular mobility models are integrated with the APP layer, where
a variety of vehicular mobility models have been proposed for
different purposes including random models, flow models,
traffic models, behavioral models, and trace-based models.
Traffic safety applications usually requires traffic flow mod-
eling, in which the detailed interactions between vehicles are
modeled as flows, as shown in Figure 12.
Vehicular network applications can be classified into

V2V applications and V2I applications depending on which
V2x mode is used. According to [10], V2V applications are
generally safety applications while V2I are usually dedicated
to traffic efficiency improvements. In this paper, we only
focus on V2V communications and only two V2V-based
mobility models: (i) car following models, and (ii) lane
changing models.

A. CASE STUDY: V2V COMMUNICATION
Vehicle i is the target vehicle that will perform either car
following or lane changing operations. At time t , the x posi-
tion and velocity of vehicle i are represented as xi(t) and
vi(t), respectfully. Vehicle i − 1 and i + 1 are the vehicles
immediately behind and in front of vehicle i with x positions
xi−1(t) and xi+1(t), and with speed vi−1(t) and vi+1(t). The
variable1di(t) indicates the distance from vehicle i to vehicle
i + 1 at time t . For the adjacent lane, the vehicles that are
immediately in back and in front are denoted as vehicle j− 1
and j + 1. Similarly, their positions and speeds at time t are
denoted as xj−1(t) and xj+1(t), as well as vj−1(t) and vj+1(t).
These notations are summarized in Table 2.

1) CAR FOLLOWING MODELS (CFMs)
The CFMs control the individual vehicle’s driving dynamics
in order tomaintain a safe distance to the vehicle that is imme-
diately ahead. The objective of CFMs is to model vehicular

87256 VOLUME 7, 2019

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

FIGURE 12. Notations for Highway Mobility Model based on V2V Communications. The green car is the target. The green car is surrounded by the yellow
cars, who may involve in the coordinated car-following and lane-changing operations. The grey cars are the predicted positions according to the
prediction algorithm.

TABLE 2. Notations used in the Highway mobility model.

traffic flows without car collisions using the help of vehicular
communications.

di,safe = Li + treact ∗ vxi(t)+ dbrake, (8)

dbrake =
vxi(t +1t)2 − vxi(t)2

2 · µs · dec
, (9)

dbrake =
−vxi(t)2

2 · dec

∣∣∣∣
µs=1,vxi(t+1t)=0

, (10)

deck = −µk ∗ g = −0.8 ∗ 9.8 = −7.84m/s2, (11)

The safe distance of vehicle i is generally calculated by
Eq. (8), where Li is the length of vehicle i, treact is the reaction
time either of the driver or from the autonomous vehicular
dynamics, dbrake is the braking distance and is calculated
in Eq. (9), vxi(t) is the instantaneous speed when brake is
performed, and vxi(t+1t) is the velocity when braking action
is finished (for a complete stop, vxi(t +1t) = 0). Therefore,
we have the full stop brake distance defined in Eq. (10).

The deceleration, dec, is determined by the current vehicle
speed, road surface friction coefficient µ, as well as the fric-
tion type, i.e., static friction and kinetic friction. If a vehicle
is driving on a dry concrete road surface, then according
to [37] the static friction coefficient is µs = 1 and the kinetic
friction coefficient is µk = 0.8. When the vehicle brakes free
and slides, the kinetic friction deceleration deck only depends
on µk and the acceleration due to gravity g = 9.80 m/s2,
as indicated in Eq. (11).

For static friction, NHTSA was able to show a mapping
between speed and braking distance, based on which we
set the maximum static friction deceleration to decs =
−6.50 m/s2 [38]. For dec ∈ [decs, 0], we define this type of
braking as regular brake. For dec < decs, the brake action
is called as emergency (EMG) brake. During EMG brake
process, the wheels are drifting on road surface, the friction
between them is kinetic friction, thus we set dec = deck .
In CFMs, the vehicle keeps monitoring the distance to

the vehicle immediately ahead of it based on the received
BSMs and adjusts its speed adaptively in order to maintain
a safe distance. When the front vehicle is braking, the vehicle
behind it will be aware of it using the BSM information and
it will start to brake.

2) LANE CHANGING MODELS (LCMs)
LCMs are based on multi-lane traffic scenarios. A general
LCM should include three parts: the trigger for a lane chang-
ing event, the feasibility of a lane changing event, and the
scheme used during the lane changing process.

As an example, suppose we consider the situations and
notations shown in Figure 12, which describes a basic lane
changing scenario involving four vehicles. The trigger for
vehicle i to change its lane is the distance to vehicle i+1 being
shorter than the safe distance, i.e., when 1di(t) < di,safe.

