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ABSTRACT Accurate segmentation of retinal vessels is a basic step in diabetic retinopathy (DR) detection.
Most methods based on deep convolutional neural network (DCNN) have small receptive fields, and hence
they are unable to capture global context information of larger regions, with difficult to identify pathological.
The final segmented retina vessels contain more noise with low classification accuracy. Therefore, in this
paper, we propose a DCNN structure named as D-Net. In the encoding phase, we reduced the loss of
feature information by reducing the downsampling factor, which reduced the difficulty of tiny thin vessels
segmentation. We use the combined dilated convolution to effectively enlarge the receptive field of the
network and alleviate the “grid problem” that exists in the standard dilated convolution. In the proposed
multi-scale information fusion module (MSIF), parallel convolution layers with different dilation rates
are used, so that the model can obtain more dense feature information and better capture retinal vessel
information of different sizes. In the decoding module, the skip layer connection is used to propagate context
information to higher resolution layers, so as to prevent low-level information from passing the entire network
structure. Finally, our method was verified on DRIVE, STARE, and CHASE dataset. The experimental
results show that our network structure outperforms some state-of-art method, such as N4_fields, U-Net,
and DRIU in terms of accuracy, sensitivity, specificity, and AUCgroc . Particularly, D-Net outperforms U-Net
by 1.04 %, 1.23 %, and 2.79 % in DRIVE, STARE, and CHASE dataset, respectively.

INDEX TERMS Multi-scale, retinal vessel segmentation, deep convolutional neural network, dilation

convolutions, residual module.

I. INTRODUCTION

Retinal images have been widely used for diagnosis, screen-
ing and treatment of cardiovascular and ophthalmologic dis-
eases [1], including two major diseases leading to blindness:
age-related macular degeneration (AMD), diabetic retinopa-
thy (DR) [2]. Vessel is a basic step required for the quantita-
tive analysis of retinal images [3]. Due to the complex nature
of retinal vessel network, the manual segmentation of vessels
is a tedious task which also requires high skills. Automated
retinal vessel segmentation has been widely studied over
decades. However, it remains a challenging task.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dezhong Peng.

The existing retinal vessel segmentation methods can
be roughly divided into two main categories: unsupervised
methods and supervised methods [1].

Unsupervised methods are designed according to the inher-
ent characteristics of the blood vessels, which do not require
reference to manual annotations. In [3], a B-COSFIRE fil-
ter that selectively responds to blood vessels is proposed
to automatically segment the vessel tree. In [4], it used the
zero-crossing characteristic inherent in Laplacian of Gaus-
sian filter and combines the matched filter for retinal vessel
extraction, which effectively avoids the mis-segmentation of
the matched filter with a gaussian kernel. In [5], a matching
filtering method based on the Gumbel probability distribution
function was proposed to extract retinal blood vessels. The
work in [6] proposed an automated method for retinal blood
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vessel segmentation using the combination of topological and
morphological vessel extractors. In [7], it used line detector
filters and mathematical morphology was applied to extract
retinal vessels. In [8], it used a local entropy-based threshold-
ing segmentation method for extract vascular tree structure.
The work in [9] proposed a method extracting retinal blood
vessels based on morphological component analysis (MCA)
algorithm, which overcome producing false positive vessels.
In [10], An unsupervised iterative blood vessel segmenta-
tion algorithm is employed to the fundus image. The work
in [11] proposed a trainable nonlinear filtering method called
B-COSFIRE to segment the vessel tree. In [12], combines
gaussian smoothing, a morphological top-hat operator, and
vessel contrast enhancement for background homogenization
and noise reduction and then refined through curvature anal-
ysis and morphological reconstruction to segmentation retain
vessel. In [13], it used some contrast-sensitive approaches to
embedded traditional algorithms to improve the sensitivity
of retinal vessel extraction. The work in [14] proposed a
fully automatic filter method based on 3D rotating frames to
segment retinal blood vessels.

