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ABSTRACT CT screening has been proven to be effective for diagnosing lung cancer at its early
manifestation in the form of pulmonary nodules, thus decreasing the mortality. However, the exponential
increase of image data makes their accurate assessment a very challenging task given that the number of
radiologists is limited and they have been overworked. Recently, numerous methods, especially ones based
on deep learning with convolutional neural network (CNN), have been developed to automatically detect and
classify pulmonary nodules in medical images. In this paper, we present a comprehensive analysis of these
methods and their performances. First, we briefly introduce the fundamental knowledge of CNN as well
as the reasons for their suitability to medical images analysis. Then, a brief description of various medical
images datasets, as well as the environmental setup essential for facilitating lung nodule investigations with
CNNs, is presented. Furthermore, comprehensive overviews of recent progress in pulmonary nodule analysis
using CNNs are provided. Finally, existing challenges and promising directions for further improving
the application of CNN to medical images analysis and pulmonary nodule assessment, in particular, are
discussed. It is shown that CNNs have transformed greatly the early diagnosis and management of lung
cancer. We believe that this review will provide all the medical research communities with the necessary
knowledge tomaster the concept of CNN so as to utilize it for improving the overall human healthcare system.

INDEX TERMS Lung cancer, deep learning, convolutional neural networks, computed tomography (CT)
images, pulmonary nodules, image classification.

I. INTRODUCTION
In 2018, lung cancer is ranked first for both incidence and
mortality among all cancer types worldwide; accounting for
11.6% and 18.4% of all cancer cases and all cancer deaths,
respectively [1]. It presents very poor general prognosis due
to the fact that the disease tends not to be diagnosed until
it is at a critical stage [2], [3]. For instance, the generally
low (18%) five-year survival rate can be lifted to 56%

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Mercaldo.

if it is diagnosed at an early development; the study by
Henschke et al. demonstrated that 88% of 412 patients diag-
nosed with stage I lung cancer had survived 10 years after the
diagnosis [4]. Hence, early diagnosis of lung cancer is vital
to improve its therapeutic decisions and prognosis.

One of the effective approaches for reducing the mortal-
ity rate of lung cancer is screening as it helps the medical
experts to diagnose the disease before it presents any signs or
related symptoms. Specifically, the National Lung Screening
Trial (NLST) had demonstrated that there was a reduction
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FIGURE 1. Illustration of the great diversity of pulmonary nodules in
CT images. (a) Isolated nodule within a single CT slice (> 3.0 mm);
(b) Micro-nodule within a single CT slice (<3.0 mm); (c) Non-nodule
within a single CT slice (>3.0 mm); (d) Isolated solid nodule; (e) Ground
glass nodule; (f)Partly solid nodule; (g) Juxta-pleural nodule;
(h) Juxta-vascular nodules; (i) Nodule immersed in pleural effusion.

of over 20% of the mortality rate in patients who under-
went low-dose computed tomography (LDCT) screening [5].
Lung screening enables the accurate depiction of pulmonary
nodules which constitute the critical indicators of the early
development of lung cancer.

In CT images, pulmonary nodules can be referred to
as round or oval tissue masses of lung with diameter less
than 30 millimeters. They present large variations in sizes,
density, location and surrounding. As shown in Fig. 1(a)
and 1(b), pulmonary nodules usually have a diameter large
than 3 mm and those with diameter smaller than 3 mm are
called micro-nodules. Non-nodules including bronchi walls
and blood vessels present similar appearances as nodules
and may cause false positive during the process of detection
(Fig. 1(c)). According to the density, pulmonary nodules can
be categorized into solid nodules, ground glass nodules and
partly solid nodules (Fig. 1(d, e, f)) [6], [7]. In term of loca-
tion, nodules can be isolated, juxta-pleural or juxta-vascular
(Fig. 1(d, g, h)). In many cases, the pleural effusion makes the
delineation of nodule contour challenging (Fig. 1(i)). In sum-
mary, these diversities of pulmonary nodules substantially
increase the difficulty of achieving accurate detection and
diagnosis.

Furthermore, the speedy development of CT screening of
lung cancer has led to an exponential increase of images data
to be examined by doctors, which significantly increases their
workload resulting in erroneous diagnosis causing unneces-
sary anxiety for the patients or decreasing the chances to
be cured. Bechtold et al. demonstrated that the error rate
susceptible to occur in 20 CT images analysis conducted by a
radiologist per day ranges from 7− 15% [8]. Therefore, with
the aim of reducing the radiologists workload and improving
the early detection of lung cancer, numerous methods and
systems have been proposed for automatic medical images
analysis.

Deep learning, especially convolutional neural net-
work (CNN), has been remarkably utilized in various medical
imaging tasks due to the outstanding performances. For
the applications on analysis of lung, breast, prostate and
brain cancers, several excellent reviews had been published
recently [9]–[11]. On the other hand, there exist other survey
studies mainly dedicated to CNNs and their applications
to radiological tasks [12]–[14]. Although these papers have
comprehensively described the applications of artificial intel-
ligence (with special regard to deep learning) to medical
imaging tasks, no specific review has been devoted to the
detection and classification of pulmonary nodules by CNNs.

In this paper, we aim at illustrating some recent advanced
deep learning techniques applied to the analysis of pulmonary
nodules. Specifically, a summary of various CNNs based
approaches developed in 2018 for the detection and clas-
sification of pulmonary nodules is presented. We did not
consider studies whose methodology are based on other deep
learning models such as recurrent neural networks (RNNs)
and auto-encoders (AEs) due to their higher computational
complexity and lower recognition performance as compared
with CNNs. Moreover, we limited the works reported here
to those of 2018 to avoid overlapping with existing reviews.
With this review, we intend to:

• Demonstrate that CNNs stand out of other deep learning
models and they have amazingly contributed to the early
diagnosis and treatment of lung cancer.

• Provide researchers with available medical image
datasets as well as environmental (hardware and soft-
ware) requirement needed for lung cancer studies using
deep learning.

• Point out the crucial obstacles to successfully applying
CNNs to medical image analyses as well as prospective
solutions for overcoming them.

This investigation is structured in the following way. First,
fundamental knowledge of CNNs is described as well as the
advantages of their usage in pulmonary nodules analysis. Sec-
ond, an overview of various medical images datasets as well
as the environmental setup necessary for conducting lung
nodules studies is presented. Third, a comprehensive analysis
of the recent studies on the detection and classification of
pulmonary nodules is conducted. Finally, the existing chal-
lenges of deep learning based approaches for lung nodules
analysis are pointed out followed by the identification of
some prospective directions.