VOLUME 7, 2019 87257

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

The lane changing feasibility of vehicle i is determined by
the distance to vehicle j − 1, i.e., 1dj−1(t + 1t), and the
distance to vehicle j+ 1, i.e., 1dj+1(t +1t) during the lane
changing process. Both distances should not violate the safe
distance rule in order to avoid potential car collisions in the
adjacent lane when changing lanes. The speed boundary for
vehicle i is calculated as follows:

|
02 − vx,i(t)2

2 · decs
| < |

02 − vx,j+1(t)2

2 · decs
| + di,j+1(t), (12)

|
02 − vx,i(t)2

2 · decs
| + di,j−1(t)

> |
02 − vx,j−1(t)2

2 · decs
|, (13)

max(vx,i(t)) =
√
vx,j+1(t)2 + 2 · |decs| · di,j+1(t), (14)

min(vx,i(t)) =
√
vx,j−1(t)2 − 2 · |decs| · di,j−1(t), (15)

The lane changing prediction algorithm assumes the vehi-
cle shifts to the adjacent lane at a y-speed of vy,i(t) while
adjusting the x-speed xi(t) during the process. Eq. (12) cal-
culates the upper speed boundary of vehicle i. During the
lane changing process, vehicle j + 1 can perform a braking
operation and the shortest braking distance is determined
by decs, with di,j+1 being the distance on the x axis before
lane changing. The lane changing algorithm should predict
whether di,j+1 is a safe distance for a lane change, i.e.,
di,j+1(t) should be greater than the difference of the brake
trails from both vehicles. Similarly, the lower speed boundary
is calculated by Eq. (13). Themaximum andminimum speeds
for vehicle i during a lane changing operation are defined by
Eq. (14) and (15), respectively.

If the lane changing feasibility is not fulfilled, then vehicle
i will need to reduce its speed vx,i(t), i.e., brake, in order to
meet the safety constraint. If the feasibility check does allow
for a lane change, vehicle i will start to change lanes. The
trajectory model includes a lane changing period, target lane
chosen, etc. The validation and performance evaluation of the
above mobility models have been presented in [39].

More sophisticated CFMs and LCMs have been proposed,
including the Intelligent Driver Model (IDM) [40], Wiede-
mann Model [41], the Nagel-Schreckenberg model [42], and
the Krauss (1998) Model [43]. These models can be imple-
mented and used in VANET Toolbox if necessary.

V. PERFORMANCE ANALYSIS
In this section, the performance of the proposed simulation
environment is evaluated. We first discuss the computational
costs of a full-stack vehicular network simulator in terms of
the number of events scheduled during the simulation. Then,
we compare the packet success rate (PSR) of BPSK in a
AWGN channel between MATLAB PHY layer implementa-
tion and NS-3 error rate model. Due to the bit level processing
of the PHY layer, the channel tracking (CT) techniques can
be enabled on the L-LTF field in order to cope with the
high Doppler spread. The performance of CT is evaluated

for BPSK signal with different channel environment. Further-
more, based on the case study of V2V communication in the
above section, we perform two sets of simulations focusing
on the MAC layer behaviors and compare the performance
of EDCA with distributed coordination function (DCF).

A. PERFORMANCE OF VANET TOOLBOX
In this section, the performance of VANET Toolbox is ana-
lyzed and evaluated in terms of events numbers and the
execution time with different number of vehicles.

1) COMPUTATIONAL COSTS IN TERMS OF EVENTS
A detailed simulation of the entire vehicular network stack is
time-consuming, especially with a large number of vehicles
to simulate and taking into consideration large-scale vehic-
ular communication effects. In this section, we show the
computational costs in term of the number of events E in a
discrete event-based simulation model.

Suppose we have n vehicles in a vehicular communication
scenario, with each vehicle transmitting data at rate r in Hertz,
and the simulation time is t in seconds. When a vehicle is
willing to send a message, events are scheduled in order to
generate the message in the APP layer and forwarded to
the MAC layer, where the message is converted to a frame,
experiences channel sensing, backoff, and finally sent to the
PHY layer, all of which are conducted by different events.
In the PHY layer, the frame is transformed into a waveform
and sent into the wireless channel by events. After receiving
a waveform, events are called in order to extract the informa-
tion from the waveforms and send it way up to the APP layer
and process it in the mobility models. We assume the number
of events E per transmission is e. The number of events E per
simulation can be calculated by :

E(n, r, t) = (nr) · e · (n− 1) · t, (16)

It is observed that the number of events E is linearly
proportionedwith the simulation time t and the data rate r , but
nonlinear with respect to the number of vehicles n. Figure 13
shows the number of simulated events for each layer of the
vehicular network and for the overall communication set.
We choose the car following model (CFM) as the scenario
since for this CFM each vehicle broadcasts only BSMs at a
rate of 10 Hz and no other transmissions are involved. For a
600-second simulation when 4 vehicles are involved, the total
number of events is around 2 × 106. When the number of
vehicles increases to 36, the total number of events is around
1.5× 108, which represents an increase by a factor of 75.

In addition to the computational cost in terms of num-
ber of events, we also profile the execution time for
a 30-second simulation with 30 vehicles. The overall execu-
tion time costs 8535 seconds, among which the PHYTx func-
tion phy_psdu2waveform consumes 511 seconds (5.98%)
and the PHY Rx function phy_waveform2psdu consumes
4337 seconds (50.7%). These two functions include all bit-
level processing operations of the PHY layer. As we have

87258 VOLUME 7, 2019

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

FIGURE 13. Computational cost in terms of events for each layers. The
mono-color surfs indicate the number of events happened for the PHY
layer, the APP layer and the MAC layer (from bottom to top). The colorful
surf is the combination of events happened in all three layers.

introduced in Section III-A, the PHY Tx function is straight-
forward, i.e., serializing the PSDU to binary bits. While
most of the bit-level processing operations such as packet
detection, channel estimation and CRC verification are in
the PHY Rx function. Thus, the PHY Rx function costs
more execution time than the PHY Tx function. Additionally,
the result also shows that even though the MAC layer creates
the largest portion of events, the bit-level PHY layer costs
more computational cost in terms of execution time.