Supervised methods can be further classified into two
groups: 1). shallow learning based methods and 2). deep
learning based methods. Generally, shallow learning based
methods utilize handcrafted features for segmentation.
In [15], it based on the radial projection and semi-supervised
method to extracting the retinal vessels. In [16], pixels are
classified using a pixel neighborhood and a Gaussian mixture
model (GMM) classifier. In [17], it based on a discrim-
inatively trained fully connected conditional random field
model for segmentation of the blood vessels in the fundus
image. In [18], it used an ensemble system of bagged and
boosted decision trees and utilizes a feature vector based on
the orientation analysis of gradient vector field, morpholog-
ical transformation, line strength measures, and Gabor filter
responses to segmentation retina vessel. In contrast to shal-
low learning based methods, deep learning based methods
automatically extract features for segmentation by training
a large number of data samples. The work in [19] proposed
a deep learning neural network (DNN) approach to segment
the retinal vessels. In [20], the retinal vessel segmentation
problem as a boundary detection task and solve it using
deep learning and Conditional Random Field (CRF). In [21],
it used deep convolutional neural network training data aug-
mentation samples achieved segmentation of blood vessels.
In [22], the segmentation task as a multi-label task and uti-
lize the implicit advantages of the combination of convo-
lutional neural networks and structured prediction achieve
the segmentation of blood vessels. In [23], a Size-Invariant
Fully Convolutional Neural Network (SIFCN) is proposed
to address the automatic retinal vessel segmentation prob-
lems. In [24], it used a wide and deep neural network with
strong induction ability to remolds the task of segmentation
as a problem of cross-modality data transformation from the
retinal image to vessel map. In [25], The blood vessels and
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optic discs are segmented using a deep convolutional neu-
ral network. The work in [26] proposed the skeletal similarity
metric to be used as a pixelwise loss function for training
deep learning models for retinal vessel segmentation. In [27],
it used a Recurrent Convolutional Neural Network (RCNN)
based on U-Net as well as a Recurrent Residual Convolu-
tional Neural Network (RRCNN) based on U-Net models to
segmentation retina vessel. In [28], the convolutional neural
network is sufficient utilized to extract high-level features and
low-level features to segment retina vessels. In [29], it used a
connection sensitive attention U-Net(CSAU) for retinal ves-
sel segmentation. In [30], a multi-level convolutional neural
network supervised method is used to separate blood vessels
from retina images and to distinguish small blood vessels by
using local and global feature extractors.

Among these methods, traditional methods require prior
knowledge and additional preprocessing to extra preprocess
to extract hand-crafted feature information, and cannot obtain
deeper feature information, which is susceptible to low-
quality images and pathological regions. In the deep learn-
ing methods which have been proposed, there are usually
the following problems: 1). The downsampling factor of the
model is too large, resulting in the loss of feature information
of a large number of tiny thin vessels in the retinal image,
which ultimately cannot be restored. 2). The receptive field
of the model is too small, resulting in insufficient understand-
ing of the local context information, and it is impossible to
accurately distinguish the pathological regions and vessels
in the retinal image, resulting in mis-segmentation. 3). The
feature extraction ability of the network structure is insuf-
ficient, and it is difficult to restore low-level detail feature
information, resulting in a lot of noises in the segmented
blood vessel image. 4). It is not possible to accurately obtain
vascular information of different sizes, resulting in inability
to accurately detection the edges of vessels and tiny thin blood
vessels.

In this paper, we propose a retinal vessel segmentation
model based on deep convolutional neural network. The main
contributions of our work include:

1) We propose an automatic segmentation model for
retinal vessels by D-Net, an end-to-end deep learn-
ing network. We use the residual module to improve
the feature extraction ability of the network structure,
reduce the downsampling factor to alleviate the exces-
sive loss of feature information of tiny thin vessels,
and use dilated convolution instead of the traditional
convolution for dense sampling.

2) In the D-Net, we cascading the dilated convolu-
tion of different dilated rates to increase the recep-
tive field of the kernel, alleviates the ‘grid problem’
that occurs in standard dilated convolution operations,
which promotes the model to understanding of global
context information, and effectively reduces the mis-
segmentation of the pathological regions and retina
vessels. Skip connection is used to promote the fusion
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FIGURE 1. Retinal vessels image segmentation model.

of low-level detail information with high-level global
context information, which alleviates the difficulty to
restore the vessel edge and vessel feature information.

3) Multi-Scale Information Fusion module(MSIF) is pro-
posed, with the feature maps being sampled by using
parallel convolution layers with different dilated rates,
so as to obtain feature information of different scales,
which improve the detection performance of the vessels
edges and the tiny thin vessels.

The remainder of this paper is organized as follows.
Section II provides a detailed description of the proposed
method including network backbone architecture, cascading
dilated convolution, and Multi-scale information fusion mod-
ule. Section III introduces the image datasets, the experi-
mental settings and the evaluation metrics. In Section IV,
we discuss and compare our experimental results from many
aspects. Finally, a conclusion is drawn in Section V.

Il. METHODS

In this section, we first expounding the theoretical knowl-
edges of receptive field and dilated convolution [31], then
introduce the network structure which we propose in detail.

A. RECEPTIVE FIELD

We use different dilated ratios, the receptive field of the con-
volution filter can be changed. For a convolutional layer using
a dilated convolution, if the dilated ratio is r, the convolution
filter size is k. The receptive field size follows ((1)):

Rk =Gk —-1)x@r—-1)+k. (1)

For instance, the convolutional layers uses a convolution
kernel size of 3 x 3, a dilated rate » = 4, then the correspond-
ing receptive field size 9.

Stacking multiple convolutional layers also allow for a
larger receptive field. Suppose there are two convolutional
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layers, L — 1 and L, and the convolution filter are k| and k,
respectively. The size of the receptive field of the L + 1 layer
follows ((2)):

R =ki +k — 1. 2

For instance, two stacked convolution layers, with their
convolution filter size being 5 and 9 respectively, will result
in a receptive field with its the feature map being 13.

