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ABSTRACT Visual object tracking is an active and challenging research topic in computer vision, as objects
often undergo significant appearance changes caused by occlusion, deformation, and background clutter.
Although convolutional neural network (CNN)-based trackers have achieved competitive results, there are
still some limitations. Most existing CNN-based trackers track the object by leveraging high-level semantic
features of the highest convolutional layer, which may lead to low-spatial resolution feature maps and
degrade the localization precision of tracking. Furthermore, these trackers hardly benefit from end-to-
end training since the extraction of features and the learning of classifier are separated. To deal with the
above-mentioned issues, we design an adaptive weighted CNN features-based Siamese network for tracking.
To capture spatial and semantic information of the object, we design a feature extraction network that derives
feature maps by concatenating features of all convolutional layers. To make the features representation more
discriminative, we propose a feature integration network. In the feature integration network, we propose
a holistic-part network to capture strong visual cues and learn the semantic relations between the holistic
object and its parts and combine the holistic-part network with spatial and channel attention mechanisms to
adaptively assign weights to each region and channel of the feature maps. In addition, the designed Siamese
network can be trained offline end-to-end. The experimental results on the benchmark datasets OTB50 and
OTB100 demonstrate that the proposed tracker achieves favorable performance against several state-of-the-
art trackers while running at an average speed of 20.5 frames/s.

INDEX TERMS Visual object tracking, correlation filter, Siamese convolutional neural network, feature
integration, channel attention and spatial attention.

I. INTRODUCTION
Visual object tracking aims to infer a bounding box tightly
containing the target object in subsequent frames given its
initial position in the first frame, which remains as an active
research topic in computer vision that yields numerous appli-
cations [1]–[3] such as human-computer interaction, video
surveillance and autonomous vehicle navigation. Despite
much progress in the last decade, it remains a challenging
problem due to the appearance changes caused by illumina-
tion variation, deformation, occlusion, background clutters,
and so on.

Recently, discriminative correlation filter (CF) has
attracted considerable attention in the tracking commu-
nity due to its significant achievements and high com-
putational efficiency. By applying the circulant structure
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and convolution theory, the discriminative CF transforms
computationally consuming spatial correlation into efficient
element-wise operation in the Fourier domain and achieves
extremely high tracking speed [4], [5]. Subsequently, many
recent CF-based visual trackers [6]–[10] have been devel-
oped to further boost the tracking performance using kernel
tricks [6], multiple feature fusion [7], coupled global and
local schema [8], long-short term memory [9], deep convolu-
tional neural networks (CNNs) [10], etc.

With the advent and development of the CNNs, it has
demonstrated excellent performance in many computer
vision applications such as object detection [11], image cap-
tioning [12] and image classification [13]. Several recent
studies [14]–[17] attempt to integrate deep features from
single layer or specific layers of the pretrained CNN into a
CF-based framework for visual object tracking. For example,
Danelljan et al. [15] proposed to use features from the first
convolutional layer of a CNN in the spatially regularized
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discriminative CF-based tracking frameworks. Ma et al. [16]
designed an effective tracker, which adaptively learns a CF
on each convolutional layer and infers the target location
by accumulating the weighted correlation response maps.
By exploiting rich convolutional features of the pretrained
CNN, the performance of these trackers is further improved.
Furthermore, Valmadre and his partners [18] proposed the
CFNet tracker, which tightly couples the CF with features
from the highest convolutional layer by interpreting CF as
a differentiable convolutional neural network layer in the
Siamese CNN. The CFNet tracker can be trained end-to-end,
and achieves good tracking accuracy at high frame rates.

Although the tracking performance of CNN-based trackers
has improved significantly, there are still some challenging
issues. First, these trackers track the target object by using
features of the highest convolutional layer of a CNN, and
the CNN is pretrained separately for a different task (object
detection or image classification, etc.), whichmake it difficult
for trackers to benefit from hierarchical features [19] or end-
to-end training [20]. Second, most trackers treat all channels
or regions of the feature maps equally [16], [21], which is
not very suitable for visual tracking. This is because different
channels or regions of the CNN feature maps represent dif-
ferent semantic information, and some channels or regions
are useful for determining the target location while others are
distractors, thus resulting in tracking failures in the current
frame. Third, due to the depth of the networks and the com-
plexity of computation [18], [22], most of these trackers could
not run in real time.