Among all the layers, the APP layer costs the fewest num-
ber of events since it is the top layer of the network stack
and it mainly deals with message generation and reception.
In our case, the BSM is the only application data generated in
the APP DES. If additionally applications are involved or the
data generation rate is increased, the number of events will be
increased accordingly. The PHY link DES involves slightly
larger number of events relative to the APP layer because
whenever the APP DES generates one message and when
this message enters the PHY link DES module in the format
of a waveform entity, it triggers a series of events to deal
with activities such as delay, buffer, and waveform check.
Therefore, the number of events in the PHY link DES cor-
relates to the number of messages generated in the APP
DES module. The number of events increases dramatically
in the MAC DES module. This is because the number of
events in the MAC DES module is not only correlated to
the number of APP layer messages but also affected by the
channel status. Suppose if the wireless channel is congested,
the channel sensing operation would be performed more
frequently in order to monitor the channel status and seek
a transmission opportunity. Consequently, the timer event
related to the channel sensing operation is called more fre-
quently, which might cause a burst amount of events in the
MAC DES module. Additionally, since the PHY Tx and Rx
functions are integrated with the MAC/PHY DES Module,
the events caused by PHYTx/Rx are shown in theMAC/PHY
DES module surf instead of PHY Link DES module
surf.

FIGURE 14. Execution speed improvement due to MATLAB code
generation. The simulation time is 30 seconds, the number of vehicles
increases from 5 to 30.

2) SimEvents CODE GENERATION
MATLAB is a high-level interpreted type language and pro-
vides an interactive programming environment. Compare
with lower-level languages such as C/C++, the execution
time is longer. Furthermore, the PHY layer includes bit-level
processing, which uses more numerical computations so that
the execution speed is further slowed down.

In order to enhance the execution speed, MATLAB/
Simulink supports converting MATLAB code into C/C++
code using code generation techniques. Figure 14 presents a
comparison of the execution time with the code generation
(codegen) feature enabled and disabled. The computational
testbed possesses the following characteristics: i7-6700k at
4.0GHz (CPU), 32G DDR4 2133MHz (memory),Microsoft
Windows 10 (OS).

In this figure, the execution time increases as the number
of vehicles increases. The red line indicates the simulations
running in interpreted execution mode, i.e., without code
generation. The blue line is the execution time with code
generation. Based on this figure, the code generation shows
its advantage with respect to accelerating the execution speed.
For the simulation with 30 vehicles, interpreted execution
costs 7945 seconds, while code generation execution costs
5185 seconds. The execution speed of 30 vehicles simulation
increases 53.23% because of code generation.

B. PERFORMANCE OF THE PHY LAYER
In this section, the performance of the MATLAB PHY layer
is evaluated and compared with the NIST error rate model of
NS-3, which is broadly adopted by iTETRIS and VSimRTI
projects.

1) PRECISE PHY LAYER MODELING
NS-3 is a packet-based, discrete-event network simulator
equipped with several wireless models. When a waveform is
received, NS-3 calculates the signal to noise ratio (SNR) and
invokes its error rate model to decide the packet successful
reception rate. Two error rate models are integrated with
NS-3: the YANS [44] model and the NIST [45] model.
The YANS model, which is based on an analytical bound
was replaced with NIST error model in 2010. In this paper,
we only focus on the currently used NIST error rate model.

VOLUME 7, 2019 87259

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

In order to estimate the Packet Success Rate (PSR) for
orthogonal frequency division multiplexing (OFDM) sym-
bols, NIST calculates EbNo (SNR per bitEb to the one-side noise
spectral density No) based on SNR in dB using :

Eb
No
= SNR− 10log10(k), (17)

where k = log2(M), M is the modulation level, and k is the
number of bits per symbol. However, the NIST error model
has two limitations.

First, the NIST error model does not consider the over-
sampling situation and equates SNR to Es

No
, i.e., ratio of sym-

bol energy to noise power spectral density. The relationship
between Es

No
and SNR in dB for complex signals is defined

by [46]:

Es
No
= SNR+ 10log10

Tsym
Tsamp

, (18)

where Tsym is the symbol period of the signal and Tsamp is the
sampling period of the signal. For a complex baseband signal,
if it is oversampled by a factor of n, then Es

N0
does not equal to

SNR but exceed by 10log10(n).
Second, the NIST error model does not account for the

energy in nulls. Take IEEE 802.11p for instance, an OFDM
signal consists of 64 subcarriers, among which 48 subcarriers
are for data, 4 subcarriers for pilot information and 12 sub-
carriers are NULL. Thus, the SNR for occupied subcarriers
in dB, SNRo is calculated using :

SNRo = SNR− 10log10
NFFT

Ndata + NPilot
, (19)

where NFFT is the number of FFT sampling points, i.e.,
the total number of subcarriers for a OFDM signal. Ndata
is the quantity of subcarriers used for data and Npilot is for
pilot.