II. CNN AND ITS DISTINCT CHARACTERISTICS
A. CNNS OVERVIEW
CNN algorithms, also known as deep learning models, are
referred to as a class of machine learning techniques; which
are all subfields of artificial neural networks. CNN had
known its great advancement in 2012 through the study con-
ducted by Krizhevsky et al. [15]. They developed a CNN
model namely AlexNet which won the ImageNet Large
Scale Visual Recognition Competition (ILSVRC) reducing
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FIGURE 2. CNNs architectures commonly used in medical imaging. (a) One CNN with 2 convolutional layers, 2 pooling layers, and a fully
connected layer; (b) Node graph of 1D representation of a classical CNN structure; (c) Node graph of 1D representation of a multi-stream
CNN structure; (d) Node graph of 1D representation of structure of a CNN for segmentation (U-NET with only one down-sampling stage).

the classification error record with amargin greater than 10%.
Thereafter, new CNN models with more layers have been
put forward including VGG-Net [16], ResNet [17], [18],
GoogLeNet [19], SENet [20], etc.

Generally, convolutional neural networks consist of a
stack of various convolutional layers which are learned
accordingly with the aim of automatically extracting use-
ful information from the input data without involving any
preprocessing or features engineering procedures. Crucial
components of CNNs include convolutional layer, pooling
layer, fully-connected and Softmax layers (Figure 2(a)). The
main process for achieving the features discovery in CNNs
is convolution; which is performed through the convolutional
layers. It consists of applying a ‘‘dot product’’ mathematical
operation of matrices of weights across the entire content of
every sample of the input data (images, videos, etc.) result-
ing in the generation of the feature maps. Another essential
operation in CNNs is pooling. It is often applied after the
convolution process. Applying pooling helps in reducing the
dimensionality of the output whichwill consequently result in
the preservation of more important essential features. In addi-
tion, it is worth mentioning that the size of the receptive field

is to be chosen carefully as the recognition performance of
a designed CNN architecture can be significantly influenced
by the amount of relevant information included in the network
input data. For instance, if the surrounding environments of
the objects of interest contain much unnecessary details such
as noises and artifacts or if they do not enclose enough contex-
tual information of the target objects, the CNN model would
be susceptible to yield very poor detection performance.
Furthermore, according to the dimensions of the convolu-
tional filters, convolutional neural networks can be classified
into 2D-CNN whose kernels are of dimensions of two and
3D-CNN whose kernels are of dimensions of three.

B. CNN ARCHITECTURES COMMONLY USED IN MEDICAL
IMAGING
Based on the structures of the CNNmodels utilized in existing
clinical decision-support systems, CNNs can be categorized
into classical classification structures, multi-stream structures
and segmentation structures [21].

Classical CNN models are those networks built up by
stacking multiple layers in a linear way and which are
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FIGURE 3. The workflow diagrams of the two categories of methods for pulmonary nodule analysis. (a) Conventional methods; (b) CNNs
based methods.

generally aimed to perform classification tasks (Fig. 2(b)).
AlexNet [15] and VGG [16] are the most frequently used
networks of this category.

With regard to the fact that the amount of contextual infor-
mation is of great significance for detecting abnormalities
from images and given that the fusion of multiple sources of
image information may improve the detection performance,
multi-stream CNN models also known as multiple path net-
works have been proposed (Fig. 2(c)). This concept of multi-
ple paths originated from the idea of extracting the essential
features contained in adjacent images of the volumetric medi-
cal data without increasing the amount of network parameters
and computational cost. Investigating multiple path networks
has resulted in the development of multi-scale image analysis
and 2.5D image classification frameworks achieving great
detection results [24]–[26].

Segmentation CNN models refer to that group of CNNs
destined to examine both medical and natural images with the
purpose of dividing them into multiple constituents according
to the user’s need for further analysis. These networks can be
fed with images larger than that on which they were trained
outputting a likelihood map for every single pixel of the
images. They are also known as fully convolutional neural
networks (FCNNs); andU-Net and its variants [22], [23] con-
stitute some improved versions of this category as demon-
strated by their remarkable performances (Fig. 2(d)).

C. DISTINCT CHARACTERISTICS OF CNNS
In recent years, the crucial role played by the automatic
and accurate detection of pulmonary nodules in the early
diagnosis and precise management of lung cancer has led to
the development of numerous methods. These methods can
be categorized into conventional methods and deep learn-
ing based methods. Conventional methods are those that are
mainly based on traditional image processing techniques and
machine learning classifiers [27]–[32] and whose pipelines

often include many sub-processes. Whereas, deep learning
methods specifically CNNs based methods are those whose
implementation does not involve any features engineering
steps and they are referred to as end-to-end solutions. The
workflow diagrams of these methods are illustrated in Fig. 3.
Several differences between these two kinds of methods

are worth noting. First, the pipeline of conventional meth-
ods includes many sub-processes; which increases the com-
putational time as well as the error rate. Whereas, CNNs
based methods are straightforward systems not involving
some computationally costly processes such segmentation
and features engineering; which allows them to yield more
accurate detection results. Another significant difference is
that CNNs based approaches canmake full use of the essential
information contained in three dimensional images data such
as computed tomography (CT) images and Positron Emission
Tomography (PET) images. Doing so would definitely result
in better diagnostic results. Finally, the great successes of
CNNs based methods are often subjective to the amount of
samples that comprises the dataset; which limits their applica-
tion to the analysis of small dataset although theymay achieve
better results than conventional methods.

III. DATASETS AND EXPERIMENTAL SETUP
Given that the implementation of CNNs requires a huge
amount of parameters to be estimated, some hardware and
software requirements need to be specified. Some commonly
used datasets as well as the environmental setup for automatic
detection and classification of pulmonary nodules are given
below.

A. DATASETS OF LUNG CANCER CT IMAGES
1) LIDC/IDRI DATASET
LIDC/IDRI stands for Lung Image Database Consortium
and Image Database Resource Initiative [33]. It is a database
of thoracic CT scans owing its successful creation to
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three research organizations including the NCI (National
Cancer Institute), the FNIH (Foundation for the National
Institutes of Health) and the FDA (Food and Drug Admin-
istration). LIDC/IDRI dataset consists of a total of 1, 018
cases. In effect, there are only 1, 010 different CT scans due
to the fact that there are eight cases that were inadvertently
reproduced while gathering the CT scans. All the gathered
image data are stored in DICOM format and with uniform
size of 512 × 512. The images thickness ranges from 0.5 to
5 mm where the most recurrent image thicknesses include
1 mm, 1.25 mm, and 2.5 mm. It is worth noting that more
than 50% of the recent studies on lung cancer diagnosis have
made use of the LIDC/IDRI dataset.