In order to address the above issues, we propose a uni-
fied Siamese network for tracking by combining adaptive
weighted hierarchical convolutional features with CF learn-
ing. The main contributions of this paper can be summarized
as follows.

1) We propose an end-to-end Adaptive Weighted
Multi-layer Features based Correlation Filter Net-
work (AWMF-CFNet) for tracking, which follows the
Siamese network with two asymmetric branches and
each branch consists of a feature extraction network
and a feature integration network.

2) In the feature extraction network, we propose to con-
catenate multi-scale features of all convolutional layers
to capture low-level spatial information and high-level
semantic information of the object.

3) In the feature integration network, we propose a
holistic-part network to learn the semantic relations
between the holistic object and its parts and capture
strong visual features, and design a spatial attention
network to adaptively assign weights to each region
of the feature maps. Besides, the holistic-part network,
spatial attention and channel attention are combined
to enhance the discriminative ability of the features
representation.

4) Experimental results on the OTB50 [24] and
OTB100 [3] datasets demonstrate that the proposed
tracker achieves favorable performance against several

state-of-the-art trackers and operates in real time on
graphics processing unit (GPU).

The rest of this paper is organized as follows. In Section II,
the previous works related to the proposed tracker are
reviewed. In Section III, the architecture and each part of the
tracker are described in detail. The experimental results are
demonstrated and discussed in Section IV. Finally, conclu-
sions are given in Section V.

II. RELATED WORK
As one of the most challenging and fundamental issues in
computer vision, visual object tracking has been intensively
studied and a number of visual trackers have been proposed
over the decade. Generally, these trackers can be categorized
as either generative or discriminative [2], [25]. Generative
trackers mainly focus on searching for the image regions that
are the most similar to the target object, which incrementally
learn visual representations of the foreground object regions
while ignoring the influence of surrounding background.
These trackers are usually built on templates matching [26],
subspace learning [27], sparse representation [28], [29], and
so on. While discriminative trackers pose visual tracking
problem as a binary classification one, in which the classifier
is trained to distinguish the target object from its surrounding
background. Support vector machine [30], boosting [31],
CF [6], [32] and deep learning [20], [33] are representa-
tive techniques for designing a discriminative tracker. In the
following, we mainly discuss visual object trackers closely
related to this work, with main focus on CF-based trackers
and CNN-based trackers. For a comprehensive review on
these visual tracking methods, the readers can make a ref-
erence in [1], [2] and [25].

CF-based trackers have attracted enormous attention due
to their competitive accuracy and high computational effi-
ciency. Bolme et al. [34] trained an adaptive CF by min-
imizing the output sum of squared error for tracking, and
the proposed tracker achieved excellent performance at the
speed of hundreds of frames per second (FPS). Subsequently,
several CF-based trackers [6], [7], [35], [36] have been
proposed to enhance the tracking robustness and accuracy.
Henriques et al. [35] developed the CSK tracker, which for-
mulates the tracking problem as kernel ridge regression and
provides a link to fast learning and detection with the fast
Fourier Transform by using the theory of circulant matri-
ces. The CSK tracker was promoted in [6] by incorporat-
ing multiple-channel features (HOG features) and kernel
trick. Danelljan et al. [36] also extended the CSK tracker by
exploiting multi-dimensional color attributes to achieve accu-
rate tracking. Bertinetto et al. [7] further improved the track-
ing performance by integrating complementary HOG-based
CF and color-histogram-based model into a ridge regression
framework.

