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ABSTRACT As an artificial neural network method, self-organizing mapping facilities efficient complete
and visualize high-dimensional data topology representation, valid in a number of applications such as
network intrusion detection. However, there remains a challenge to accurately depict the topology of network
traffic data with unbalanced distribution, which deteriorates the performance of e.g. DoS attack detection.
Hence, we propose a new model of the ‘‘statistic-enhanced directed batch growth self-organizing mapping’’,
renew the definition of the growth threshold used to evaluate/control neuron expansion, and first introduce
the inner distribution factor for fine-grained data distinguishing. The numerical experiments based on two
datasets, KDD99, and CICIDS2017, demonstrate that the key performance in DoS attack detection including
the detection rate, the false positive rate, and the training time are greatly enhanced thanks to the statistic
concepts consulted in the proposed model.

INDEX TERMS DoS attack detection, statistic-enhanced directed batch growing self-organizing mapping,
growth threshold, inner distribution factor.

I. INTRODUCTION
The denial of service (DoS) attack is arguably the most
common network intrusion, which can greatly occupy the
resources of legitimate requests and long-term paralyze the
network. With the explosive increase of Internet bandwidth
and the rapid development of various DoS hacking tools,
the frequent DoS attack becomes emerged. According to
Kappaski Labs, DoS attack keeps increasing in 2018 com-
pared to that in 2017 [1], which reveals the fact that special
attention is needed for efficient DoS attack detection. In the
past decade, various methods of Dos attack detection have
been developed, yet suffer from the challenge of data clas-
sification for large-scale datasets [2]–[9]. The conventional
data classification approaches with the supervised learning
mechanisms often require transcendental data characteriza-
tion, which is not always valid in real-world cases. On the
other hand, accurate data topology representation enables
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a stronger understanding of data characterization, which
further facilitates high-performance intrusion detection.
Hence, the strong need of realizable data classification,
preferable with visualization scheme, is emerged.

Self-organizing mapping (SOM) is an visualized arti-
ficial neuron network method, which uses the unsuper-
vised learning mechanisms to discrete high-dimensional data
into low-dimensional data (often two-dimensional) for data
topology representation [10]. More specifically, the input
layer of SOM receives high-dimensional data, while the
low-dimensional the output layer (also named competition
layer) achieves the data mode clustering. For a certain data
mode, the node (winning neuron) in output layer gets the
maximal stimulus, while the neurons around the node are
partially stimulated. Hence, the feature map of output layer
well reflects the distribution of input data modes. Behav-
ing as both a visual tool and a data mode classifier, SOM
is naturally employed in a number of applications such as
the pattern recognition [11], the fault diagnosis, the anomaly
detection [12], and the DoS attack detection [13], [14].
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However, previous studies have theoretically predicted that
the simple form of SOM is insufficient for the topology
representation of the network traffic data with unbalanced
distributions [15], [16], that is, the SOM-based intrusion
detection comes across low performance.

Since accurate and overall representation of data topol-
ogy makes possible efficient DoS attack detection, sev-
eral improved SOM models have been proposed in the
past decade. The growing hierarchical self-organizing map-
ping (GHSOM) expanding neurons along both horizon-
tal and vertical directions, benefits a more complete data
topology representation [17], which further enables higher
detection rate and lower false positive rate for DoS attack
detection [18], [19]. However, the growth strategy in the
GHSOM introduces vast unnecessary neurons, which greatly
enlarges the computing redundancy and reduces the effi-
ciency of the data clustering. Tomitigate this, a growth thresh-
old is introduced in both the growth self-organizing mapping
(GSOM) [20] and the directed batch growth self-organizing
mapping (DBGSOM), in which the neuron growth takes
the cumulative error into account. Therefore, new neurons
are inserted around each candidate boundary neuron with
an optimized growth location and a proper weight. How-
ever, both the GSOM and the DBGSOM employ an input-
data-independent constant growth threshold definition, thus
remain insufficient in intrusion detection of network traffic
data.