Every case of the LIDC/IDRI dataset consists of hundreds
of images plus an XML file which contains the details of
the identified lung lesions. Making use of electronic calipers,
the diameter of each of the detected lung lesions was assessed
resulting in their classification into three main groups includ-
ing nodules (3-30 mm of diameter), non-nodules (diameter>
or equal to 3 mm) and micro-nodules (diameter < 3 mm).

2) LUNA 16 DATASET
This dataset is a subset of the publicly accessible LIDC/IDRI
dataset. It consists of a total of 888 thoracic CT scans col-
lected in the basis that the lesions contained in every case
have been marked by at least three of the four medical experts
having taken part in the annotation processes [34]. Consid-
ering this inclusion agreement, only nodules with 3 mm <

diameter were considered as positive samples meanwhile all
the remaining lesions were referred to as negative samples.

3) NLST DATASET
It is a dataset collected in 2009 by the National Lung Screen-
ing Trial (NLST); which was a project that aimed at compar-
ing the lung cancer diagnosis accuracy through low-dose CT
screening with that of the chest radiography screening. The
whole screening project was performed in 33 American med-
ical institutions and comprised a total of 53, 454 participants.
These patients were aged between 55 and 74 years and with a
smoking history of at least 30 packs per year. This dataset is
made up of both low-dose CT images and chest radiographs.
For more details, kindly refer to [5].

4) KAGGLE DATA SCIENCE BOWL (KDSB) DATASET
This dataset was generated from 2101 patients and every
patient’s file includes between 100 and 400 images [35]. All
the images have been annotated in the following manner:
label 0 and label 1 were assigned to patient without cancer
and patient with cancer, respectively.

5) ELCAP DATASET
ELCAP stands for Early Lung Cancer Action Program. It is
a dataset made up of 50 low-dose CT cases [36]. The images
slice thickness is equal to 1.25 mm and the diameters of the
majority of the identified nodules range from 2 to 5 mm. It is
worthy to be mentioned that all the annotated lesions of this

dataset are nodules and no non-nodules were marked by the
medical experts.

B. CNN SOFTWARE PLATFORMS AND HARDWARE
EQUIPMENT
The major programming language utilized for the implemen-
tation of deep learning models is python. Besides, there is
also Matlab which is a high level programming language
and numerical analysis environment conceived for perform-
ing engineering and scientific works such as computational
finance, image and signal processing, matrix calculations,
data analysis, system simulation, etc. [37]. Moreover, there
exist many platforms based on python language which have
been proposed to facilitate the CNNs models implementa-
tion. These platforms include Keras, Caffe, Chainer, Then-
sorFlow, Torch, etc. Caffe provides interfaces for both python
and C++; it was introduced by graduate students from the
University of California Berkeley. Torch is a relatively easy
and efficient computing framework that provides its potential
users with an excellent C interface via LuaJIT.

CNNs constitute a class of deep learning techniques; which
makes their implementation dependent on great amount of
experimental data as well as a huge number of parameters
to be estimated. Thus, the great technological advancements
have led to the creation of sophisticated computers equipped
with graphical processing unit (GPU) and compute unified
device architecture (CUDA) supported by NVIDIA.

IV. PULMONARY NODULE DETECTION AND FALSE
POSITIVE REDUCTION
Pulmonary nodule detection and false positive reduction con-
stitute the two most essential mechanisms for the early diag-
nosis and precisemanagement of lung cancer. Thus, extensive
research works are being conducted with the aim of improv-
ing the early and automatic detection of pulmonary nodules.
These research works have led to the development of various
methods and systems which are summarized in Table 1 and
whose details are presented below.

A. ADVANCED OFF-THE-SHELF CNNS
There exist many well-known CNN models for their remark-
able performances in various recognition tasks; which are
also known as off-the-shelf CNNs. However, designing a
great CNN model depends on the problem at hand and
requires a certain level of computer science expertise; which
constitutes a very challenging task for researchers due to their
diversified background. Therefore, exploiting the advantages
of reinforcement learning, region proposal network (RPN),
Faster Region based CNN, etc.; advanced CNN models have
been designed for lung nodule detection.

1) REINFORCEMENT LEARNING
Ali et al. exploited CNN to build up a reinforcement
learning framework for detecting pulmonary nodules in CT
images [38]. This system constitutes a pioneer work as
regarding reinforcement learning applied to medical image
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TABLE 1. Recent studies on pulmonary nodule detection and false positive reduction using CNNs.

analysis tasks. Moreover, it presented excellent detection
performance yielding a sensitivity, specificity, accuracy, PPV
and NPV above 99%, respectively.

2) REGION PROPOSAL NETWORK
Employing 3D U-Net, 3D DenseNet and RPN (region pro-
posal network), Qin et al. developed a system for auto-
matically detecting pulmonary nodule in CT images [39].
The overall system training process was performed utilizing
Multi-task residual learning and online hard negative exam-
ple mining approaches. The proposed methodology included
two main modules which are: nodule candidates’ generation
based on 3D U-Net and decrease of false positives utilizing
a 3D DenseNet. It achieved a sensitivity of 96.7% and CPM
score of 0.834 on LUNA16 dataset.

3) U-NET-INSPIRED 3D FASTER R-CNN
Tang et al. proposed a two-phase framework for pulmonary
nodules identification and false positive reduction [40]. First,
a U-Net-like 3D Faster RCNN model is employed to gen-
erate the nodule samples. Then, a 3D deep convolutional
neural network is built to identify the true nodule candidates.

The developed system was trained based on hard negative
mining approach yielding a CPM score of 0.815.

4) 3D G-CNN
Generally, successful implementation of CNNs necessitates
great amount of experimental data which are usually unavail-
able in medical area. Thus, Winkels et al. proposed a system
based on 3D G-CNNs which achieved the same performance
with that of a normal CNN model requiring ten times more
data when applied to the reduction of false positive in auto-
mated pulmonary identification [41]. The implementation of
the proposed framework includes two main processes which
are filter transformation and spatial convolution. It yielded a
CPM score of 0.856 on 3000 nodule samples acquired from
the NLST and LIDC/IDRI datasets; which is almost equal
to the performance (CPM = 0.869) of a normal CNN model
trained with ten times more data (30000 nodule samples).