Powerful appearance representation makes a tracker
robust to various challenging scenarios. Compared to hand-
crafted features such as HOG and color naming, deep fea-
tures extracted from the CNN have stronger appearance
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FIGURE 1. The overall network architecture of the proposed AWMF-CFNet tracker.

representation ability [19], [25]. Subsequently, a number
of CNN-based trackers [15]–[17] have been proposed for
object tracking. Danelljan et al. [15] proposed to use features
from the first layer of CNN in a discriminative CF-based
tracking framework. Ma et al. [16] designed an effective
tracker by training a liner CF on each convolutional layer
and inferring the target position with a coarse-to-fine search-
ing approach. Furthermore, Danelljan and his partners [17]
also exploited hierarchical convolutional features for accu-
rate tracking. In order to enhance the tracking speed of
CNN-based trackers, many trackers [18], [37] have been
proposed based on Siamese networks for their simplicity and
competitive performance. Bertinetto et al. [37] developed a
fully convolutional Siamese network (SiamFC) based tracker,
which is trained end-to-end on the visual recognition dataset.
Then, Valmadre et al. [18] improved the SiamFC tracker by
redesigning the CNN network architecture in which the cor-
relation filter is interpreted as a differentiable CNN layer.
These trackers operate at frame-rates beyond real-time, but
do not show competitive results compared to the state-of-the-
art CNN-based trackers.

Visual attention mechanisms has been successfully applied
in various computer vision tasks such as image cap-
tioning [12], semantic segmentation [38], object detec-
tion [39] and facial trait classification [40]. For example,
Tian et al. [40] proposed a Fisher LDA based structured
pruning approach to discard less informative filters of the
final convolutional layer, and the approach achieves good
accuracy with high efficiency. Specifically, several attention
models based visual trackers [4], [21], [41]–[43] have been
proposed in recent years. Choi et al. [42] proposed an atten-
tional mechanism based framework, which chose a subset of
the associated correlation filters for tracking. Chen et al. [21]
designed a discriminative CNN-based tracker by integrat-
ing multi-level visual attention including spatial, temporal,
layer-wise and channel-wise attention into an end-to-end
network. Kim and Park [43] proposed a residual attention

model for tracking by combining long-short term memory
(LSTM) with a residual network. Li et al. [4] developed
an end-to-end feature integrated correlation filter network
for tracking by incorporating channel-wise attention based
feature integration and discriminative CF learning in a unified
Siamese CNN. Different from these trackers, we upsample
and concatenate features of all convolutional layers and adap-
tively assign weights to each channel and each region of these
features using the channel and spatial attention mechanism in
a unified Siamese network for tracking.

III. PROPOSED TRACKER
In this section, an overview of the proposed AWMF-CFNet
tracker is given and each of its components is described in
detail. The overall network architecture of AWMF-CFNet is
shown in Fig. 1, which follows the Siamese network with
two asymmetric branches proposed in [18]. Each branch
contains a feature extraction network and a feature integration
network. In the training branch, the integrated feature maps
derived from above two networks are processed by the CF
layer to train the correlation template. Then, two branches
are joined by a cross-correlation layer for tracking, and a
response map is obtained to represent the similarity between
the target template and multiple candidates. Finally, the loca-
tion of the target object is estimated by finding the coordinate
of the maximum value in the response map.

A. FEATURE EXTRACTION NETWORK
Different from existing Siamese network based CF trackers,
which use the features of the highest convolutional layer [18]
or specific convolutional layers (such as layer 2 and layer
5) [4], we propose to concatenate features of all convolu-
tional layers for tracking. This is mainly motivated by the
observation that the higher convolutional layers provide more
abstract and semantic features that are more robust to appear-
ance variations, while the lower convolutional layers capture
more detailed spatial features (such as edges, corners and
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texture information) that are effective in localization of the
target object [16], [19]. By combining high-level semantic
information and low-level spatial information, the appear-
ance representation ability is further promoted, and power-
ful appearance representation of the object is critical to the
performance of visual tracking. In our network, convolu-
tional features from all three convolutional layers are used
to represent the target object. However, the resolution of
features from each layer is different due to the pooling and
convolutional operations. To concatenate three layers fea-
tures, max pooling and convolution layers are implemented
on Conv1 and deconvolution and unpooling layers [23] are
implemented on Conv3 to ensure resolution consistency with
Conv2. The detailed network parameters and sizes of feature
map outputs are given in Table 1. Specifically, the parameter
settings of unpooling and deconvolution for Conv3 are also
given at the end of Table 1.

TABLE 1. The detailed parameters and feature map outputs of the
feature extraction network.