Figure 15 shows the comparison of PSR on AWGN chan-
nels betweenNIST error model and proposedMATLAB error
model. The PSR of the NIST error model is over optimistic
while the proposed MATLAB error model is more realistic.
As a packet-based network simulator, the NIST model is
the most comprehensive NS-3 model can implement. The
oversampling situation, as well as the energy in the null
subcarriers, requires processing of the bit level, thus it is
potentially challenging for NS-3 to implement these features.
The AWGN channel shown in Figure 15 is a simple sce-
nario that can be compensated by incorporating an offset to
NS-3 simulator. However, in a more complicated envi-
ronment, such as Non-line-of-sight (NLOS) conditions
in an Urban scenario, a constant offset could poten-
tially be insufficient to cope with the different channel
models.

2) PHY LAYER ON BIT-LEVEL PROCESSING
Another limitation of NS-3 is the oversimplified PHY layer.
The packets are forwarded among objects of Packet class
via methods. Based on the packet-error rate (PER) obtained

FIGURE 15. The packet success rate (PSR) comparison between MATLAB
and NS-3 (NIST model). The simulation is conducted with BPSK
modulation in AWGN channel.

from NIST_Error_Model, NS-3 randomly corrupts received
packets in order to emulate the packet corruption process.
However a realistic PHY layer of a communication system
consists of more functions including frequency offset correc-
tion, channel estimation, modulation, and demodulation. The
proposed simulator implements all the PHY layer features at
the bit level.

In a vehicular network environment, the V2x channels
have different characteristics compared with other station-
ary indoor channels [47]. First, V2x channels are affected
by longer multipath fading, which increases the possibility
of intersymbol interference (ISI). Second, the transmission
environment is highly dynamic, which causes significant
Doppler effects resulting in more channel fading. When pass-
ing through the V2x channels, the waveforms are impacted
more than just passing through an AWGN channel. The
performance in terms of PSR will be degraded, thus chan-
nel tracking techniques are needed in order to enhance the
performance.

In the proposed simulator, we integrate a time and fre-
quency selective multipath Rayleigh fading channel as spec-
ified by [48] with an AWGN channel. The conventional
WLAN channel estimation from L-LTF is used for the entire
packet duration. In order to compensate the high Doppler
spread of the V2x channel, channel tracking is enabled.
With channel tracking, the channel estimation obtained from
L-LTF is updated per symbol using decision directed chan-
nel tracking as presented in [47]. We compare the perfor-
mance in terms of PSR on BPSK across different scenarios
including Highway LOS and Urban NLOS with channel
tracking (CT) on and off. The results are presented
in Figure 16. In this figure, the receiver with channel track-
ing (CT) enabled possesses a better PSR in V2x channels.
Due to the restrictions of NS-3 on packet-level process-
ing, implementing channel tracking for OFDM symbols is
relatively difficult to perform. It is worth mentioning the
focus of this paper is the presentation of the ability and
accuracy of bit-level processing, and using simple chan-
nel models can help in providing a clearer evaluation for
straightforward comparison. Nevertheless, the authors will
explore more complicated channel models in future research
activities.

87260 VOLUME 7, 2019

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

FIGURE 16. The performance of channel tracking (CT) for BPSK
modulation in multi-path fading channel. The channel models involves
highway line-of-sight (LOS) and urban non-line-of-sight (NLOS).

TABLE 3. Parameters of CSMA and EDCA in the simulations.

C. PERFORMANCE COMPARISON BETWEEN
EDCA AND DCF
One significant feature of a vehicular network is adopting
EDCA in the MAC layer. In this section, we will compare
the performance between EDCA and distributed coordination
function (DCF), i.e., carrier sensing media access (CSMA),
where the latter is generally used in other IEEE 802.11 prod-
ucts. By analyzing the simulation results, we can evaluate the
effectiveness of the proposed simulator.

The simulation scenario is a unidirectional highway con-
sisting of two lanes. The car following model (CFM) is
chosen to be the mobility model. The vehicles are broad-
casting BSMs (AC2) at 10 Hz and AC3 messages using
a Poisson distribution modeled by λ = 2. We performed
two sets of simulations for EDCA and CSMA with the key
MAC parameters listed in Table 3. As the PHY layer of
IEEE 802.11p is derived from IEEE 802.11a, we choose the
IEEE 802.11a version of CSMA to minimize the difference
with other layers.

Figure 17 shows the simulation results of the Packet
Deliver Latency (PDL) and Packet Deliver Rate (PDR). As all
the messages in the simulation are broadcast, there are no
retransmissions involved, with the latency mainly coming
from the channel access deference process, i.e., IFS+backoff.
In Table 3, the Inter-Frame-Space (IFS) of CSMA, i.e.,DIFS,
equals to the highest priority IFS (AC3), i.e., AIFSN(AC3),
and slightly smaller than AIFSN (AC2). The Shortest-IFS
(SIFS) and slot time of IEEE 802.11p is greater than IEEE
802.11a in order to cope with the mobility characteristics of

FIGURE 17. Performance Evaluation of DCF (CSMA) and EDCA (AC2-3) on
packet delivery latency (PDL) and packet delivery rate (PDR) as the
density of vehicle increases. (a) Packet Delay of EDCA (AC2), EDCA (AC3)
and DCF (CSMA). Delay mainly comes from the backoff process during the
channel access deference stage since no retransmissions are required for
broadcast packets. (b) Packet Delivery Rate (PDR) of EDCA (AC2), EDCA
(AC3) and DCF (CSMA). Packet corruption comes from either packet
collision in the channel or severe noise due to the low SNR.

the vehicular network. Only a minimum Contention Window
(CW) is used for broadcasting purpose.