B. DILATED CONVOLUTION

Compared to the traditional convolution operator, dilated
convolution is able to achieve a larger receptive field size
without increasing the numbers of filter parameters and keep-
ing the feature resolution unchanged. The calculation for-
mula is expressed as follows ((3)): x[i] denotes the input
signal, y[i] denotes the output signal, d is the dilation rate,
wlk] denotes the k-th parameter of filter, and K is the filter
size.

K
Wil =D xli+d x kI x wik], 3)
k=1

This equation reduces to a standard convolution when
d = 1. Dilated convolution is equivalent to convolving of
the input feature x by inserting d — 1 zeros between two
consecutive values of the convolution filter. For a convolution
filter with size k x k, the size of resulting dilated filter
iskg x kg, whered kg = k + (k — 1) x (d — 1). Thus, a large
dilation rate has a large receptive field.

C. D-NET ARCHITECTURE

D-Net is an end-to-end deep network model, which consists
of three main parts. The network structure is shown in Fig. 1.
The first part is the encoder, which is used to learn the feature
information of the retinal image and rich hierarchical repre-
sentation. The second part is Multi-Scale Information Fusion
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TABLE 1. Architectures for network backbone.

Root-block Blockl Block2 Block3 Block4 Block5

gigigg 1x1x 64 1x1x64 1x1x128 1x1x 256 1x1x128

3% 3 % 64 3 X3 x64 X 3 3 X 3x64 X 3 3 X 3x 128 X 3 3 X 3 X 256 X 3 3 x3x 128 X 3
1x1x128 1x1x128 1 x1x 256 1x1x512 1 x1x 256

max-pool 3 X 3

module (MSIF, please refer to Fig. 5), which capture multi-
scale feature on top of the feature maps by using multiple
parallel dilated convolutions with different dilated rates. The
third part is the decoder, which is gradually upsampled by
deconvolution on the feature map and final restored to the
same resolution as the input image x.

1) ENCODER

The structure of the encoder is shown in Table 1. Except for
the first module, each of the other modules consists of three
residual structures. Since the residual network [32] uses the
short cut method, it becomes more sensitive to the change
of weight, so that the network structure can make more fine
adjustments to the weight. Each residual module consists of

three convolution operations: V D vl >3 & b V3.
For the input feature map V, the number of channels of V is
first reduced from C! to C? using a small convolution ker-
nel (1 x 1), and V! is output. Then it use the large convolution
kernel (3 x 3) to extract the feature of V! and output V2.
Finally, it use the small convolution kernel (1 x 1) to restore
the channel number from C? to C! and output V3. The feature
of V and V3 are added together to obtain the final result. The
shortcut method adds the feature information of V and V? to

obtain the feature map V', V' = [V/{, V/5, ..., V'], where
W H

Vie=Y "> (Veli, )+ V2, ). )
i=1 j=1

For convolution operations, we denote F X — 7,

X e RW'xH!'xC! , Y RW?xH?xC? Rop simplicity of
exposition, in the notation that follows, we take F to be a
standard convolutional operator. Let K = [k, k2, ..., k2]
denote the learned set of filter kernels, where k. refers to the
parameters of the c-th filter. We can then write the outputs of

FasY =[y1,y2,...,Yc2], where
Cl

yC:kC*X:Zkf*x”. 5)
n=1

Here * denotes convolution, k. = [kcl, kcz, e, kcc : l,and X =

[xl,x2, .. .,xcl].

In the retinal vessel segmentation, the color and brightness
of some pathological regions are close to the retina vessels,
when the model does not fully understand the local global
context information, which is easy to segmentation these
pathological regions into retinal vessels, resulting in mis-
segmentation. In order to reduce this mis-segmentation, it is
necessary to increase the receptive field of the model, so that
the model can better understand the global context informa-

tion. The usual practice is to reduce the resolution of the
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FIGURE 2. The detail structure of the Block.
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FIGURE 3. Convolution kernel with different dilated rates.

feature map by using strided convolution or pool operations to
increase the receptive field of the model. However, excessive
use of these two operation will result in the loss of a large
amount of feature information, especially the tiny thin vessels
in the retina image. These tiny thin vessels usually have
only 1-3 pixels, and an excessive downsampling factor will
cause this information to be completely lost and cannot be
restored. Therefore, we reduce the downsampling factor, set
the downsampling factor from the original 32 to 16, then do
not downsample, and use the dilated convolution instead of
the traditional convolutional layer to maintain the model’s
receptive field unchanged (or larger). In the experiment,
we replacing the standard convolution in block3, block4, and
block5 modules with dilated convolution, and each module
consisted of 3 residual modules. We define the dilated rate
of Conv3 x 3 in these three residual modules as (dy, d», d3),
as shown in the Fig. 2. Finally, the feature maps outputted
by block3, block4, and block5 are concatenated to obtain a
feature map G, G € R 16 % 16 < (Cs+Co+C7),

