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ABSTRACT The state-of-the-art object detection frameworks require the training on large-scale datasets,
which is the crux of the present dilemma: overfitting or degrading performance with insufficient samples
and time-consuming training process. On the basis of meta-learning, this paper proposes a generalized
Few-Shot Detection (FSD) framework to overcome the above drawbacks of the current advances in object
detection. The proposed framework consists of a meta-learner and an object detector. It can learn the
general knowledge and proper fast adaptation strategies across many tasks. The meta-learner can teach
the detector how to learn from few examples in just one updating step. Here, the object detector can be
any supervised learning detection models in theory. Specifically, the proposed FSD framework employs
Single-Shot MultiBox Detector (SSD) as the object detector in this paper, thus called Meta-SSD. Besides,
a novel benchmark is constructed from Pascal VOC dataset for training and evaluation of meta-learning FSD.
Experiments show that theMeta-SSD yields a promising result for FSD. Furthermore, the properties ofMeta-
SSD is analyzed. This paper can serve as a strong baseline and provide some inspiration for meta-learning
FSD.

INDEX TERMS Meta-learning, few-shot, object detection, fast adaptation.

I. INTRODUCTION
The current deep learning systems have achieved great
success in image classification [1]–[4], object detection
[5]–[13] and semantic segmentation [14]–[18]. Nevertheless,
these state-of-the-art systems have to be trained for hundreds
of thousands iterations on large-scale datasets, resulting in
the characteristics of data-hungry and time-consuming. For
object detection, in many situations, the insufficient examples
will limit the performance of these supervised learning object
detectors (Fig. 1 (a)). Moreover, collecting a large number of
labelled examples is expensive and laborious. Hence, weakly
supervised object detection [19]–[25] is proposed and has
gained notable achievements to alleviate the heavy burdens
for data annotation, which merely solves the dependencies on
annotated examples, but still requires a large pool of training
images.

The associate editor coordinating the review of this manuscript and
approving it for publication was Naveed Akhtar.

In contrast, one can recognize a novel object with few
samples or even one. The ability of few-shot learning in
humans can be reference to the deep learning object detection
methods and expand the application of the current advances.
It has promoted related works in few-shot image classifi-
cation [26]–[38], where the models can recognize new cat-
egories after updated a few steps or even once with few
examples. While few researches focus on the few-shot object
detection (FSD) problem.

As shown in Fig. 1 (b), transfer learning is a feasible
method for FSD [39], where the model acquires priors by
training on source domain, then, a finetuning process to
transfer knowledge to target domain with few training exam-
ples. Nevertheless, the transfer learning models also need to
be trained for hundreds or thousands of iterations on target
domains, which may be unsuitable for dynamic environment
and urgent tasks.

To further expand the flexibility and utility of the
advanced object detection approaches, we address the
few-shot detection (FSD) problem from a new perspective of
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FIGURE 1. Comparison of three different object detection methods. (a) The supervised learning detectors work well on the objects of trained classes, e.g.
aeroplane, but cannot detect the objects of unseen classes, e.g. cat. (b) Transfer learning approaches have found a solution by transfering the knowledge
from source domain (aeroplane) to target domain (cat) of few examples per category. (c) The proposed meta-learning framework learns a meta-learner
from a distribution of similar tasks of few examples, which can implement fast adaptation for new detection tasks with only few examples.

meta-learning, where models should achieve fast adaptation
on new tasks with few examples. Here, fast adaptation means
one step update on new tasks as in [38]. Considering that
meta-learning is the basis of many excellent works with fast
adaptation in few-shot image classification, which should be
an alternative solution to solve the FSD problem. To the best
of our knowledge, this work is the first study to propose a
generalized meta-learning FSD methodology and analyze its
feasibility.

The proposed meta-learning FSD framework, shown
in Fig. 1 (c), containing a meta-learner and an object detector.
Here, the meta-learning system learns a meta-learner from
a series of FSD tasks, which can guide the detector how to
update its network in a new task of few examples accurately
and faster (usually updating only once). The learning process
exists at two levels: rapid learning and gradual learning,
shown in Fig. 2. Rapid learning occurs within each task for
fast adaptation, where the detector updates its weights under
the guidance of meta-learner to get an adapted detector which
should be more suitable for this task. Gradual learning
aims to acquire a general knowledge for all related tasks by
updating the meta-learner with the meta-info from each batch
of tasks. The meta-learning process is a life-long learning
which can continue forever as long as provided similar tasks.

Specifically, we implement the generalized FSD frame-
work by equipping the meta-learner with SSD, train and
test Meta-SSD in the same process as meta-learning meth-
ods for few-shot image recognition. Besides, to measure
the performance of the proposed meta-learning detection

framework, we define a new benchmark NIST-FSD1 on the
Pascal VOC [40] dataset by splitting the classes into seen
classes (for training) and unseeen classes (for test, not present
in training phase).

Our contributions are as follows:

1) A generalized meta-learning FSD framework with a
meta-learner and an object detector is proposed and
implemented as Meta-SSD by transforming the super-
vised learning SSD to meta-learning FSD.