In Figure 17(a), the latency of CSMA is smaller than
EDCA (AC2) but greater than EDCA (AC3). This is due to
the fact that data possessing different priorities are queued
into different ACs, while in CSMA all data are buffered in
the same queue. Whenever an internal collision happens,
AC2 always gives way to AC3. This is why AC3 shows a
steady and better performance in the figure. According to
SAE J2735 [35], the maximum latency for safety messages
is 10 ms. When the latency of AC2 is below the threshold,
EDCA is shown to be the better option than CSMA.

Fig. 17(b) compares the Packet Delivery Rate (PDR) of
CSMA with AC2 and AC3 transmissions of EDCA. When
the number of vehicles increases, the PDR of AC3 maintains
at nearly 100 percent. This proves the AC2 and AC3 can
coexist in the same channel, and AC2 traffic affects little
on AC3 traffic. On the other hand, the PDR of AC2 starts
to decrease when number of vehicles approaches to 15 due
to the packet collisions. When less than 15 vehicles, EDCA
(AC2) still performs better than CSMA. However, whenmore
than 15 vehicles are present, CSMA acts better than EDCA
(AC2). This is due to the coexistence of AC2 and AC3, which
increases the packet collision rate. However, for 30 vehicles,
the PDR of EDCA (AC2) is till above 85 percent, which
performs well enough on broadcasting BSMs.

VOLUME 7, 2019 87261

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

TABLE 4. Comparisons of features and limitations between proposed simulator and NS-3.

D. COMPARISONS BETWEEN PROPOSED SIMULATOR
AND NS-3
NS-3 is a well known discrete-event network simulator that
supports full stack standards across a variety of networking
applications. The NS-3 modules are robust and can operate
at a faster speed due to its C++ implementation. However,
NS-3 potentially possessed several limitations. First, its PHY
layer is packet-based, which means the minimum data ele-
ment is at the packet level instead of the bit level. Therefore,
the bit-related operations such as channel tracking, channel
estimation, and frequency offset correction cannot be applied.
Additionally, NS-3 lacks supports for real radio hardware as it
is unable to convert information into bits or symbols. Second,
NS-3 was originally designed to operate in a pure network
simulation environment. In order to simulate vehicular traf-
fic, NS-3 either uses predefined route information or inter-
acts with mobility simulators asynchronously with the help
of interfaces. The randomness of vehicular traffic scenario
might not be able to be simulated in real-time.

Our proposed simulation environment compensates for
the limitations of NS-3. First, it provides a more accurate
PHY layer representation at the bit level. The simulator is
able to model the channel impairments such as noise, path
loss, or shadow fading on the bits. Moreover, the bits are
converted into symbols, which are exactly the same format
in the real wireless communications. Thus, it is reasonable to
infer the simulated wireless channel can be replaced by actual
software defined radios (SDR) such as the USRP. Real radio
transmissions will be evaluated in future research activities
of the authors. Furthermore, as the mobility models are inte-
grated with the APP layer, the reciprocal interactions between
the traffic application and the network communication are
sufficiently supported. This feature makes the proposed sim-
ulator to simulate vehicular driving operations and network
communications sufficiently synchronized in real time.

On the other hand, the proposed simulator has several
limitations. First, MATLAB is an interpreted programming
language that aims for precision modeling. Compared with
other compiled programming languages such as C++, which
is used in NS-3, fast execution speeds or low computa-
tional costs are often difficult to achieve in MATLAB, espe-
cially with the PHY layer of VANET Toolbox, which is
designed on bit level processing. It turns out that the proposed

implementation is significantly slower than NS-3. Further-
more, VANET Toolbox does not support parallel computing,
i.e., the model created by VANET Toolbox cannot be oper-
ated across multiple cores. Even though SimEvents supports
C/C++ code generation since MATLAB R2017b, it still has
several limitations. For instance, C/C++ code generation
does not support hash map, persistent variables, or changing
the values of properties of an object inside another object.
Those functions have to be declared as extrinsic functions
and cannot enjoy the benefit of C/C++ code generation.
Thus, the relatively slow execution speed is the major limi-
tation of the proposed simulator. Second, the movements of
entities among different DES modules require the support of
Simulink. Therefore, the VANET Toolbox inherits the limita-
tions of Simulink. For example, parameters such as the total
number of vehicles cannot be changed during the simula-
tion since Simulink locks all the parameters. Nevertheless,
all of these limitations may be solved in future releases of
MATLAB/Simulink. Table 4 summarized the major features
and limitations for both simulators.