2) COMBINED DILATED CONVOLUTIONS

We reduce the loss of feature information of the retinal vessels
by using the dilated convolution and maintained the model
receptive field. However, since the dilated convolution is con-
structed by inserting ‘zeros’ between each effective parameter
in the convolutional kernel. For a convolution kernel with
size k x k, the size of resulting dilated filter is k; x k4, where
kg =k + (k — 1) x (d — 1). For a dilated convolution with a
convolution kernel size of k4 x k4, the effective value actually
used for calculation is only k x k. As shownin Fig. 3, if k = 3,
d =2,kq =5, only 9 out of 25 pixels(36%) in the region are
used for the computation. if k = 3, d = 3, kd = 7, only 9 out
of 49 pixels (18.4%) in the region are used for the compu-
tation. When the dilated rate d is larger, the smaller the pro-
portion of the effective feature actually used for calculation
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FIGURE 4. Sparse sampling and dense sampling of cascading dilated
convolution.

which makes the more sparse the feature information cap-
tured by the model. The correlation between the effective
features in the convolution kernel is irrelevant across large
distances, which is not conducive to the understanding of
local context information.

In order to alleviate the above problem, we propose com-
bined dilated convolution. Suppose each group cascades
N dilated convolutions layer with convolution kernel is K x K
which have dilated rates of [dy,...,d;, ..., d,]. The goal
of combined dilated convolution is to fully cover all feature
information in the receptive field after a series of convolution
operations without any holes or missing edges.

We define the maximum distance between two effective
weights in the convolution kernel as:

0<MD; <K i=1,2
MD; = i (6)
K—-—D4+KxMDi_;—1) i>2,

and MD; + MD, < K. whenMD; > 0, MD; # MD;y,.
the dilated rate d; < MD;+ 1. however, is that the dilation rate
within a group should not have a common factor relationship
(like 2, 4, 8, etc.)

In this paper, we take a block as a group, as shown in Fig. 2.
There are 3 dilated convolution layers in each group. The
dilated rate is (dy, d», d3). We set the values of dj, d», d3
as described above(6), thus naturally enlarging the receptive
fields of the network without adding extra modules, which
is very important for identifying relatively large retina ves-
sels or pathological region.

In order to indicate the importance of setting the dilated
rate value reasonably, we use a one-dimensional graph (for
simplicity of exposition) to show a reasonable set of values
and a set of unreasonable values. As shown in Fig. 4, in which
(d1,dar,d3) = (2,2,2) is set in Fig. 4 (a) and (d1, d2, d3) =
(1,2,3) is set in Fig. 4 (b). The two group of dilated rates
make the L4 layer obtain the same receptive field (13), but a
reasonable dilated rate can capture all the feature information
in the corresponding receptive field. In the Fig. 4 (a), the set
dilated rate value has a common factor relationship, so that the
L4 layer can only obtain a part of the feature information in the
corresponding receptive field. and there are a large number of
hole regions, resulting in a large feature information is loss.
In Fig. 4 (b), the L4 layer obtains all the feature information
in the corresponding receptive field in the L; layer.

3) MULTI-SCALE INFORMATION FUSION MODULE
The size of the blood vessels to be segmented in the retinal
image is different. In order to better segment the retinal
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FIGURE 5. Multi-scale information fusion module detailed structure.

vessels of different sizes, we use the dilated convolution
of different dilated rates in Multi-scale information fusion
module (MSIF) for multi-scale feature capture to improve
the detection accuracy of the vessels edges and the tiny thin
vessels. In MSIF, firstly, we use the 1 x 1 convolution to halve
the number of channels of the feature map G to obtain the fea-
ture map z, then use four parallel convolution layers and one
global average pooling layer to capture feature information
on the feature z. The halving of the number of channels in the
input feature map can reduce the parameters and calculations
in the MSIF module to %, thus increasing the speed of the
model. The four parallel convolution layers are respectively
three depthwise separable convolutions with different dilated
rates and one 1 x 1 convolution layer. Depthwise separable
convolution [33], a powerful operation to reduce the com-
putation cost and number of parameters while maintaining
similar (or slightly better) performance. Where, three convo-
lutional layers with different dilated rates can capture multi-
scale context feature information, and the 1 x 1 convolution
layer retains the feature information of the current scale.
We use global average pooling to get image-level global con-
text information [34] and then bilinearly upsample the feature
to the desired spatial dimension, finally incorporate it into the
model.

where the c-th element of image-level features gap is calcu-

lated by: W

1 ’o
o= ;;zm,n (7
gape = Fpr(zc) ®)

Here, Fp;(-) denotes bilinearly upsample, z =[z1, 22, - . ., 2¢’]
and gap = [gap1, gapa, . . ., gapc-]. Finally, the feature maps
of all the branches are concatenated to obtain M, M =
[x1, x2, X3, x4, gap], and then we uses a [1 x 1, 256] convo-
lutional layer to fuse these multi-scale information to obtain
the final feature map u.

4) DECODER

Decoder gradually upsample the feature map u output by the
MSIF use deconvolution, with an upsampling factor of 2, and
final restores to the same resolution as the input image x. The
Skip connection is used to concatenated the feature informa-
tion after each deconvolution with the low-level detail infor-
mation in the decoding layer. Thereby alleviates that some
thin-walled blood vessels and blood vessel edge information

VOLUME 7, 2019



Y. Jiang et al.: Retinal Vessels Segmentation Based on Dilated Multi-Scale Convolutional Neural Network

IEEE Access

TABLE 2. Model with different d, d,, ds.