B. FEATURE INTEGRATION NETWORK
Although the extracted feature maps contain spatial and
semantic information, these features may still be less robust
in the case of occlusion, background clutters or illumination
variation. This is mainly because the contribution of each
channel or each region of the feature maps is different in
different frames, and it is not reasonable to always assign
the same weight to it. To deal with the above-mentioned
deficiencies, the feature integration network consisting of
a holistic-part network, a spatial attention network and a
channel attention network is adopted. The detailed network
architecture is shown in Fig. 2.

1) SPATIAL ATTENTION
Spatial attention is popular in many computer vision tasks
such as object detection [11] and image captioning [12] and
has been proven to be effective. The appearance of the target

FIGURE 2. The detailed architecture of the feature integration network.

object may change during tracking due to occlusion, rotation,
deformation or background clutter and the reliability of each
region of the target object changes with the progress of track-
ing. Therefore, instead of considering each region of the fea-
ture maps equally, it is better to paymore attention to valuable
regions by utilizing spatial attention [21], [44]. Given the con-
catenated feature maps F(xt ) ∈RW×H×C of image patch x at
frame t , a max-pooling layer with the kernel size of 5×5 and
the stride of 4 is first used. Then, we reshape the feature maps
F
′

(xt ) ∈RW
′
×H
′
×C by flattening its width and height and

get the new feature maps Fr (xt) = [f1, f2, . . . , fn], where
fi∈RC , n ∈ W

′

∗ H
′

and fi is considered as the feature of the
i-th region. Subsequently,Fr (xt) are fed into a full-connected
layer followed by a softmax layer. Next, the reshape layer and
unpooling layer are employed to generate the spatial attention
weight 9(xt ) over the image regions, and the weight has
a dimension of W × H . Finally, the spatial weighted CNN
feature maps can be defined as

Fs (xt) = fs (Fr (xt) , 9 (xt)) (1)

where fs (·) denotes an element-wise multiplication between
each channel of the feature maps and the spatial attention
weight.

2) HOLISTIC-PART NETWORK
In order to improve the spatial invariance of feature posi-
tions and learn the semantic relations between the target
object and its parts [45], [46], we propose to extract dis-
criminative feature maps from a new perspective by using a
holistic-part network that combines features of global appear-
ance and multiple parts appearance. Similar to several exist-
ing works [45]–[47], the holistic target object is divided into
four equal-sized parts. As shown in Fig. 2, the holistic-part
network first upsample features Fl (xt) of layer 2 (Conv2) by
using the bilinear interpolation with a factor of 2, and divides
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the features into four parts with a simple crop operation
and denote them as Fp

l (xt) , p∈ {left, right, bottom, upper}.
Then, features of these parts and global appearances are
merged to produce the combined feature maps by using an
element-wise max, which can be defined as

Fm (xt) = fm
(
Fpl (xt) , F

q
l (xt)

)
(2)

where fm denotes the max layer, p and q represent each part or
combined parts (left-right, upper-bottom, combined part and
whole). Finally, we obtain the concatenated feature maps as
follows

Fc (xt) = fc (Fs (xt) , Fm (xt)) (3)

where fc denotes the concat layer, which concatenates multi-
ple feature maps in the channel direction.

3) CHANNEL ATTENTION
Each channel of the extracted feature maps is a certain type
of pattern detector, and some channels are extremely dis-
criminative with respect to edges and corners while oth-
ers may be sensitive to color information [16]. Therefore,
we can assign different weights to different channels to make
the feature maps more discriminative [4], [21]. To achieve
this, a squeeze-and-excitation block [48] is adopted as the
channel attention to adaptively re-weight each channel of
the feature maps. As shown in Fig. 2, the feature maps are
firstly processed with the global average pooling to obtain
C-dimensions channel feature. Then, two fully connected
layers followed by a softmax layer are employed to get the
output8(xt) of the attention network. Subsequently, the final
weighted feature maps Fw(xt ) can be calculated as

Fw(xt ) = fw (Fc (xt) , 8 (xt)) (4)

where fw (·) represents a channel-wisemultiplication between
each channel of feature maps and its corresponding channel
weight.