B. CNNS WITH ADVANCED IMPLEMENTATION
TECHNIQUES
The detection performance of a designed CNN model is
strongly dependent on its implementation procedure as well

78080 VOLUME 7, 2019



P. Monkam et al.: Detection and Classification of Pulmonary Nodules Using Convolutional Neural Networks: A Survey

as the size of the images constituting the dataset. To this
purpose, few solutions for improving the implementation of
CNNs have been proposed.

1) PARTICLE SWARM OPTIMIZATION
With the aim of facilitating the parameters optimization
which is regarded as a crucial step in the implementa-
tion of CNN models, Silva et al. proposed a framework
in which particle swarm optimization (PSO) approach is
utilized to automatically select the best network hyper-
parameters [42]. The proposed framework was implemented
on 12, 157 pulmonary nodule samples including 3, 415 nod-
ules and 8, 742 non-nodules generated from the LIDC-IDRI
dataset. It achieved an accuracy, sensitivity, specificity and
AUC of 97.62%, 92.20%, 98.64% and 0.955, respectively.

2) CNN RECEPTIVE FIELD AND IDENTIFICATION OF
MICRO-NODULE
Although great number of systems have been developed to
accurately and precisely identify pulmonary nodules in med-
ical images, very few of them can differentiate micro-nodules
from other lung lesions such non-nodules; which increases
the amount of false positives. To this purpose, Monkam
et al. extended lung nodules analysis to automatic identi-
fication of micro-nodules [43]. Through examination of the
whole LIDC-IDRI dataset, they built up an experimental
dataset consisting of 13, 179 micro-nodules and 21, 315 non-
nodules. Considering the small sizes of both micro-nodules
and non-nodules, they investigated the performance of three
CNNmodels with different depths as well as their recognition
ability when fed with samples of different sizes. The three
CNN structures included one, two and four convolutional lay-
ers, respectively. Whereas, the different image patches sizes
consisted of 16× 16, 32× 32 and 64× 64, respectively. The
best classification performances were yielded by CNNmodel
with two convolutional layers trained with image patches of
32× 32.

C. CNN+

Herein the term of CNN+ refers to those systems
whose framework includes both CNNs and some conven-
tional image processing and objects detection techniques.
Combining CNNs with other techniques such as linear inter-
polation, icosahedron divided sphere algorithm, threshold-
ing, K-means, median filtering, morphological operations,
Gabor wavelet transform and gray level co-occurrence matrix
(GLCM), new systems for classifying lung nodules have been
developed. A schematic representation of these systems is
displayed in Fig. 4(a).

1) 2D CNN+ (LINEAR INTERPOLATION, ICOSAHEDRON
BASED NORMALIZATION AND THRESHOLDING)
Liu et al. developed a novel framework that includes 2D
CNNswithmultiple views andwhose pipeline comprises four
main phases [44].They aimed at demonstrating the effective-
ness of convolutional neural networks to accurately identify

the nodules type based on their internal characteristics. They
employed linear interpolation, icosahedron divided sphere
algorithm and thresholding approach for raw CT images
preprocessing, volume of interest detection and generation
and selection of views at different scales, respectively. Then,
the suitable views chosen at all scales were used to train the
2D CNN model with the aim of classifying the nodule candi-
dates into G (ground glass optical), W (well- circumscribed),
V (vascularized), J (juxta-pleural) and P (pleural-tail) and N
(non-nodule), respectively. This system achieved an overall
accurate of 92.1% and 90.3% on the nodules acquired from
the LIDC-IDRI dataset and ELCAP dataset, respectively.

2) 2D U-Net + (K-MEANS, MEDIAN FILTERING, GABOR
TRANSFORM, GLCM, XGBOOST AND RF)
In an investigation by Jia et al., K-means algorithm, median
filtering, some morphological operations, Gabor wavelet
transform and gray level co-occurrence matrix (GLCM) were
integrated with convolutional neural networks and XGBoost
and Random Forest (RF) classifiers to improve the auto-
mated identification of lung nodules in CT images [45].
They put forward a system whose pipeline comprises lung
parenchyma segmentation, nodule candidates’ generation,
features engineering and classification of the nodule candi-
dates. First, K-means algorithm, median filtering and mor-
phological operations were applied on the raw CT scans to
obtain the whole lung parenchyma. Whereas, a 2D U-Net
model was employed to locate the nodule candidates in
the delineated lung parenchyma. Then, features engineering
was conducted based on various techniques including Gabor
wavelet transform, gray level co-occurrence matrix (GLCM),
etc. Finally, an ensemble learners consisting of XGBoost
and Random Forest (RF) classifiers was trained to obtain
the final prediction results. This system achieved an AUC of
0.93 on the 800 cases of the Tianchi medical AI competition
dataset.

D. ENSEMBLE LEARNERS OF MULTIPLE CNNS
Ensembling refers to an approach for integrating multiple
learners into a single framework with the aim of increas-
ing the overall performance of the system. Generally, lung
nodules present large variations in shapes, sizes, internal
characteristics, etc. Moreover, different convolutional neu-
ral network learners may yield different prediction results.
Hence, to the end of improving the accuracy of clinical
decision-support systems, various CNNs based ensemble sys-
tems have been proposed. Their implementation process is
shown in Fig. 4(b).

To alleviate the poor performance of three-dimensional
CNNs inmedical imaging data analysis due to limited amount
of dataset and data classes’ imbalance, Pezeshk et al. pro-
posed an automatic two-phase 3D CNNs based system for
pulmonary nodules detection named DeepMed [46]. First,
they employed a 3D FCN (fully convolutional network) to
identify and generate the nodule samples. Then, averag-
ing was utilized to fuse the outputs of many CNN models
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FIGURE 4. Different categories of pulmonary nodule analysis systems. (a) CNN+ system. (b) Ensemble learners system. (c) Hybrid system.
(d) Transfer learning system.

yielding the final detection results. To overcome the data
imbalance and insufficiency of the training samples, they
put forward a new strategy for increasing the amount of
the training samples. This augmentation method; which can
expand every sample 28 times, is derived from one of their
previous studies [47]. The proposed system outperformed
various state-of-the-art methods implemented on the LUNA
dataset.