(d1,d2,d3) Receptive Field Fl1 Sensitivity Specificity Accuracy AUCRroc Time
(I, 1, 1) 46 0.8021 0.7836 0.9753 0.9607 0.9714 ~1.0s
(1,2,3) 116 0.8129 0.8047 0.9850 0.9671 0.9780 ~1.0s
2,2,2) 116 0.8105 0.7944 0.9833 0.9665 0.9762 ~1.0s
(1,2,4) 128 0.8132 0.7954 0.9849 0.9680 0.9800 ~1.0s
TABLE 3. Effect of Multi-scale information fusion module.
(d1,d2,d3) | use MSIF Receptive Field | Fl1 Sensitivity | Specificity | Accuracy | AUCroc | Time
(1.2, 4) No 128 0.8132 | 0.7954 0.9849 0.9680 0.9800 ~1.0s
T Yes(3,5,7) | 142 0.8168 | 0.8181 0.9827 0.9681 0.9803 ~1.5s
TABLE 4. Multi-scale information fusion module with cascade method.
(d1,d2,d3) MSIF Receptive Field Fl1 Sensitivity Specificity Accuracy AUCRroc Time
3,5,7) 131 0.8154 | 0.8171 0.9813 0.9654 0.9795 ~1.5s
(1,2,3) (3,6,8) 133 0.8149 | 0.8231 0.9809 0.9666 0.9805 ~1.5s
(3,6, 12) 141 0.8172 | 0.8265 0.9816 0.9678 0.9819 ~1.5s
3,5, 7) 143 0.8168 | 0.8181 0.9827 0.9681 0.9803 ~1.5s
(1,2,4) (3,6,8) 145 0.8150 | 0.8275 0.9810 0.9673 0.9816 ~1.5s
(3,6, 12) 153 0.8246 | 0.7839 0.9890 0.9709 0.9864 ~1.5s
(a) (b) (©) (d)

FIGURE 6. Comparisons of segmentation results on DRIVE database. The first row is the retinal image of the diabetic patient, and
the second row is the retinal image of the normal person. (a) Image. (b) Ground truth. (c) DRIU. (d) N*-Fields. (e) D-Net.

are difficult to recover during upsampling. Finally, the feature
information is refined using two 3 x 3 convolution layers, and
output the final segmentation result y.

5) LOSS

In order to prevent over-fitting, we use the L2 regularization
method to reduce over-fitting and improving the recogni-
tion ability of the convolutional layer. Dilated convolution is
utilized in D-Net to expand the receptive field, and to take full
advantage of context information for retinal vessel segmenta-
tion. The training of the whole network is formulated as a per-
pixel classification problem with respect to the ground-truth
segmentation masks, which is shown in ((9)):

L(x;6) = AIWI3 — [Z dCx, L) + lly = £OOlL, (9)
X€x

Here, the first part is the regularization term, and the later
one includes target classifiers loss term and L2 distance in the
training set. The tradeoff of these two terms is controlled by
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the hyperparameter A. W denotes the parameters for inferring
the target output y'. Let ¢(x, £(x)) denotes the cross entropy
loss regarding the true label £(x) for pixel x in image space
X,y denotes ground truth and £() is the segmentation result
predicted by the model. The parameters 6 = {W} of deep
contextual network are jointly optimized in an end-to-end
way by minimizing the total loss function L(x; ).

Ill. DATASETS AND EVALUATION

A. DATASET

We validated our proposed method in three publicly avail-
able datasets, DRIVE, STARE and CHASE. The DRIVE
dataset was obtained from a diabetic retinopathy screening
program in The Netherlands. A total of 40 were selected from
400 subjects diabetic subjects aged between 25 and 90 years.
Of these, 33 did not show any sign of diabetic retinopathy
and 7 show signs. The training set and the test set each
contains 20 sheets, and the size of each image is 565 x 584.
(http://www.isi.uu.nl/Research/Databases/DRIVE/)
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(a) (b)

(d (e)

FIGURE 7. Comparisons of segmentation results on STARE database. The first row is the retinal image of the diabetic patient, and
the second row is the retinal image of the normal person. (a) Image (b) Ground truth. (c) DRIU. (d) Wavelets. (e) D-Net.

TABLE 5. Comparison of proposed methods with other methods in the DRIVE database.