VI. CONCLUSION
In this paper, we presented an integrated vehicular net-
work simulator called the VANET Toolbox that is based
on MATLAB Discrete Event System (DES). This is the
first vehicular network simulator in the MATLAB/Simulink
environment that supports a full stack of network proto-
cols. The design structure of the main components namely,
the APP layer, MAC layer, PHY layer, and basic mobility
models, were proposed and were demonstrated to accu-
rately simulate the inter-communications between vehi-
cles in different scenarios but not without limitations. The
VANET Toolbox requires only MATLAB/Simulink to use it
in addition to SimEvents, Communication and WLAN System
Toolbox. The design purpose of the VANET Toolbox is to
provide a framework and an opportunity to attract more
researchers to improve it and finally benefit the vehicu-
lar network development. The vehicular network simulator,
VANET Toolbox, is open source and can be down-
loaded from https://github.com/lewangwpi/vanet_toolbox
or https://www.mathworks.com/matlabcentral/fileexchange/
684 37-vanet-toolbox-a-vehicular-network-simulator-based-
on-des.

87262 VOLUME 7, 2019

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

ACKNOWLEDGMENT
The authors would like to thank the generous support of
the MathWorks and the Brazilian Government Science With-
out Borders program. Furthermore, they would also like to
acknowledge the guidance and input for Mike McLernon of
the MathWorks throughout these research activities.

REFERENCES
[1] M. Müller, ‘‘WLAN 802.11 p measurements for vehicle to vehicle (V2V)

DSRC,’’ in Application Note Rohde Schwarz, vol. 1, pp. 1–25, 2009.
[2] J. B. Kenney, ‘‘Dedicated short-range communications (DSRC) standards

in the United States,’’ Proc. IEEE, vol. 99, no. 7, pp. 1162–1182, Jul. 2011.
[3] H. Hartenstein and L. P. Laberteaux, ‘‘A tutorial survey on vehicular ad hoc

networks,’’ IEEE Commun. Mag., vol. 46, no. 6, pp. 164–171, Jun. 2008.
[4] M. Chowdhury, ‘‘15th intelligent transportation systems world

congress,’’ J. Intell. Transp. Syst., vol. 14, no. 2, pp. 51–53, 2010.
doi: 10.1080/15472451003738194.

[5] F. Ahmed-Zaid, H. Krishnan, M. Maile, L. Caminiti, S. Bai, and
S. VanSickle, ‘‘Vehicle safety communications—Applications: System
design & amp, objective testing results,’’ SAE Int. J. Passenger Cars Mech.
Syst., vol. 4, pp. 417–434, Jun. 2011.

[6] G. Howe, G. Xu, D. Hoover, D. Elsasser, and F. Barickman, ‘‘Commercial
connected vehicle test procedure development and test results–emergency
electronic brake light,’’ Tech. Rep., 2016.

[7] G. Howe, G. Xu, D. Hoover, D. Elsasser, and F. Barickman, ‘‘Commercial
connected vehicle test procedure development and test results–blind spot
warning/lane change warning,’’ Tech. Rep., 2016.

[8] G. Howe, G. Xu, D. Hoover, D. Elsasser, and F. Barickman, ‘‘Commercial
connected-vehicle test procedure development and test results–intersection
movement assist,’’ Tech. Rep., 2016.

[9] J. Harri, F. Filali, and C. Bonnet, ‘‘Mobility models for vehicular ad hoc
networks: A survey and taxonomy,’’ IEEE Commun. Surveys Tuts., vol. 11,
no. 4, pp. 19–41, Dec. 2009.

[10] H. Hartenstein and K. Laberteaux, VANET: Vehicular Applications and
Inter-Networking Technologies, vol. 1. Hoboken, NJ, USA: Wiley, 2009.

[11] D. O. Lazaro, E. Robert, L. Lan, J. Gozalvez, S. Turksma, F. Filali,
F. Cartolano, M. A. Urrutia and Krajzewicz, ‘‘An integrated wireless
and traffic platform for real-time road traffic management solutions,’’
in COMeSafety Newsletter, 2010.

[12] L. Bononi, M. Di Felice, G. D’Angelo, M. Bracuto, and L. Donatiello,
‘‘MoVES: A framework for parallel and distributed simulation of wireless
vehicular ad hoc networks,’’ Comput. Netw., vol. 52, no. 1, pp. 155–179,
2008.

[13] M. Killat, F. Schmidt-Eisenlohr, H. Hartenstein, and C. Rössel, P. Vortisch,
S. Assenmacher, and F. Busch, ‘‘Enabling efficient and accurate large-scale
simulations of VANETs for vehicular traffic management,’’ in Proc. 4th
ACM Int. workshop Vehiculr Ad Hoc Netw., Sep. 2007, pp. 29–38.

[14] S.-Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M. Yang,
C. C. Chiou, and C. C. Lin, ‘‘The design and implementation of
the NCTUns 1.0 network simulator,’’ Comput. Netw., vol. 42, no. 2,
pp. 175–197, 2003.

[15] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, ‘‘Recent devel-
opment and applications of SUMO-Simulation of Urban MObility,’’ Int.
J. Adv. Syst. Meas., vol. 5, nos. 3–4, pp. 128–138, Dec. 2012.

[16] Nsnam. (Feb. 2017). NS-3 Project-Introduction to NS-3. [Online]. Avail-
able: https://www.nsnam.org/docs/tutorial/html/introduction.html

[17] G. Pongor, ‘‘Omnet: Objective modular network testbed,’’ in Proc. Int.
Workshop Modeling, Anal., Simulation Comput. Telecommun. Syst., 1993,
pp. 323–326.