In this paper, we propose a new model, the statistic-
enhanced directed batch growth self-organizing mapping
(SE-DBGSOM), which well suffices DoS attack detection
for different datasets. The novelties of this work are mainly
three-folds: (1). For the first time to our best knowledge,
we renew the definition of the growth threshold to make it
input-data-dependent. Hence, the initial data mode cluster-
ing becomes more efficient. (2). For the first time to our
best knowledge, we propose an inner distribution factor,
which facilitates further fine-grained classification for the
remaining deeply-bunched data after the neuron growth pro-
cess. (3). We demonstrate the numerical experiments using
datasets of KDD99 and CICIDS2017, where the detection
rate, the false positive rate and the training time, are the best
state-of-the-art compared to related works. The experiments
explicitly validate the statistic enhancement for the proposed
model, and enlighten a new direction of intrusion detection
with various data types.

II. RELATED WORKS
For the first time, [21] proposed the GHSOM in network
intrusion detection, demonstrating that the unsupervised
learning mechanism sufficed the cases with complex and
unbalance-distributed data. Reference [19] demonstrated
DoS attack detection using the GHSOM, where the detec-
tion rate reached 97.59%. Yang et al. first introduced the
tension-mapping ratio to control the neuron growth, where
the detection rate was 96.71% [22]. Note that the strat-
egy of inserting neuron-row or -column, corresponding

to large computing redundancy, is not always necessary.
Hence, with the dynamic incremental strategy, GSOMmakes
possible a more elastic neuron growth, where the train-
ing time is greatly shortened [20], [23]. Nevertheless, con-
ventional GSOM models often fill all free spaces around
the candidate neuron, which makes the representation of
data topology low-quality and time-consuming. Although
reference [24] modified the GSOM algorithm using batch
learning strategy and shortened the training time, previous
drawbacks remained unsolved. On the other hand, Vasighi
and Amini developed the DBGSOM in 2017 [25], where
a batch learning strategy taking the cumulative error into
account was employed. Only a single neuron was inserted at a
suitable position around the candidate boundary neuron with
a proper initial weight. Hence, the neuron growth could be
controlled along the right direction in the topology mapping.
Compared to the GHSOM and the GSOM, the DBGSOM
overcomes huge computing burden, improves the represen-
tation quality of data topology and enlarges the training effi-
ciency in large-data-scale cases.

Although the DBGSOM introduces a good mechanism of
data topology representation, the growth threshold that deter-
mines whether new neurons are inserted, is independent of the
input data. Specifically for network intrusion detection, such
a constant growth threshold becomes insufficient for various
data types, which results in low performance. Moreover,
the data clustering in the neuron growth process may leave
some deeply-bunched attack and normal data, which cannot
be classified through the cumulative error between neuron
and data. Hence, it is of great necessity to introduce another
parameter, quantifying the inner distribution properties of
data, to enable the further fine-grained data classification.
Since both the renewed data-dependent growth threshold and
the newly-given inner distribution factor consult the statistic
mechanism, the proposed model used for e.g. DoS attack
detection in this paper, behaves as the new edition of the
DBGSOM with statistic enhancement.

III. THEORETICAL APPROACH OF SE-DBGSOM
A. BASIC MODEL SET-UP
Similar to that shown in [25], our model holds the merits
of the DBGSOM, where a visualize feature map can be set
up without needing pre-specification of network size in the
initialization step. In the neuron growth process (training
process), the cumulative error (i.e. the sum of Euclidean
distance) between all input data vectors and a specific neuron
(serial number of l) follows

CEl =
m∑
j=1

||xj − wl || (1)

where subscripts j denotes the serial number of input data
(total amount of m). The data vector xj and the initial neuron
weight vectorwl share the same dimension.With the minimal
cumulative error with respect to all neurons, the weight vector
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FIGURE 1. Three available positions for the 3p neuron insertion strategy.

of the winning neuron becomes

wnewl =

m∑
j=1

hcj,lxj

m∑
j=1

hcj,l

(2)

where hcj,l denotes the Gaussian neighborhood function

hcj,l = exp

(
−

∥∥wl − wcj∥∥
2σ 2 (t)

2)
(3)

On the other hand, the growth threshold GT is utilized to
decide the new neuron growth, whereCEl > GT corresponds
to the insertion action, with a position handled in three strate-
gies, 1p, 2p and 3p [25]. As an example, Figure. 1 shows
the three available positions (P1, P2 and P3) for the most
common 3p neuron insertion strategy, where the gray and the
black hexagons denote the neighbor boundary (NB) and the
expandable boundary (EB), respectively. The new neuron is
inserted to Pi when the cumulative error CENBi with respect
to NBi reaches the maximum among all neighbor boundaries.
In addition, the weight vector of the new neuron is initialized
by three strategies, 1W, 2W and 3W [25]. The most represen-
tative 3W strategy of weight vector initialization follows

wnew =

{
[(2web − wnb2)+ wnbi]/2 insert pi i 6= 2
2web − wnb2 insert p2

(4)

where web and wnbi denote the weight vectors of the expand-
able boundary and the neighbor boundary, respectively.