Type Methods Year | Fl Sensitivity | Specificity | Accuracy | AUCRoc | Time
Lam [39] 2010 | - - - 0.9472 0.9614 ~13m

Unsupervised methods Fraz [1] 2011 | - 0.7152 0.9759 0.9430 - ~2m
You [15] 2011 | - 0.7410 0.9751 0.9434 - -
Azzopardi [3] 2015 | - 0.7655 0.9704 0.9442 0.9614 ~10s
Marin [41] 2011 | - 0.7067 0.9801 0.9452 0.9558 ~90s
Fraz [1] 2012 | - 0.7406 0.9807 0.9480 0.9747 ~100s
Roychowdhury [16] | 2016 | - 0.7250 0.9830 0.9520 0.9620 ~6.5s
Liskowsk [21] 2016 | - 0.7763 0.9768 0.9495 0.9720 -

Supervised methods Qiaoliang Li [24] 2016 | - 0.7569 0.9816 0.9527 0.9738 ~4.0s
DRIU [25] 2016 | 0.8210 | 0.8261 0.9115 0.9541 0.9861 ~3.0s
U-Net [38] 2018 | 0.8142 | 0.7537 0.9820 0.9531 0.9755 ~4.0s
R2U-Net [27] 2018 | 0.8171 | 0.7792 0.9813 0.9556 0.9784 ~5.0s
MSNN [28] 2018 | - 0.8033 0.9808 0.9581 0.9826 ~3.0s
D-Net(Ours) 2019 | 0.8246 | 0.7839 0.9890 0.9709 0.9864 ~1.5s

STARE database consists of 20 retinal fundus images,
and each image was digitalized to 700 x 605 pixels. The
first half of the dataset was collected by healthy subjects,
while the other half pathological cases with abnormalities
that overlap with blood vessels. In some cases obscuring
them completely. The presence of lesions makes segmen-
tation more challenging. STARE database contains two
sets of manual segmentation prepared by two observers.
(http://www.ces.clemson.edu/ ahoover/stare/)

CHASE contains 28 retinal images, which were collected
from both the left and right eyes of 14 school children. With a
resolution of 1280 x 960 pixels. Compared with DRIVE and
STARE, images in CHASE have uneven background illumi-
nation, poor blood vessel contrast and extensive arteriolars.
(https://blogs.kingston.ac.uk/retinal/chasedb1/)

B. IMPLEMENTATION DETAILS

Our framework was implemented under the open-source deep
learning library TensorFlow [35]. On a server with Intel(R)
Xeon(R) E5-2620 v3 2.40GHz CPU, Tesla K80 GPU, and
Ubuntu64 as OS. During training, the Adam optimizer [36] is
used for gradient descent, with parameter setting: 81 = 0.9,
B> = 0.999, and ¢ = le~3. The poly learning rate policy [31]
is employed, with the initial learning rate being 0.0001.
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The learning rate during training is the initial learning rate

. . It . _
multiplied by (1 — 77", with power = 0.9. The
batch size is set to 4.

C. PERFORMANCE EVALUATION

In order to evaluate the retinal vessels segmentation perfor-
mance, we compared the performance by sensitivity, speci-
ficity, and accuracy, F1, which is widely used by the research
community of image segmentation.

TP+ TN
Accuracy = (10)
TP + FN + 1N + FP
. TP
Precision = ——— (11)
TP + FP
TP
Recall = —— (12)
TP + FN
Recall
F1 = 2 x Precison x ecd (13)

Precison + Recall

Here, TP is the number of blood vessel pixels that are
correctly segmented, TN is the number of background pixels
that are correctly segmented, FP is the background pixel that
is incorrectly segmented into blood vessel pixels, and FN is a
blood vessel pixel that is incorrectly marked as a background
pixel.
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TABLE 6. Comparison of proposed methods with other methods in the STARE database.

Type Methods Year | F1 Sensitivity | Specificity | Accuracy | AUCRoc | Time
Lam [39] 2010 | - - - 0.9567 0.9739 ~13m

Unsupervised methods Fraz [1] 2011 | - 0.7311 0.9680 0.9442 - ~100s
You [15] 2011 | - 0.7260 0.9756 0.9497 - -
Azzopardi [3] 2015 | - 0.7716 0.9701 0.9563 0.9497 ~11s
Marin [41] 2011 | - 0.6940 0.9770 0.9520 0.9820 ~90s
Fraz [1] 2012 | - 0.7548 0.9763 0.9534 0.9768 ~100s
Roychowdhury [16] | 2016 | - 0.7720 0.9730 0.9510 0.9690 ~14s
Liskowsk [21] 2016 | - 0.7867 0.9754 0.9566 0.9785 -
Qiaoliang Li [24] 2016 | - 0.7726 0.9844 0.9628 0.9879 ~4.5s

Supervised methods DRIU [25] 2016 | 0.7385 | 0.6066 0.9956 0.9499 0.9896 ~6.5s
U-Net [38] 2018 | 0.8373 | 0.8270 0.9842 0.9690 0.9898 ~7.8s
R2U-Net [27] 2018 | 0.8475 | 0.8298 0.9862 0.9712 0.9914 ~7.5s
MSNN [28] 2018 | - 0.8579 0.9826 0.9732 0.9930 ~4.0s
CSAU [29] 2019 | 0.8435 | 0.8465 - 0.9673 0.9834 -
D-Net(Ours) 2019 | 0.8492 | 0.8249 0.9904 0.9781 0.9927 ~2.0s

TABLE 7. Comparison of proposed methods with other methods in the CHASE database.