[18] A. F. G. Gil, Traci4matlab: User’s Manual. Universidad Nacional De
Colombia, 2014.

[19] C. Gorgorin, V. Gradinescu, R. Diaconescu, V. Cristea, and L. Ifode,
‘‘An integrated vehicular and network simulator for vehicular ad-hoc net-
works,’’ in Proc. 20th Eur. Simulation Modelling Conf., vol. 59, May 2006,
pp. 1–8.

[20] M. R. Stiglitz and C. Blanchard, IEEE Standard Dictionary of Electrical
and Electronics Terms. 1992, Sec. 4.

[21] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.
Springer, 2009.

[22] T. K. Som and R. G. Sargent, ‘‘A probabilistic event scheduling policy
for optimistic parallel discrete event simulation,’’ in Proc. 12th Workshop
Parallel Distrib. Simulation, May 1998, pp. 56–63.

[23] K. Akesson, M. Fabian, H. Flordal, and R. Malik, ‘‘Supremica-an inte-
grated environment for verification, synthesis and simulation of discrete
event systems,’’ in Proc. 8th Int. Workshop Discrete Event Syst., Jul. 2006,
pp. 384–385.

[24] R. Davidrajuh, ‘‘Developing a new Petri net tool for simulation of discrete
event systems,’’ in Proc. 2nd Asia Int. Conf. Modelling Simulation (AMS),
May 2008, pp. 861–866.

[25] C.-H. Chen, ‘‘A hybrid approach of the standard clock method and event
scheduling approach for general discrete event simulation, ’’ in Proc. 27th
Conf. Winter simulation, Dec. 1995, pp. 786–790.

[26] S. Zhongyuea and G. Zhongliang, ‘‘Vehicle routing problem based on
object-oriented discrete event simulation,’’ in Proc. 2nd Int. Conf. Adv.
Comput. Control, vol. 5, Mar. 2010, pp. 638–643.

[27] IEEE Standard for Information Technology–Telecommunications and
Information Exchange Between Systems Local and Metropolitan Area
Networks–Specific Requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, Standard,
Dec. 2016.

[28] Vehicles in Network Simulation (VeinS). [Online]. Available: http://veins.
car2x.org

[29] i TETRIS: The Open Simulation Paltform for Intelligent Transport
System (ITS) Services. [Online]. Available: http://www.ictitetris.eu/
itetris_platform.html

[30] VSimRTI—Smart Mobility Simulation. [Online]. Available:
https://www.dcaiti.tuberlin.de/research/simulation/

[31] S. Papanastasiou, J. Mittag, E. G. Strom, and H. Hartenstein, ‘‘Bridg-
ing the gap between physical layer emulation and network simu-
lation,’’ in Proc. IEEE Wireless Commun. Netw. Conf., Apr. 2010,
pp. 1–6.

[32] B. Aygun, ‘‘Distributed adaptation techniques for connected vehicles,’’
Ph.D. dissertation, WPI, Worcester, MA, USA, 2016.

[33] Mathworks. (May 2017). 802.11n Packet Error Rate Simulation for
2x2 TGn Channel. [Online]. Available: https://www.mathworks.com
/help/wlan/examples/802-11n-packet-error-rate-simulation-for-2x2-tgn-
channel.html

[34] C. Michaels, ‘‘DSRC implementatio guide–a guide to users of SAE
J2735 message sets over DSRC,’’ SAE, Pennsylvania, PA, USA, Tech.
Rep., 2010.

[35] J2735 Dedicated Short Range Communications (DSRC) Message Set Dic-
tionary, Standard, SAE.

[36] J2945 On-Board System Requirements for V2V Safety Communications,
Standard, SAE.

[37] Static and Kineticfriction. [Online]. Available: http://ffden-
2.phys.uaf.edu/211_fall2002.web.dir/ben_townsend/staticandkineticfriction.
htm

[38] NHTSA. (Sep. 1999). Federal Motor Vehicle Safety Standards; Stopping
Distance Table. [Online]. Available: https://www.gpo.gov/fdsys/pkg/FR-
1999-09-07/pdf/99-23226.pdf

[39] L. Wang, R. F. Iida, and A. M. Wyglinski, ‘‘Coordinated lane changing
using v2v communications,’’ in Proc. IEEE 88th Vehicular Technol. Conf.
(VTC-Fall), Aug. 2018, pp. 1–5.

[40] A. Kesting, M. Treiber, and D. Helbing, ‘‘Enhanced intelligent driver
model to access the impact of driving strategies on traffic capacity,’’
Philos. Trans. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 368, no. 1928,
pp. 4585–4605, 2010.

[41] B. Higgs, M. M. Abbas, and A. Medina, ‘‘Analysis of the wiedemann car
following model over different speeds using naturalistic data,’’ in Proc.
Procedia RSS Conf., 2011, pp. 1–22.

[42] A. Schadschneider, ‘‘The nagel-schreckenberg model revisited,’’ Eur.
Phys. J. B, Condens. Matter Complex Syst., vol. 10, no. 3, pp. 573–582,
1999.