C. TRAINING AND TRACKING
In order to train the proposed network, a logistic loss layer is
connected at the end of the Siamese network as in [18],

l (y, v) = log (1+ exp (−yv)) (5)

where v represents the predicted score and y denotes the
ground truth label. For each pair of images that are fed into
the network, a response score map v : D → R is produced.
By combining the ground truth label y[u] of each position
u ∈ D in the response score map, the final loss of the score
map is defined as the mean of the individual losses

L (y, t) =
1
|D|

∑
u∈D

l (y[u], v[u]) (6)

The parameters θ of the proposed networks are obtained by
using the Stochastic Gradient Descent (SGD) methods to
minimize the loss function

arg min
θ
L (y, f (z, x; θ)) (7)

where f (·) is used to produce the response score map of the
exemplar image z and search image x.
Considering the limitation of the scale of existing track-

ing dataset, we train the proposed networks with the
2015 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC2015), which contains more than 4000 videos
and one million annotated frames. Benefiting from various
objects and scenes in the ILSVRC2015 and its vast size,
we can safely train the proposed network without over-fitting
for tracking.

During online tracking, the given ground truth bounding
box is used as the exemplar image and the size of search
region is four times its previous size. Furthermore, a cosine
window is multiplied with the score map to penalize large
displacements. To deal with the scale variation, three different
scales of the search region are adopted in our networks,
and the scale with the maximum response map is the final
estimated scale in the current frame. Finally, the scale is
updated using a rolling average with learning rate 0.55 to
provide damping.

IV. EXPERIMENTS
A. EXPERIMENTAL CONFIGURATION
1) PARAMETER SETTINGS
Most of parameters follow the settings in [18] during training
and tracking. The initialization of the network parameters
follows a Gaussian distribution, and 50 epochs are performed
during the training and the network of 46-th epoch is adopted.
The learning rate is annealed geometrically at each epoch
from 10−2 to 10−5. The sizes of exemplar and search images
are 127 × 127 and 255 × 255, respectively. Three fixed
scales {0.9675, 1, 1.0325} and a scale-changing penalty
factor 0.976 are adopted to cope with the scale variation of
the target object. The learning rate for the template updating
is set to 0.005. All experiments are implemented in Matlab
2016b using MatConvNet library on a regular PC with an
AMD Ryzen 72700X CPU (3.7 GHz), 32GB memory and
a single GeForce RTX 2080Ti GPU, and the average speed is
approximately 20.5 FPS.

2) BENCHMARK DATASET
In order to evaluate the performance of the AWMF-CFNet
tracker, experiments are performed on frequently used pub-
lic datasets OTB50 [6], [8], [24] and OTB100 [3]–[5],
[49], [50]. The OTB50 contains 50 fully annotated videos.
The OTB100 is the extension of OTB50, which contains
98 fully annotated image sequences. These challenging
sequences are classified into 11 attributes [3], [22], includ-
ing background clutters, occlusion, deformation, illumina-
tion variation, in-plane rotation, out-of-plane rotation, fast
motion, motion blur, out-of-view, scale variation and low
resolution. One sequence may be annotated with many
attributes, and some attributes occur more frequently than
others, such as IPR and OPR [3]. Furthermore, the scale and
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FIGURE 3. Precision and success plots on two datasets using OPE. The proposed AWMF-CFNet tracker performs favorably against several
state-of-the-art trackers. (a) The OTB50 dataset. (b) The OTB100 dataset.

location of the target object are given in the ground truth of
each sequence for initialization and evaluation.

3) EVALUATION METHODOLOGY
In this paper, two widely used evaluation metrics, precision
plots and success plots, are adopted for quantitative anal-
ysis. A precision plot illustrates the percentage of frames
whose center location errors are within a specified thresh-
old distance, and the center location error is defined as the
average Euclidean distance between the manually labeled
ground truths and the center locations of the tracked target
object. A success plot indicates the percentage of frames
whose overlap score is larger than the given threshold and the
overlap score can be computed with S = |Bt∩ Bg|

|Bt∪ Bg|
, where

Bt denotes the bounding box of tracked result, Bg denotes the
bounding box of ground truth, | · | is the number of pixels
of the regions, and ∩ and ∪ represent the intersection and
union of two regions. In this paper, the results of one-pass

evaluation (OPE) are shown. OPE means running a tracker
throughout a test sequence with initialization from the ground
truth position in the first frame and reporting the average
precision or success plot [24]. Specifically, we use the area
under curve (AUC) of each success plot to rank all trackers.