B. STATISTIC-BASED GROWTH THRESHOLD
The growth threshold behaves as the minimal cumulative
error for new neuron insertion, which heavily determines the
trade-off between complete data topology representation and
few unnecessary neurons. It is worth noting that the con-
stant growth threshold in previous studies does not suffice
all types of datasets, even using an empirical value from
large-scale experiments. Hence, we renew the definition in
a statistic manner as

GT = λ

√√√√ D∑
i=1

std2i (5)

where subscript i denotes the serial number of items for the
D-dimensional data vectors. The proposed growth threshold
depends on the input data vectors, thus makes possible a
more accurate and overall reflection of various datasets. More
significantly, such a definition reflects the standard derivation
of the i-th items for all input data vectors (total amount of m)

stdi =

√√√√√√∑m
j=1 (Xij −

1
m

m∑
j=1

Xij)
2

m− 1
(6)

where Xij denotes the i-th items for the data vector with
a serial number of j. Note that Eq. (6) takes the similar
formula to Eq. (1), that is, the cumulative error and the growth
threshold are comparable. Hence, for a specific input dataset,
the growth threshold remains unchanged, yet holds the statis-
tic properties of all data vectors. Additionally, a regulation
coefficient λ is introduced in Eq. (5), as a degree of freedom
for various attack detection cases.

C. INNER DISTRIBUTION FACTOR
A single network traffic data is commonly a D-dimensional
column vector, where the items in normal data vectors greatly
differ from that in attack data vectors. To quantify the
statistic properties of these items, we newly define the
inner distribution factor, which makes possible another
approach of data topology representation. For a specific
type of data, the mean value of all items is given by

MX =
1
mD

m∑
j=1

D∑
i=1

Xij (7)

meanwhile the mean standard error is given by

Mδ =
1
mD

m∑
j=1

√√√√ D∑
i=1

(Xij −
1
D

D∑
i=1

Xij)2 (8)

By taking the concept of mean summarization [26] into
account, the inner distribution factor follows

IDF = (MX −Mδ,MX +Mδ) (9)

Since IDF for normal data differs from that for attack data
(especially DoS attack data), Eq. (9) provides a scheme of
statistic-based data classification (detection). More specifi-
cally for the proposed SE-DBGSOM model, IDF facilitates
fine-grained classification for deeply-bunched data vectors,
remaining after the neuron growth clustering.

D. SCHEMATIC AND ALGORITHM
A schematic of the proposed SE-DBGSOM model is shown
in Figure. 2, where the first step is the initialization with
respect to both input data vectors and neuron weight vectors.
Based on the input-data-dependent growth threshold, the neu-
ron growth (training) process takes place, where most of the
normal/attack data vectors are clustered in different neurons.
There may remain a few deeply-bunched data vectors, normal

78436 VOLUME 7, 2019



X. Qu et al.: Statistics-Enhanced Direct Batch Growth Self-Organizing Mapping

FIGURE 2. A schematic of the proposed SE-DBGSOM model.

and attack types included, that cannot be classified through
further neuron growth, thus IDF is utilized. Thanks to the
statistic enhancement, the SE-DBGSOM enables efficient
intrusion detection with higher detection rate, lower false
positive rate and shorter training time. The algorithm of the
SE-DBGSOM training and the fine-grained classification are
given in Algorithm.1 and Algorithm.2, respectively.

Algorithm 1 SE-DBGSOM Training
1: Initialization: Set the training epochs at 100; Calculate

the growing threshold using the training dataset; Opti-
mize the regulation coefficient using the training dataset.