Employing 3D deep CNN models with shortcut
connections and with dense connections, respectively; a new
ensemble system namely checkpoint ensemble method was
proposed by Monkam et al. [48]. They investigated the per-
formance of ensemble models based on 3Dshortcut connec-
tion DCNNs and 3D dense connection DCNNs separately.
On the other hand, they also explored the dependence of
the performance of these methods on the receptive field
sizes. It was found that single deep CNN model with larger
receptive field size (64 × 64 × 64) yielded better classifi-
cation results. Whereas, shortcut connection DCNN model
outperformed dense connection DCNN regardless of the
network input size. Furthermore, performing the checkpoint

ensemble strategy resulted in the overall system performance
improvement yielding a CPM score of 0.910.

Even though, micro-nodules are seen as earliest develop-
ment of pulmonary nodules, less attention has been paid to
improving their detection; which considerably contributes to
the high false positives rate in automated pulmonary nodules
detection systems. Moreover, the full use of information con-
tained in adjacent images of volumetric imaging data such
as MRI and CT may result in more accurate and precise
detection performances. Thus, Monkam et al. proposed an
ensemble learning of multiple 3D CNNs for identifying pul-
monary micro-nodules in CT images [49]. They designed 3D
CNNmodels trained with image patches of sizes 20×20×3,
16 × 16 × 3, 12 × 12 × 3, 8 × 8 × 3 and 4 × 4 × 3,
respectively. They explored different approaches to integrate
multiple deep learning learners including, majority voting,
ELM (extreme learning machine), logical operator AND,
averaging and autoencoder (AE). The experimental results
indicated that ELM is the most suitable approach for fusing
multiple learners that aim to identify micro-nodules in volu-
metric CT images.

78082 VOLUME 7, 2019



P. Monkam et al.: Detection and Classification of Pulmonary Nodules Using Convolutional Neural Networks: A Survey

V. CLASSIFICATION BETWEEN CANCEROUS AND
NON-CANCEROUS PULMONARY NODULES
Significant successes have been achieved in the automated
differentiation of pulmonary nodules from other lung lesions
such as non-nodules. However, it is still quite challenging
to determine the status of the identified nodules. Moreover,
not all lung nodules turn out to be a cancer. Thus, given the
great number of images to be analyzed and the criticalness
of the task, many systems have been proposed to help the
physicians in the process of distinguishing between benign
and malignant pulmonary nodules. The recently developed
systems for classifying pulmonary nodules into cancerous
and non-cancerous are briefly illustrated in Table 2 and intro-
duced in details in the following subsections.

A. CNNS WITH ADVANCED IMPLEMENTATION
TECHNIQUES
1) NODULEX (CNN FEATURES + QIF FEATURES)
In a study byCausey et al., a hybrid features based systemwas
developed [50]. The developed framework namely NoduleX,
makes use of the features discovered by the CNN model and
those of the radiological QIF (quantitative image features)
to accurately differentiate malignant nodules patterns from
benign nodules patterns. Its capability of predicting malig-
nancy in pulmonary nodules is quite equal to that of expert
physicians (AUC = 0.99).

2) DENSEBTNET (CENTER-CROP OPERATION)
In another investigation, Liu et al. incorporated a center-crop
process into the conventional DenseNet to build up an
improved network with a structure in form of binary
tree namely DenseBTNet [51]. The introduction of the
center-crop process helps in discovering multi-scale features
from the nodule candidates; which will consequently con-
tribute to overcoming the influence of the great variations of
their sizes, shapes and internal characteristics on the classi-
fication performance. The experimental results demonstrated
that this new dense network model significantly outperforms
the conventional DenseNet as well as numerous existing sys-
tems validated on the same dataset.

3) 3D DILATED CONVOLUTION
Zhang et al. attempted to differentiate benign pulmonary
nodules frommalignant pulmonary nodules employing a new
CNN structure in which the pooling operation is replaced
by a 3D dilated convolution operation [52]. In effect, they
made the following contributions to the area of applications of
CNN to medical images analysis. First, instead of including
pooling layers in the network architecture, they included a
3D dilated convolution layer; which keeps the image quality
unchanged and helps retain much smaller image information.
Second, they considered different receptive field sizes for the
dilated convolutions resulting in the discovery of multi-scale
features; which would consequently increase the discrimina-
tion ability of the system leading to more accurate and precise

diagnostic results regardless of the diversity of the nodules’
characteristics.

4) PN-SAMP (MULTIPLE WINDOW WIDTHS AND WINDOW
CENTERS)
Wu et al. proposed a 3D CNN based framework that takes
advantage of multiple window widths and window centers
and the multi-task learning concept to accurately identify
the nodules areas, to extract semantic information from the
detected nodules and to predict the nodules malignancy [53].
This method could be of significant help to the physicians for
not only differentiating malignant from benign nodules, but
also for assessing the malignancy level of the tumors; which
will greatly improve the treatment planning of lung cancer.

5) DUAL-PATH 3D CNN AND MULTI-OUTPUT NETWORK
Dey et al. conducted a comparative study aiming to find the
most appropriate dual-path 3DCNNmodel for distinguishing
betweenmalignant and benign pulmonary nodules [54]. They
investigated the discrimination capability of four 3D deep
learning models including an ordinary 3D CNN, a 3D
DenseNet, multi-output 3D DenseNet and an augmented 3D
DenseNet with multi-outputs. The performances of these
networks were assessed on nodule candidates of the pub-
licly accessible LIDC/IDRI dataset and the obtained results
indicated that the multi-output 3D DenseNet (MoDenseNet)
is the most suitable network model achieving an accuracy
of 90.40%.

6) LOCAL AND GLOBAL CONTEXTUAL FEATURES WITH
TRIPLE-PATH CNN
Considering both the local and global contextual features
is of great significance for accurately assessing the malig-
nancy of lung nodules. To this purpose, Soriet al. proposed
a multi-path CNN model that can simultaneously learn local
and global contextual features from nodule candidates to
classify them into cancerous and non-cancerous [55]. To the
end of identifying the suspicious nodules, they designed a
network derived from the commonly used segmentation CNN
model U-Net. Next, the collected nodules were fed into a deep
CNN model comprising three different paths wherein the
sizes of the receptive field are different. Later on, the essential
features discovered by each path were concatenated to build
up a much diversified vector features. The validation of this
system on the KDSB (Kaggle Data Science Bowl) 2017
dataset yielded an accuracy, a recall and specificity of 87.8%,
87.4% and 89.1%, respectively.