B. QUANTITATIVE COMPARISONS
1) OVERALL PERFORMANCE
The AWMF-CFNet tracker has been quantitatively com-
pared with nine state-of-the-art trackers and codes of these
trackers are publicly available, including KCF [6], Sta-
ple [7], SCT [41], MCPF [49], ACFN [42], HCFT [16],
CFNet [18], SiamFC [37] and SiamTri [50]. Among them,
the last six trackers employ the feature descriptors from
CNNs, and most of these trackers are based on CF. Fur-
thermore, SiamFC, SiamTri and CFNet are Siamese network
based trackers, and SCT and ACFN pay more attention to
the integration of attention mechanism. Fig. 3 illustrates
the results of these trackers using OPE on the OTB50 and
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FIGURE 4. Precision plots for 11 attributes of the OTB100 dataset using OPE.

OTB100 datasets. The values in square brackets indicate
the precision score with a threshold of 20 pixels in preci-
sion plot and the area under curve (AUC) value in success
plot. Our AWMF-CFNet tracker achieves precision scores
of 0.828 and 0.822 and success scores of 0.629 and 0.623 for
two datasets. The AWMF-CFNet tracker outperforms other
state-of-the-art trackers except MCPF and HCFT in both
measures. Specifically, AWMF-CFNet operates at an aver-
age speed of 20.5 FPS on the OTB100 dataset, which is

significantly faster than the MCPF tracker (< 1 FPS) and
slightly faster than the HCFT tracker (11 FPS). Compared
with the attentional correlation filter network based ACFN
tracker, AWMF-CFNet exhibits improvements by 2.2%/5.1%
in the success plot for two datasets. Furthermore, com-
pared with the Siamese network based trackers SiamFC and
CFNet, AWMF-CFNet achieves a superior performance. This
is mainly due to the use of multi-layer features and feature
integration network.
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FIGURE 5. Success plots for 11 attributes of the OTB100 dataset using OPE.

2) ATTRIBUTE-BASED PERFORMANCE
To thoroughly evaluate the performance of the pro-
posed AWMF-CFNet tracker under various challenging
scenarios, we illustrate the precision and success scores
of the above-mentioned 11 different attributes on the
OTB100 dataset, as shown in Fig. 4 and Fig. 5. The fig-
ures demonstrate that the AWMF-CFNet tracker can well
cope with various challenging scenarios. The proposed

tracker outperforms the Siamese CF network based CFNet
tracker on 10 of 11 attributes. Furthermore, our tracker per-
forms better in most scenarios such as scale variation, motion
blur, in-plane rotation, out-of-plane rotation, and occlusion,
compared to the attentional CF network based ACFN tracker.
The above analysis suggests that our tracker is effective in
handling various challenge sceneries, especially in occlusion,
deformation, illumination variation and background clutter.
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FIGURE 6. Precision and success plots on the OTB100 dataset for several variations of the proposed tracker.

3) ABLATION ANALYSIS
The proposed AWMF-CFNet tracker mainly consists of
four modules: multi-layer features, holistic-part module,
spatial attention and channel attention. To better under-
stand the contribution of each component of AWMF-CFNet,
we implement and evaluate four variations of our tracker.
First, we build a tracker AWMF-CFNet-conv3 by integrat-
ing features of the 3-th convolutional layer and keeping
other modules unchanged. Second, the AWMF-CFNet-SA
tracker is implemented with multiple-layer features and
spatial attention. Third, the AWMF-CFNet-SA-HP tracker
is implemented with multiple-layer features, spatial atten-
tion and holistic-part module. Forth, the AWMF-CFNet-
CA tracker is implemented with multiple-layer features and
channel attention. Experimental results of these trackers on
the OTB100 dataset are illustrated in Fig. 6. The success
and precision scores of the AWMF-CFNet-conv3 tracker are
decreased by 1.2% and 1.9%, respectively, compared with
AWMF-CFNet. The main reason may be that both the low-
level spatial information and the high-level semantic infor-
mation can enhance the appearance representation ability of
the target object, which is critical in improving the perfor-
mance of tracking. Furthermore, we can observe that the
success and precision scores of AWMF-CFNet are increased
by 0.9%/1.0% and 2.1%/2.2%, respectively, compared to
AWMF-CFNet-SA-HP and AWMF-CFNet-SA. The above
analysis means that spatial attention, holistic-part module
and channel attention are complementary in the proposed
network. The performance of all variation is not as good as
our full tracker and each part of the tracker is helpful for the
overall performance of tracking.