2: for i = 1 to 100 do
3: The growth threshold follows Eq. (5) while other

parameters value from Ref. [25]
4: end for
5: Return weight vectors and labels for winning neurons

IV. NUMERICAL EXPERIMENTS
A. DATASET
We based on the computing environment of @MATLAB
2017 a, operating system of @Windows 7 Professional
and computer of @Intel Core i7-7700, 3.6GHz CPU,
8.0GBRAM, characterize the proposed SE-DBGSOMmodel
using entire KDD99 and CICIDS2017 datasets. The bench-
mark KDD99 is arguably the most widely used dataset
for intrusion detection experiments, which is created by
MIT Lincoln Lab for IDS evaluation competitions held
in 1998 and 1999. A detailed description of the 1998 DARPA
off-line intrusion detection competition is shown in [27]. The
KDD99 dataset [28], [29] investigated in this work includes
four types of attacks: the DoS, the user to root (U2R, unau-
thorized access to local superuser by a local unprivileged
user), the probe (surveillance and probing), and the remote
to low frequency (R2L, unauthorized access from a remote

Algorithm 2 Fine-Grained Classification
1: Initialization: Input testing and training dataset; Calcu-

late IDF for normal and DoS attack data vectors, respec-
tively.

2: for j = 1 to length(testing dataset) do
3: Calculate mean value of all items in each data vector

in testing dataset.
4: end for
5: if the mean value is in-between IDF (DoS attack) then
6: This data is DoS attack
7: end if
8: Return normal data in testing dataset.

machine to a local machine). Being written in CSV format,
KDD99 data is a 42-dimensional vector, of which the last
term labels the data type (normal or attack).

Another investigated dataset CICIDS2017 comes from
the project between the Communications Security Establish-
ment and the Canadian Institute for Cybersecurity [30]. This
dataset corresponds to the user profile that records network
events and behaviors, to produce a diverse and comprehensive
baseline dataset from intrusion detection. The original files
(PACP and logs) can be used to summarize new features
of the network traffic data, while CICFlowMeter is used
for network traffic data analysis with respect to the tagged
flows based on time timestamps, the source & destination IP,
the source & destination ports, the protocols and the attacks.
CICIDS2017 dataset is updated every 5 days, mainly includ-
ing six types of attacks: the DoS, the Brute-force, the Heart-
bleed, the Botnet, the Web and the infiltration of the network
inside. The exampled CICIDS2017 dataset comes from Fri-
day traffic tracking, which is written in an 80-dimensional
CSV format.

For theKDD99, the features extracted tomodel amalicious
behavior of DoS attack mainly reflect in four items of the
data vector. The 5-th, 6-th, 25-th and 27-th items in the DoS
attack data vectors, corresponding to the src_bytes (the num-
ber of data bytes from source to destination), the dst_bytes
(the number of data bytes from destination to source), the
serror_rate (the percentage of connections that have ‘‘SYN’’
errors) and rerror_rate (the percentage of connections that
have ‘‘REJ’’ errors), respectively, are far higher than those
in the normal data vectors. For the CICIDS2017, the events
used to distinguish DoS attack, mainly reflect in two types
of items in the data vectors. The 2-th, 4-th, and 7-th items in
the DoS attack data vectors, corresponding to the tot_fw_pk
(the total packets in the forward direction), the tot_l_fw_pkt
(the total size of the packet in forwarding direction) and the
fw_pkt_l_avg (the average size of the packet in forwarding
direction), respectively, are far higher than those in the nor-
mal data vectors. On the other hand, the 18-th, 23-th, and
28-th items in the DoS attack data vectors, corresponding
to the fl_iat_min (the minimal time between two flows), the
fw_iat_min (the minimal time between two packets sent in
the forward direction) and the bw_iat_min (the minimal time
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FIGURE 3. Neuron Expansion training using KDD99 : (a). DR (red) and
FR (blue) versus λ (b). Training time (black) versus λ. and CICIDS2017 :
(c). DR (red) and FR (blue) versus λ (d). Training time (black) versus λ.

between two packets sent in the backward direction), respec-
tively, are far lower than those in the normal data vectors.

The numerical experiments are carried out using three
manually-setting datasets. Set1 comes from the KDD99 with
21003 data vectors (including 9505 normal, 2008 DoS attack,
9173 U2R attack and 317 R2L attack) for training, and
8000 randomly-selected data vectors for testing. Being a
large-scale dataset, Set2 also comes from KDD 99 with
95557 data vectors (including 76815 normal, 13467 DoS
attack, 42 U2R attack, 1126 R2L attack and 4107 Prob attack)
for training, and 10000 randomly-selected data vectors for
testing. To validate that the SE-DBGSOM-based DoS attack
remains efficient for different datasets, we also use Set3 from
CICIDS2017 with 22705 data vectors (including 11469 nor-
mal and 11236 DoS attack) for training, and 8000 randomly-
selected data vectors for testing.