B. CNN+

1) 2D CNN+ (OTSU ALGORITHM, PHYLOGENETIC
DIVERSITY INDEX)
Filho et al. built a framework employing image process-
ing, pattern recognition and deep learning techniques [56].
In their methodology, with the aim of extracting qualita-
tive information from the internal regions of the identi-
fied nodules, they utilized Otsu algorithm to segment the
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TABLE 2. Recent studies on the prediction of nodule malignancy using CNNs.

nodules into three sections. Then, they designed a new indices
of phylogenetic diversity based on topology to explore and
select the essential features of pulmonary nodules. Finally,
a CNN model was built and fed with the extracted nodules
characteristics to produce the final classification results. This
systemwas validated on a dataset consisting of 394malignant
candidates and 1, 011 benign candidates. It achieved an accu-
racy value of, a sensitivity value of and a specificity value of
92.63%, 90.7% and 93.47%, respectively.

2) 2D CNN+ (SINGLE IMAGE SUPER-RESOLUTION, SVM,
SVR)
Gupta et al. investigated the malignancy prediction as well
as the level of malignancy of the tumor [57]. With the aim

of overcoming the influence of low resolution on the diag-
nostic performance, they made use of the Single Image
Super-Resolution approach to preprocess the imaging data.
Then, the enhanced images were fed into a CNN model to
identify the positive nodule samples. Subsequently, essential
features were extracted from the detected real nodules uti-
lizing the previously designed CNN model. Lastly, an SVM
classifier was designed to train the generated features vector
producing the diagnostic results. Furthermore, the malig-
nancy level was predicted by training the features vector
with a SVR (Support Vector Regression) model. This system
presented quite satisfactory classification capability, yielding
an accuracy of 85.7% on nodule candidates acquired from the
LUNA16 dataset.
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3) DEEPLUNG (DUAL-PATH 3D DCNN+ (3D FASTER R-CNN,
GRADIENT BOOSTING MACHINE))
To the end of automatically detecting and classifying pul-
monary nodules in volumetric CT images, Zhu et al.
employed 3D CNN to build up a dual path networks based
system [58].First, a 3D Faster R-CNN model was designed
to locate the nodule candidates. Then, they exploited a deep
3D dual path network, gradient boosting machine (GBM)
algorithm and some detected nodules characteristics such
as size and shape to achieve the final classification results.
The proposed system’s performances were assessed through
tenfold cross-validation experiments conducted on the 888
CT scans of the LUNA16 dataset. It achieved an accuracy
of 90.44% demonstrating the great advantages of considering
deep 3-D dual path network features.

C. ENSEMBLE LEARNERS OF MULTIPLE CNNS
Xie et al. built a MV-KBC (multi-view knowledge-based
collaborative) framework for distinguishing malignant from
benign pulmonary nodules [59]. The proposed system
achieves the malignancy prediction in the following manner.
First, every nodule candidate was split into nine views. Then,
each view was utilized to build up a KBC model in which
three pre-trained ResNet-50 with three different receptive
field sizes were fine-tuned. Finally, the outputs of the nine
KBC models were combined using an adaptive weighting
based strategy to generate the final prediction results. This
study constitutes a pioneer work as it has expanded the
concept of domain knowledge to convolutional neural net-
works with application to pulmonary nodules malignancy
prediction.

D. HYBRID SYSTEMS
This group of clinical decision-support systems are those
whose frameworks comprise networks resulted from combin-
ing two or more layers or/and parameters of different other
network models. It could also be referred to as the class
of systems whose methodology contains different types of
networks. Fig. 4(c) presents a brief overview of hybrid model.
Agile CNN (LeNet+AlexNet): A hybrid convolutional

neural network model resulted from combining the lay-
ers of LeNet and the network parameters of AlexNet
for differentiating benign pulmonary nodules from malig-
nant pulmonary nodules in CT images was developed
by Nóbrega et al [60].The implementation of the proposed
model on only 743 nodule candidates yielded an accuracy
and an AUC of 82.2% and 0.877, respectively. The obtained
results demonstrated that this hybrid CNN model could be
considered as a promising alternative for applying deep
learning to the analysis of small amount of medical image
data. They also investigated the influence of some network
hyper-parameters such as kernel size, weight initialization,
learning rate and training batch size on the CNN classification
performance.

E. TRANSFER LEARNING BASED SYSTEMS
Transfer learning refers to an approach wherein the stored
knowledge resulted from learning a model while solving
a specific task can be applied to solving a different task
of a related problem. Deep convolutional neural networks
have achieved impressive recognition performances in nat-
ural images analysis. However, such great performances are
highly dependent on great amount of datasets. On the other
hand, medical imaging data are very limited; which makes
the application of deep CNN models to their analysis quite
challenging. Thus, with the aim of mitigating the poor perfor-
mance of deep CNN due to small amount of medical images,
transfer learning has been adopted as a reliable alternative for
analyzing pulmonary nodules in medical images using deep
CNN models. The concept of transfer learning is illustrated
in Fig. 4(d).

Nobrega et al. employed transfer learning to learn quan-
titative features from nodule candidates of the LIDC/IDRI
dataset; which were later utilized to classify them into
benign and malignant [61]. The scenario of their frame-
work is as follows. First, they utilized eleven deep CNN
models previously trained on the ILSVRC (ImageNet
Large Scale Visual Recognition Challenge). These mod-
els include Xception,VGG16,Inception-ResNet-V2, VGG19,
DenseNet201, MobileNet, InceptionV3, DenseNet169,
ResNet50, NASNetLarge andNASNetMobile. Then, each set
of obtained features was fed into five classifiers including
MLP (Multilayer Perceptron), Naive Bayes, (SVM) Sup-
port Vector Machine, KNN (K-Nearest Neighbor) and RF
(Random Forest), to produce the diagnostic results. The
experimental results demonstrated that the combination of
ResNet-50 for features extraction and SVM-RBF for clas-
sification is the most suitable approach for predicting malig-
nancy in nodule candidates based on pre-trained deep CNN
models. This combination yielded an ACC, an AUC, an
F-score, a TPR and a PPV of 88.41%, 93.19%, 78.83%,
85.38% and 73.48%, respectively.

A methodology employing radiomics features, trans-
fer learning generated features and ensemble learning
for nodules malignancy prediction was proposed by
Nishio et al. [62]. First, they utilized the pre-trained VGG-s
for features extraction. Second, they built up three different
CNN models including an ordinary CNN with two convo-
lutional layers, a CNN-LSTM model and a CNN with a
cascaded architecture. Then, 219 radiomics features were
acquired and the useful ones were chosen using image
segmentation and Random Forest algorithms, respectively.
Finally, they designed three ensemble models using as fusion
strategy averaging, majority voting and median probability,
respectively. Utilizing averaging as the fusion strategy allows
the third ensemble model to achieve the best AUC value of
0.96. Whereas, the highest accuracy value of 89.45% was
yielded by the same model utilizing majority voting as the
fusion approach.
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FIGURE 5. Summary of the different categories of CNN methodologies for pulmonary nodule analysis.