Type Methods Year | F1 Sensitivity | Specificity | Accuracy | AUCRoc | Time

Unsupervised methods | Azzopardi [3] 2015 | - 0.7716 0.9701 0.9563 0.9497 -
Fraz [1] 2012 | - 0.7224 0.9711 0.9469 0.9712 ~120s
Roychowdhury [16] | 2016 | - 0.7201 0.9824 0.9530 0.9532 ~12s
Qiaoliang Li [24] 2016 | - 0.7507 0.9793 0.9581 0.9793 -

Supervised methods U-Net [38] 2018 | 0.7783 | 0.8288 0.9701 0.9578 0.9772 ~8.1s
R2U-Net [27] 2018 | 0.7928 | 0.7756 0.9820 0.9634 0.9815 ~7.5s
MSNN [28] 2018 | - 0.7742 0.9876 0.9662 0.9865 ~4.4s
D-Net(Ours) 2018 | 0.8062 | 0.7839 0.9894 0.9721 0.9866 ~2.1s

IV. EXPERIMENT RESULTS AND DISCUSSION

A. COMPARISON OF RESULTS BEFORE AND AFTER
MODEL IMPROVEMENT

In Table 2, we compare the effects of setting different
(d1, dz, d3) values on the performance of the model in the
combined dilated convolution. AS shown in the table, when
setting (d1, da, d3) = (1, 1, 1), itis the traditional convolution
layer, the model’s receptive field is the smallest, and the
global context information cannot be fully understood. It is
not possible to better distinguish between retinal vessel and
pathological regions, resulting in the worst segmentation per-
formance. When setting (d1, d2, d3) = (2, 2, 2), although the
receptive field of the network is enlarged, the performance of
the model is not significantly improved because the captured
feature information is sparse. When (dy, d>, d3) = (1,2, 3)
and (d1, dr, d3) = (1,2, 4), the experimental results show
that when (d1, da, d3) = (1, 2, 4), the model’s receptive field
is the largest, and the captured feature information is more
comprehensive, so that the context information is more fully
understood, which make the model’s segmentation perfor-
mance the best. Therefore, it is reasonable to set the dilated
rate of the combined dilated convolution can also effectively
enlarges the receptive field of the model while improve the
segmentation performance of the model.

In order to validate the effectiveness of the introducing the
multi-scale information fusion module (MSIF), we compared
the performance with and without MSIF module. It can be
seen from the experimental results in Table 3 that the intro-
duction of the MSIF module can make the network structure
work better. Because MSIF can effectively capture multi-
scale information so that the model can better segment retinal
vessels of different size.
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In Table 4, we compare the effect of setting different
rates on the performance of the model for three parallel
convolutional layers in the MSIF module. According to
the result comparison, it can be seen that when the same
(d1, dz, d3) value is set, the segmentation performance of the
model is better when the range of local context information
capture in the MSIF module is larger. For example, when
dy,dr,d3) = (1,2,4), the dilated rate in the MSIF module
is setto (3, 6, 12), the performance of the model is better than
setto (3,5, 7).

B. COMPARISON OF DIFFERENT METHODS

In this group of experiment, we compared the D-Net
with some state-of-art methods, such as DRIU [25] and
N*-fields [37]. Fig. 6 and Fig. 7 compare the segmentation
results of two retinal images from DRIVE and STARE
dataset, respectively. In these figures, (a) presents the orig-
inal retinal image, (b) presents ground true, (c) presents the
segmentation result of DRIU, (d) presents the segmentation
result of N*-fields, and (e) presents the segmentation result
by D-Net. In Fig. 6 and Fig. 7, the first row of images
gives retinal image of a diabetic patient, and the second row
gives that of a normal person. There is pathological region
in the retinal image of a diabetic person, which is liable
to cause mis-segmentation of the model. The retinal blood
vessels are segmented by the DRIU method contain a lot
of noise, which forms many mis-segments, and the segmen-
tation of small blood vessels is unclear and the boundary
is blurred. Although the N*-fields method has less noise,
it cannot distinguish the pathological from the retina vessel,
and it is easy to mis-segmentation the pathological region
into retina vessels, The effect of segmentation the tiny thin
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FIGURE 9. Receiver Operating Characteristic (ROC) curve and Precision Recall (PR) curve for various methods on STARE

dataset.

retina vessels is not very good. In the method proposed in this
paper, the dilated convolution is used instead of the pooling
layer or the stride convolution, which reduces the loss of
the feature information, thereby better recovering the tiny
thin vessel information. Since the dilated convolution has
a large receptive field, and the pathological region can be
well distinguished, so that the segmentation result is more
accurate.

C. QUANTITATIVE ANALYSIS OF DIFFERENT
SEGMENTATION RESULTS

For further demonstrate the performance of D-Net for vessel
segmentation, we evaluated D-Net with the previously pro-
posed unsupervised method and supervised method on three
datasets for Sensitivity, Specificity, Accuracy, F'1 and other
evaluation metric. Table 5, Table 6, and Table 7 show the
segmentation results of different methods on the three data
sets of DRIVE, STARE, and CHASE. As can be seen from
the table, the supervised method generally better than the
unsupervised method, and the deep learning method achieves
particularly good results on the AUCgroc.