B. THE REGULATION COEFFICIENT OPTIMIZATION
The key degree of freedom for the proposed SE-DBGSOM
model is the regulation coefficient λ, which heavily deter-
mines the trade-off between high detection rate and low false
positive rate. The detection rate is defined as DR = 1 −
Nfn/Nta, where Nfn and Nta denote the number of false nega-
tives and the total number of attack connections, respectively.
The false positive rate is defined as FR = Nfp/Ntn, where Nfp
and Ntn denote the number of false positives, and the total
number of normal connections, respectively. DR quantifies
the ratio of the attack data that can be correctly detected,
while FR quantifies the probability that the normal data are
misdetected as the attack data [31].

We utilize datasets from both the KDD99 (Set1) and the
CICIDS2017 (Set3) to optimize the regulation coefficient λ,
with respect to the DoS attack detection. Through the neuron
growth process using KDD99, Figure. 3 (a) shows that when
λ takes a value in-between 100 and 120, a near-unity detection
rate and a near-zero false positive rate (less than 0.03) can be
simultaneously achieved. Moreover, Figure. 3(b) shows that
using a regulation coefficient of less than 15, the training time

TABLE 1. Comparison between DBGSOM, GHSOM and SE-DBGSOM
(without IDF).

increases dramatically. It reveals the fact that a small value of
λ results in a strict condition of clustering, thus the training
time of neuron growth naturally trends longer. In addition,
when λ is higher than 120, the resulting growth threshold
fails to separate the normal and attack data vectors, where
the detection rate drops to zero.

For the neuron growth process using CICIDS2017,
Figure. 3(c) shows that most of the detection rates for all
regulation coefficient values are higher than 0.6, yet the
near-unity results take place randomly, which reveals the
fact that the DoS attack (DDoS attack included) data vectors
in CICIDS2017 are not so characterization-clear compared
to those in KDD99. Moreover, Figure. 3(d) shows that a
large value of λ facilitates a small training time. In addition,
through a trendline fitting for the detection rate versus λ,
the optimized value is 115, which coincidentally approaches
to that for KDD99, and is used in the following.

C. EXPERIMENTAL CHARACTERIZATION FOR SE-DBGSOM
To validate that the renewed definition of the statistic-based
growth threshold facilitates higher detection rate and shorter
training time, we experimentally compare the SE-DBGSOM
(without IDF) and the conventional DBGSOM [25]. A series
of repeating experiments (based on Set3) are carried out
to present the evolution of the neuron growth process. The
schematic of the numerical experiments includes three steps:
The test data vectors are incident in the grown neuron network
with trained weights; similar to that in the training process,
the normal and DoS attack data vectors are clustered in
existing neurons; the IDF is used to fine-grained classify the
deeply-bunched data. As a result, Figure. 4(a) shows that the
SE-DBGSOM facilitates a higher detection rate of DoS attack
(mean value of 93.3% for 20-times experiments) compared to
the DBGSOM (mean value of 67.9%). Figure. 4(b) shows that
the neuron growth process for DBGSOM commonly takes a
longer training time (mean value of 630 seconds) than that
for SE-DBGSOM (mean value of 145 seconds). Moreover,
Table. 1 shows that the SE-DBGSOM facilitates a higher
detection rate and a lower false positive rate for Set3 com-
pared to the DBGSOM. Although both the SE-DBGSOM
and the DBGSOM achieve near-unity detection rate for Set1,
an obvious enhancement is reflected at the false positive rate.

Thanks to the visualization mechanism, it is valid to learn
the statistic enhancement from the output map of the neuron
growth process. Figure. 5 shows a part of the output neuron
map for both DBGSOM (a) and SE-DBGSOM (b), where
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FIGURE 4. DBGSOM and SE-DBGSOM (without IDF) characterization (a).
Detection rate. (b) Training time.