With the purpose of classifying nodule candidates into
benign, primary cancer and metastatic cancer, Nishio et al.
investigated the following problems [63]: the recognition per-
formance of deep CNN model as compared with that of fea-
tures engineering based methods, the importance of utilizing
transfer learning and the effect of the receptive field size on
the deep CNN classification performance. They implemented
the VGG-16 model and made some modifications to it to
fit their datasets. Later on, they designed a transfer learn-
ing model based on the pre-trained VGG-16 model. Both
deep CNN models (without and with transfer learning) were
trained with image patches of sizes 56× 56, 112× 112, and
224 × 224, respectively. The deep CNN model trained from
scratch yielded a validation accuracy of 60.2%, 62.4% and
58.9% for image patches of sizes 56, 112, and 224, respec-
tively. Whereas, the pre-trained model achieved a validation
accuracy of 60.7% when fed with images of 56× 56; 64.7%
when fed with images of 112×112 and 68.0%when fed with
images of 224× 224.

VI. TRENDS, CHALLENGES, PROSPECTIVE DIRECTIONS
AND SUGGESTIONS
From the comprehensive analyses of existing clinical
decision-support systems presented above, it is observed that
recently, the applications of convolutional neural networks
to the early diagnosis of lung cancer have known astonish-
ing progresses. Specifically, great advancements have been
achieved in the automated nodules identification, false pos-
itive reduction, classification of nodules into cancerous and
non-cancerous, etc. However, there is still room for improve-
ments due to existing challenges which are pointed out below
as well as some proposals for future investigations.

A. METHODOLOGICAL TRENDS
Convolutional neural network has been the leading method
for the detection and classification of pulmonary nodules
using deep learning. Using ‘‘lung nodules’’ and ‘‘lung nod-
ules and deep learning’’ as keywords, the statistics during
the period of 2015 to 2018 retrieved from the IEEEXplore
and PubMed databases show that the studies using CNNs
account for 93.8% and 60.5% of the overall publications,
respectively. In addition, it is found that the number of studies
using CNNs has remarkably increased by 153.3% and 50%
from 2017 to 2018 for the two abovementioned datasets,
respectively. The study by Litjens et al. also supported this
trend [21].

As illustrated in Sections IV and V, CNN method-
ologies for pulmonary nodule analysis can be catego-
rized into six groups including (a) Advanced off-the-shelf
CNNs; (b) CNNs with advanced implementation techniques;
(c) CNNs+; (d) Ensemble learners of CNNs; (e) Hybrid
CNNs and (f) Transfer learning (Fig. 5). The methods of
(a), (b), (c) and (d) are utilized for the pulmonary nodule
detection and false positive reduction. In our survey, the ratio
of the number of publications in 2018 using these four dif-
ferent categories of methods is 4:2:2:3 (see Table 1); indi-
cating that all these categories have been developed evenly
and none of them is at dominant position. The category
of ‘‘Advanced off-the-shelf CNNs’’ outperforms the other
three categories and three of the four studies of this category
achieved an accuracy and sensitivity greater than 95%. This
could be due to the fact that ‘‘Advanced off-the-shelf CNNs’’
make use of more sophisticated and newer algorithms such
reinforcement learning, Faster R-CNN, group convolution,
etc.
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Five categories of CNN methodologies consisting
of (b), (c), (d), (e) and (f) have been employed for pulmonary
nodule classification. The ratio of the number of publications
in 2018 in the current survey using these five categories
of methods is 6:3:1:1:3. It can be seen that more studies
prefer to design CNN frameworks with advanced implemen-
tation techniques; meanwhile CNN+ and Transfer learning
methodologies are also the prior choices. The category of
‘‘CNNswith advanced implementation techniques’’ achieved
better performance than the other categories. For instance,
the sensitivity of four of the six studies referred in our
survey is higher than 95%. Such performances might orig-
inate from their ability of learning greater amount and more
diversified semantic and radiomics features from the nod-
ule candidates employing newly proposed convolution pro-
cesses such as center-crop operation, 3D dilated convolution,
etc.

B. EXISTING CHALLENGES
1) INSUFFICIENCY OF WELL-LABELED MEDICAL DATASETS
WITH GREAT NUMBER OF CASES
It is noted that most of the great successes of deep learning
techniques in general and convolutional neural networks in
particular, have been achieved on huge amounts of data.
However, gathering such datasets in medical imaging is still
very challenging due to many factors such as the tedious-
ness of the annotation tasks for the physicians, privacy and
ethical requirements, etc. Thus, the lack of datasets with
large number of samples constitutes a crucial obstacle to
the application of deep learning to the analysis of medical
data [12].

2) GENERALIZABILITY CAPABILITY ISSUES
Numerous deep learning based models have been proposed
to solve various diagnostic tasks in medicine achieving out-
standing performances. However, in most of the cases, a pro-
posed model which performed very well on a specific task
may not be valid for other tasks no matter how slight their
difference maybe [64].

3) POOR INTERPRETABILITY AND EXPLICATION OF THE
DETECTION RESULTS
Nowadays, priority and emphasis are given to performance
improvements over understandability and interpretability.
However, better interpretability could be helpful in antic-
ipating on the failures of computer-aided detection sys-
tems; which would result in the reduction of false positive
or late diagnosis. Moreover, increasing the interpretability
of deep learning based detection systems will be of great
significance not only in figuring out how the predictions
are generated, but also in clearly understanding how the
outcome of a specific patient is obtained [65]. This may
lead to the definition of more accurate and reliable clinical
decision guidelines as well as to the formulation of new
hypotheses.

4) SHORTAGE OF ACCURATE CLINICAL DECISION TOOLS
Despite the great successes of deep learning in lung can-
cer screening, predicting the nature of identified pulmonary
nodules still constitutes a critical issue as very few of these
nodules turn out to be cancerous. For instance, in the National
Lung Screening Trial (NLST), less than 5% of the detected
nodules weremalignant [5].Moreover, the study by Patz et al.
had demonstrated that over 18% of this very limited num-
ber of cancerous lesions seemed to be indolent [66]. Thus,
the research community lacks robust and efficient approaches
and tools for determining whether identified pulmonary nod-
ules are malignant or benign and aggressive or indolent.