C. QUALITATIVE COMPARISONS
In this subsection, the AWMF-CFNet tracker is qualitatively
compared with 9 state-of-the-art trackers and tracking results
of 8 representative image sequences with all 11 attributes are

shown in Fig. 7. In the following, we compare the tracking
results of these trackers when the target object undergoes
occlusion, background clutter, deformation and illumination
variation.

1) OCCLUSION
As shown in the Jogging-1, Girl2, Tiger1 and Liquor
sequences, partial or heavy occlusion is a type of appearance
changes that occurs frequently. In the Jogging-1 sequence,
the running woman is partial occluded by a traffic signal pole
at frame 65 and all trackers can track the woman accurately.
When she reappears at frames 79 and 95, all trackers except
KCF and Staple are able to track the target woman. For the
Girl2 sequence, the target girl is fully occluded by another
man after the 1385-th frame and reappears at 1402-th frame,
only our AWMF-CFNet tracker still stick on the target girl.
This is mainly benefits from the holistic-part network and
spatial attention mechanism, which can learn the semantic
relations between the holistic object and its parts and assign
proper weights to more discriminative regions.

2) BACKGROUND CLUTTER
Another challenge for a tracker is dealing with background
clutter. In the sequence of Tiger1, a toy tiger appears on
the screen with fast motion, occlusion, deformation, and
frequent rotations in a messy background. All trackers stick
on the tiger in the initial frames such as frame 55, while
all trackers except Staple, KCF, SCT and our AWMF-CFNet
fail to accurately track the target or estimate the scale of the
target at frames 105 and 305. In the sequence of Board, only
HCFT, ACFN and our AWMF-CFNet track the target stably
throughout the sequence.

3) DEFORMATION
In the sequence of Bolt2, the target man is undergoing con-
tinuous severe deformation and background clutter, trackers
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FIGURE 7. The tracking results of ten trackers on eight sequences, i.e., Jogging-1, Girl2, Tiger1, Board, Bolt2, Liquor, MotorRolling and
Singer2.

including MCPF, ACFN and SiamTri are suffering track-
ing failures or drifts. In Liquor, the target bottle is sur-
rounded by several similar bottles and the target bottle is
deformed at frames 400 and 877, only KCF, ACFN and
our AWMF-CFNet perform well in the whole sequence. The
AWMF-CFNet tracker handles deformation well because it
integrates multiple-layer features into the proposed Siamese
network, whichmakes it contain more rich and discriminative
spatial and semantic information.

4) ILUMMINATION VARIATION
MotorRolling and Singer2 are used to qualitatively assess
all trackers in the aspect of handling illumination variation.
In the sequence of MotorRolling, the illumination variation

and deformation occur at frames 40, 50 and 90, trackers
including HCFT, MCPF, CFNet and our AWMF-CFNet can
track the target, while only our tracker can accurately estimate
the target scale throughout the sequence. In Singer2, the light
changes frequently at frames 180, 280 and 330, trackers
including Staple, KCF, ACFN and our AWMF-CFNet are still
on the target man. The reason our tracker performs favorably
may be that the channel attention module can filter out most
of the interference features.

V. CONCLUSION
In this paper, we propose an effective tracker by learning
an adaptive weighted multi-layer features based Siamese CF
network. In the tracker, convolutional features of shallow
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and deep layers are concatenated to obtain richer spatial
and semantic information. Furthermore, the proposed fea-
ture integration network consisting of holistic-part network,
spatial attention and channel attention further enhances the
discriminative ability of the features representation. Exten-
sive experimental results on the OTB50 and OTB100 datasets
show that the proposed tracker achieves favorable perfor-
mance against several state-of-the-art trackers and can effec-
tively deal with occlusion, background clutter, illumination
variation and deformation, while operating at high frame
rates.
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