FIGURE 5. Output neuron map for (a). DBGSOM and (b). SE-DBGSOM.

each square represents a winning neuron. Through the neuron
growth process, the data vectors sharing the same type are
clustered in same neurons. However, false clustering takes
place where the normal data vectors are marked attack, vice
versa, or different types of data vectors are deeply-bunched.
In Figure. 5, the normal datamarked 0 and theDoS attack data
marked 13 are clustered in the same neuron for DBGSOM,
but is classified for SE-DBGSOM due to the input-data-
dependent growth threshold definition. Additionally, since
the output neurons for SE-DBGSOM (amount of 38) are
fewer than that for DBGSOM (amount of 81), the training
time is naturally shortened.

Numerical experiments using Set2 (from KDD99 but with
more data vectors) are also carried out, to compare the
SE-DBGSOM and the GHSOM. Figure. 6 shows a part of
the output neuron map for GHSOM, where the normal data
(marked 0) are not only bunched with the DoS attack data
(marked 4 and 5), but also bunched with the U2R attack data
(marked 2) and the Prob attack (marked 10 and 15). Such a

FIGURE 6. Output neuron map for GHSOM.

FIGURE 7. The IDFs of normal and DoS attack datasets.

deeply-bunched issue is mitigated for SE-DBGSOM, thus the
false positive rate drops down to 2.37% (see Table. 1).

D. FINE-GRAINED DATA CLASSIFICATION USING IDF
Although the statistic-based growth threshold facilitates
higher detection rate and shorter training time, the remaining
deeply-bunched data vectors contribute to a high false posi-
tive rate. Hence, the IDF is utilized for the fine-grained data
classification mechanism after the neuron growth process,
such that the false positive rate can be further reduced. We
randomly extract 40 datasets from the testing part in Set2,
either normal or DoS attack data included only, calculate
the corresponding IDFs via Eq. 9, and compare them in an
errorbar manner. IDF for normal and DoS attack datasets
value in two independent zones except a few overlaps. By
taking all measured results into account, the proper IDF for
identifying DoS attack data, is at (19.92, 59.04). When the
mean value of all items for an unknown data vector (in the
testing dataset) falls into this range is marked DoS attack,
or else marked normal.

Although the proposed IDF definition seems simple,
it somehow reflects the inner characterization of items for
different data types. Through the fine-grained classification,
the remaining deeply-bunched data vectors can be further
separated. To quantify this, experiments based on Set2 and
Set3 are carried out, mainly concerning the false positive rate.
Table. 2 shows that all of the concerned models facilitates
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TABLE 2. Comparison between DBGSOM, GHSOM, REversible Sketch, and
SE-DBGSOM (with IDF).

TABLE 3. Comparison between SE-DBGSOM (with IDF) and other
methods based on KDD99.

a near-unity detection rate for Set2, yet the SE-DBGSOM
with IDF has the lowest false positive rate of 0.59% (cal-
culated from 40 parallel experiments using independent
randomly-selected datasets), which evaluates the potentially
best behavior of correcting the false positive. On the other
hand, only the SE-DBGSOM with IDF possibly achieves
a (coincidental) unity detection rate and a zero false positive
rate for Set3 simultaneously. Since the IDF-based data clas-
sification benefits an ultra-low false positive rate, it becomes
another evidence of the statistic enhancement.

Finally, we compare our experimental results to those using
conventional DoS attack detectionmethods based onKDD99.
Table. 3 shows that by trading off high detection rate and
low false positive rate, the proposed SE-DBGSOM model
facilities the best state-of-the-art among all related works.
Since IDF in the proposed model only concerns the DoS
attack data vectors, it naturally comes at the cost of failing
to improve the detection performance of other attack types.
This issue can, in future works, be solved by employing
various statistic-based evaluation parameters, such that the
data topology can be more exhaustively represented.

V. CONCLUSION
We propose a new model of directed batch growth
self-organizing mapping concerning the emerged needs of
DoS attack detection, which facilitates accurate topologi-
cal representation for network traffic data. Special atten-
tion is given to the definition of the input-data-dependent
growth threshold and the data-vector-items-based inner dis-
tribution factor, which consult simple statistic principle
but is proved efficient. Based on the optimized regulation

coefficient, numerical experiments using two different
datasets, KDD99 and CICIDS2017, are carried, where the
detection rate, false positive rate and training time, reaches
the state-of-the-art among related works. Being the first
proof-of-concept of the statistic enhancement in the proposed
model, this work holds great potential in intrusion detection
and other applications which need accurate data topology
representation.
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