C. PROSPECTIVE DIRECTIONS
To tackle the abovementioned challenges, the following ideas
are put forward for future investigations.

First, one of the crucial obstacles to the application of
CNNs to the analysis of pulmonary nodules is the lack of
datasets with large number of samples. This issue can be
mitigated by developing some new approaches for generating
synthetic medical images. For instance, Generative Adver-
sary Networks (GANs) could be further investigated as they
have been proven to achieve remarkable results in generating
both natural and medical synthetic images [67]–[70]. More-
over, the development of more deep learning based methods
not involving great amount of data such as in the study by
Zhao et al. [60] could also be considered as a promising alter-
native to the insufficiency of labeled medical data. Further-
more, an incredible improvement of the poor performance
due to insufficient data may be achieved by designing new
CNNs frameworks in which the conventional translational
convolutions are substituted by group convolutions as proved
in the studies by Tan et al. [4], [71].

Second, given that different medical scanners operate
under different settings and that there exist various imag-
ing modalities, different datasets are often made up of
images presenting heterogeneous characteristics. These het-
erogeneities constitute one of the major factors of the
low generalizability capability of CNN models. Therefore,
we recommend the investigation of the influence of the scan-
ners settings such as reconstruction techniques and parame-
ters as several studies have demonstrated their impact on the
radiomics features [72]–[75]. In addition, the generalizabil-
ity issues could also be alleviated through developing some
methods that can be validated on images of different types i.e.
Computer Tomography (CT), Magnetic Resonance Imaging
(MRI), etc. Furthermore, to adapt other approaches such as
knowledge transfer can significantly mitigate the problems
of radiological heterogeneity of medical scanners and lung
nodules diversity [76]; which will potentially enhance the
generalizability of clinical-decision support systems.

Third, the training processes of CNN models often face
the problems of overfitting, convergence and high computa-
tional time. Thus, there are urgent needs of designing novel
clinical decision-support systems whose frameworks include
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two or more of the newly developed CNN architectures to
address these problems; which will consequently contribute
to further improving the early diagnosis of lung cancer.
For instance, recently, Li et al. proposed a hybrid network
namely H-DenseUNet resulted from combining DenseNet
and U-Net [77]. Other CNN models with such architecture
though Unet-Vnet-Fast-R-CNN, Mask-R-CNN are worthy to
be investigated.

Fourth, new approaches for both radiomics and semantic
features analysis in screening data should be developed to
reduce over-diagnosis and improve the early identification
of lung cancer. For instance, one could integrate CNNs with
other machine learning and image processing algorithms to
include the information of the lung parenchyma; which will
significantly enhance the extraction of the radiomics and
semantic features from the lesions as done in the study by
Xu et al. [78]. In addition, the crucial utility of semantic
and radiomics features in the lung cancer prognosis has been
demonstrated by many studies [79]–[81].

Fifth, expert-in-the-loop or doctor-in-the-loop systems
should be developed to facilitate both the understanding and
explanation of how the predictions yielded by deep learning
systems are generated. These systems can be referred to
as those resulted from getting both the clinical experts and
artificial intelligence experts involved in their building and
functioning processes [65]. There already exist some exam-
ples of such system [82], [83]. Doing so would definitely
increase the interpretability of the predictions; which will
lead to the identification of biomarkers and help improve both
the diagnosis and prognosis.

D. POTENTIAL SUGGESTIONS
To improve the early diagnosis and management of lung
cancer, which will potentially reduce its critical death rate;
researchers can develop new methodologies for pulmonary
nodule analysis based and centered on CNNs. The potential
strategies can consist of:
• Designing CNNs with completely new architectures
specifically for nodule analysis.

• Adapting the proposed ‘‘advanced off-the-shelf CNNs’’
to other tasks.

• Adding the advanced techniques into the implementa-
tions of CNNs.

• Integrating CNNs with other machine learning algo-
rithms, hand-crafted features, imaging processing tech-
niques.

• Generating ensemble learners of multiple CNNs.
• Building hybrid CNNs inheriting great characteristics
from their parents.

• Using transfer learning from various levels (instance,
feature, and knowledge).

From the comprehensive analyses conducted in this survey,
we suggest that to adapt the ‘‘advanced off-the-shelf CNNs’’
might yield competitive performance for pulmonary nodule
detection, while ‘‘CNNs with advanced implementation tech-
niques’’ are more suitable for nodule classification.

To initiate multi-center clinical trials is suggested for it is
urgently required to verify the value of CNNs based auto-
matic classification for improving the outcomes of lung can-
cer patients. Beyond the detection and classification, CNNs
analysis of pulmonary nodule will inevitably be expanded
to the patient stratification or subtyping, the prediction of
outcomes (e.g., treatment response, survival), the analysis
of the multi-omics correlations (e.g., radiomics, pathomics,
genomics), and the understanding of the mechanisms under-
lying lung cancer. In addition, more attention should be paid
to micro-nodules given that apart from the expansion in diam-
eter of pulmonary nodules, their growth in attenuation and
density has been proven to be associated with an increase in
malignancy risk [6].

VII. CONCLUSION
The precise and accurate detection and examination of pul-
monary nodules is one of the best approaches to decrease the
lung cancer-related deaths. To this purpose, numerous CNNs
based methods and systems have been proposed for analyz-
ing pulmonary nodules in medical images. A comprehensive
analysis of these methods has been provided in this paper.
We have focused mainly on the remarkable works published
in 2018 and whose frameworks include convolutional neural
networks. A brief overview of convolutional neural networks
as well as their advantages and rationale for applying them
to pulmonary nodules analysis were reviewed. Then, we ana-
lyzed the recently developed CNNs based systems for nod-
ules classification with main focus on their methodologies,
the datasets used for validation as well as their detection
results.

It was observed that applying CNNs to the detection of pul-
monary nodules as well as their classification into malignant
and benign have yielded remarkable performances; which
makes them a promising approach to improving the early
diagnosis, treatment and management of lung cancer. How-
ever, there is still room for improvement as these exist-
ing methods present some challenges whose overcoming is
of urgent need. We believe that the detailed description of
CNNs, their advantages and limitations in medical imaging
as well as prospective directions as presented in this paper,
will be of great help not only in the diagnosis and treatment of
severe diseases such as lung cancer, but also in various areas
of radiology.
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