On the DRIVE dataset, D-Net achieved a good result on
all evaluation metric. The retina vessels segmented by the
DRIU contain a lot of noise, and the segmented retina vessels
are thicker than the actual retina vessels. Many background
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pixels are also segmented into retina vessels, so that the
sensitivity is high and the specificity is low. D-Net uses
the residual module to extract the features more fully, and
the model’s receptive field is large, which can distinguish the
pathological region very well. We use the skip connection
to alleviates the difficulty of upsampling to restore tiny thin
vessels, so that the segmented retinal vessels contain less
pathological and the segmentation results are more accurate.
D-Net outperforms R2U-Net [27] by 0.75%, 0.8% and 0.78%
in terms of F'1, AUCgoc and accuracy.

On the STARE data, the F'1 of the D-Net method segmen-
tation result is 84.92%, which is 0.17% higher than R2U-Net.
The results of MSNN segmentation are higher than D-Net in
sensitivity and AUCgroc, but D-Net has the highest specificity
and accuracy.

On the CHASE dataset, since the samples in the CHASE
images have non-uniform background illumination, poor
contrast of blood vessels and wider arteriolars that mak-
ing the segmentation of retina vessels more difficult, and
the model needs to have stronger feature extraction ability.
However, D-Net outperforms other models in AUCroc, F'1,
accuracy and evaluation metric, of which F'1 is 1.34% higher
than R2U-Net. We alleviate the loss of feature information
by reducing the downsampling factor, and the combined
dilated convolution effectively enlarges the receptive field
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to aggregate global context information. U-Net [38] has the
highest sensitivity on this dataset, but not as good as D-Net
in accuracy and AUCgrpc. Due to the large downsampling
factor of R2U-Net, the tiny thin vessel feature information
is seriously lost. The receptive field of R2U-Net is small,
which makes it cannot obtain a large range of local feature
information.

Our proposed D-Net model uses a residual module in the
backbone network to make finer adjustments to the weights
so that the model can capture more useful feature information.
We reduced the downsampling factor of the model which
effectively alleviated the loss of tiny thin vessel feature infor-
mation.we rationally set the dilated rate of the combined
dilated convolution, which improved the model receptive
field while intensively sampling the feature information.
We propose that the MSIF module capture retina vessel
feature information of different scales, which effectively
improves the detection accuracy of the retina vessel edge
information and tiny thin vessels. When upsampling, Skip
connection is used to promote the recovery of detailed infor-
mation of the retina vessel, which improves the accuracy
of model segmentation. Through the analysis of the results
on DRIVE, STARE, CHASE, which prove D-Net has better
performance and robustness.

D. EVALUATION OF ROC AND PR CURVES

In Fig. 8 and Fig. 9, we compare the Receiver Operating
Characteristic (ROC) curve and Precision Recall (PR) curve
of D-Net with several state-of-the-art retinal vessel segmenta-
tion method such as N*-fields [37], Wavelet [41], DRIU [25],
HED [42], and other methods. The ROC and PR curves area
on the DRIU were 0.9861 and 0.8185, respectively. Although
the F'1 evaluation results of DRIU were not ideal in DRIVE,
the area under the ROC and PR curves was comparable to our
proposed D-Net. On the STARE dataset, the DRIU performed
much better than the HED in the PR curve. However, it did not
work as well as the HED in the AUCRroc. The performance
is unstable because the network structure used is simple
and the feature extraction ability is relatively weak, which
makes the generalization ability and robustness of the model
relatively poor. Our D-Net obtains the best performances on
the DRIVE dataset (0.9864 AUCgroc) and the STARE dataset
(0.9927 AUCRroc), which has about 1% improvement on PR
curve area than HED. Compared with these methods, D-Net
can extract deeper representation feature and the network
receptive field is larger, which can better understand global
context information and retained more tiny thin vessel infor-
mation. On the two data of DRIVE and STARE, it can be seen
from the Fig. 8 and Fig. 9 that D-Net has better performance
than other methods which proves that D-Net has better feature
extraction ability, generalization ability and robustness than
other methods.

V. CONCLUSIONS
In this paper, we propose D-Net, an end-to-end deep convo-
lutional neural network structure, for automatically segment
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retinal vessels. In the backbone network, samples of the
downsampling layer are removed, which alleviate the prob-
lem that the loss of feature information is difficult to recover.
Combined dilated convolution is uses to dense sampling of
the feature map while maintaining the network’s receptive
field unchanged (or larger). In the MSIF module, the par-
allel dilation convolution of different dilation ratios is used
to perform dense information sampling on the feature map,
and the retinal vessel information of different sizes is better
captured. In order to reduce the parameters and increase the
speed of the model, the depthwise separable convolution is
used instead of the standard convolution in MSIF. Due to
some low-level information is difficult to recover, skip layer
connection is utilized to directly fusion low-level information
and high-level information in the network structure. Finally,
our method was verified on DRIVE, STARE and CHASE
dataset, and the experiment results show that the proposed
algorithm has better performance for retinal vessel segmen-
tation than some state-of-art algorithms, such as N4-fields,
U-Net, and DRIU.
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