[43] S. Krauß, ‘‘Towards a unified view of microscopic traffic flow theories,’’
IFAC Proc. Volumes, vol. 30, no. 8, pp. 901–905, 1997.

[44] M. Lacage and T. R. Henderson, ‘‘Yet another network simulator,’’ in Proc.
workshop ns-2, IP Netw. simulator, Oct. 2006, p. 12.

[45] G. Pei and T. R. Henderson, ‘‘Validation of OFDM error
rate model in ns-3,’’ in Boeing Research Technology, 2010,
pp. 1–15.

[46] MathWorks. AWGN Channel. [Online]. Available: https://www.
mathworks.com/help/comm/ug/awgnchannelḣtml

VOLUME 7, 2019 87263

http://dx.doi.org/10.1080/15472451003738194

L. Wang et al.: Vehicular Network Simulation Environment via DES Modeling

[47] J. A. Fernandez, D. D. Stancil, and F. Bai, ‘‘Dynamic channel equal-
ization for IEEE 802.11p waveforms in the vehicle-to-vehicle channel,’’
in Proc. 48th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep./Oct. 2010, pp. 542–551.

[48] P. Alexander, D. Haley, and A. Grant, ‘‘Cooperative intelligent transport
systems: 5.9-GHz field trials,’’ Proc. IEEE, vol. 99, no. 7, pp. 1213–1235,
Jul. 2011.

LE WANG received the M.Sc. and Ph.D. degrees
in electrical and computer engineering from
Worcester Polytechnic Institute, Worcester, MA,
USA, in 2013 and 2019, respectively. For the past
four years, he has been collaborating with Math-
Works, Inc., on designing vehicular network simu-
lation environment using MATLAB discrete-event
system. His current research interests include
wireless communication, vehicular network simu-
lation, wireless network security, and applications

development based on V2x communication. He has been a member of the
Wireless Innovation Laboratory, since 2011.

RENATO IIDA received the B.Eng. degree in
telecommunications engineering from the Univer-
sity of Brasilia, Brazil, in 2002, and the M.Sc.
degree in electrical engineering from the Univer-
sity of Brasilia, in 2006. He is currently pursuing
the Ph.D. degree in electrical engineering with the
Worcester Polytechnic Institute, Worcester, MA,
USA. From 2008 to 2014, he worked in system
level simulations with Nokia, and was involved in
the standardization ofMUROS,VAMOS feature in

GSM network in 3GPP. His current research interests include V2V networks
and to improve the radio resource management in the type of networks. He
received an award from CAPES with science without borders program to
support his Ph.D.

ALEXANDER M. WYGLINSKI received the
B.Eng. and Ph.D. degrees fromMcGill University,
Montreal, QC, Canada, in 1999 and 2005, respec-
tively, and the M.Sc. (Eng.) degree from Queen’s
University, Kingston, ON, Canada, in 2000, all in
electrical engineering. He is currently a Profes-
sor of electrical and computer engineering and a
Professor of robotics engineering with Worcester
Polytechnic Institute,Worcester, MA, USA, where
he is currently the Director of the Wireless Inno-

vation Laboratory. Throughout his academic career, he has published over
35 journal papers, over 80 conference papers, nine book chapters, and two
textbooks. His current research interests include wireless communications,
cognitive radio, software-defined radio, dynamic spectrum access, spectrum
measurement and characterization, electromagnetic security, wireless system
optimization and adaptation, and cyber-physical systems.

87264 VOLUME 7, 2019

	INTRODUCTION
	OVERVIEW TO DISCRETE EVENT SYSTEM
	DISCRETE EVENT SYSTEM
	DISCRETE EVENT SIMULATION
	MATLAB DES SIMULATION FRAMEWORK
	ENTITY
	EVENT
	ACTION

	PROPOSED DES V2x SIMULATOR: VANET TOOLBOX
	PHY LAYER IMPLEMENTATION
	DESIGN THE PHY LAYER ON BIT LEVEL
	MODELING THE PHY LINK IN MATLAB DES

	MAC LAYER IMPLEMENTATION
	BRIEF INTRODUCTION TO V2x AND EDCA
	FLOW CHART OF MAC LAYER DESIGN IN DES
	MODELING THE MAC LAYER USING MATLAB DES

	APP LAYER IMPLEMENTATION
	MESSAGE DISSEMINATION
	MODELING THE APP LAYER USING MATLAB DES

	MOBILITY MODELS AND SCENARIOS
	CASE STUDY: V2V COMMUNICATION
	CAR FOLLOWING MODELS (CFMs)
	LANE CHANGING MODELS (LCMs)

	PERFORMANCE ANALYSIS
	PERFORMANCE OF VANET TOOLBOX
	COMPUTATIONAL COSTS IN TERMS OF EVENTS
	SimEvents CODE GENERATION

	PERFORMANCE OF THE PHY LAYER
	PRECISE PHY LAYER MODELING
	PHY LAYER ON BIT-LEVEL PROCESSING

	PERFORMANCE COMPARISON BETWEEN EDCA AND DCF
	COMPARISONS BETWEEN PROPOSED SIMULATOR AND NS-3

	CONCLUSION
	REFERENCES
	Biographies
	LE WANG
	RENATO IIDA
	ALEXANDER M. WYGLINSKI