2) A benchmark NIST-FSD is built from Pascal VOC
dataset for training and evaluation of the proposed
meta-learning FSD framework and other FSDmethods.

3) The feasibility of Meta-SSD is proved by experiments,
furthermore, the properties of Meta-SSD are analyzed
to promote the development of meta-learning FSD.

II. RELATED WORKS
The goal of this work is to address the FSD problem by com-
bining the meta-learning methodology with the supervised-
learning object detection methods. Hence, we will expatiate
related works in these areas.

A. OBJECT DETECTION
The current advances [5]–[12] in object detection are based
on Convolutional Neural Networks (CNN) and can mainly
be classified into two categories: one-stage detectors and

1Code for building NIST-FSD is available at https://github.com/ztf-
ucas/NIST-FSD
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FIGURE 2. Meta-learning process of the generalized FSD framework. φ denotes the object detector. Meta-learner guides φ to adjust its parameters
according to the feedback from the training set in each task, then is updated by leveraging the meta-info from the test-sets of a batch of tasks.

two-stage detectors. One-stage detectors are characterized
with simpler structure and faster computation than two-stage
detectors due to predicting object locations and classes in
a straightforward one-step pipeline without region proposal
process. In contrast, two-stage detectors are usually slower
but more accurate with the region proposal methods to search
a set of potential object locations, then classify the region
proposals more precisely.

1) ONE-STAGE DETECTORS
Overfeat [5] is the first integrated CNN based framework
which can achieve object classification, localization and
detection jointly. After that, many one-stage methods have
been proposed, such as YOLO [7] and SSD [8]. YOLO
makes predictions on a single scale feature map. To improve
the accuracy, SSD adopts multi-scale feature maps and use
convolutional layers instead of fully connected layers as in
YOLO. Generally, one-stage detectors are faster than
two-stage detectors but trailed in accuracy. [9] claims that
performance degradation is due to the extreme foreground-
background class imbalance during training, and it introduces
focal loss to address this problem.

2) TWO-STAGE DETECTORS
R-CNN [6] is the most representative approach among var-
ious two-stage detectors. In the first stage, it uses selective
search to generate candidate regions. In the second stage,
R-CNN performs forward calculations on the entire neural
network for each proposal, leading to a heavy computational
burden. Subsequent methods try to improve R-CNN in terms
of speed by reducing redundant forward passes or the number
of candidate regions. SPP-Net [11] and Fast R-CNN [10]
extract feature maps for a test image only once. Faster
R-CNN [12] achieves better performance by replacing selec-
tive search with region proposal network (RPN) and merging
Fast R-CNN and RPN into a unified framework.

B. META-LEARNING
Few-shot learning has made a splash in recent
years [26]–[38], represented by a series of methods of

metric-learning, transfer-learning and meta-learning. Meta-
learning [41] is a general solution for few-shot learning, and
have made a breakthrough progress in image recognition,
regression and reinforcement learning. A standard meta-
learning framework usually has two components: a meta-
learner acting as a teacher and a learner viewed as a student.
In the meta-learning regime, a meta-learner is trained on a
distribution of similar tasks to teach the learner how to update
its parameters.

Meta-learning is used to learn a generic transformation
in [28], from models trained on few samples to those learnt
from large-scale dataset to solve the problem of few-shot
learning. While [27] learns a LSTM based meta-learning
optimizer to train the learner on few-shot learning tasks.
Besides, [26] learns a general initialization of the learner for
rapid adaptation with few examples. Based on [26], Meta-
SGD [38] is proposed to learn a set of good parameters as
well as learning rates of each parameter. [29] employs a
different approach with the memory-augmented model for
rapid generalization on new tasks.

Most previous meta-learning works focus on image recog-
nition, regression and reinforcement learning, few researches
work toward a meta-learning system for FSD. Based on the
fact that meta-learning approaches have led to advances in the
above areas for few-shot learning, we introduce a generalized
meta-learning framework for FSD.

C. FEW-SHOT DETECTION
Although the supervised learning detectors [5]–[12] have
made significant success, tend to struggle in the few-shot
regime where models must adapt quickly on new tasks with
scarce data. Most related works of few-shot learning focus
on image classification and regression, forming a striking
contrast with FSD.

[42] implements few-example detection by using a large
pool of unlabeled images under semi-supervised learning
setting. Most closely related to our work is LSTD [39] which
solves the FSD problem by transfer learning. There are still
some differences for the two methods. Firstly, Meta-SSD is
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FIGURE 3. SSD framework. SSD employs a CNN as the base network for feature extraction, then adds the extra convolutional feature layers to the end of
base network, which can make predictions at multi-scales by decreasing the feature sizes progressively.

trained and tested at the task level, LSTD is trained on a
source domain and finetuned on a target domain. Secondly,
Meta-SSD updates its parameters only once for each task,
LSTD need to be finetuned for hundreds or thousands of
iterations on the target domain. Thirdly, LSTD combines SSD
with Faster R-CNN to implement a coarse-to-fine detection
pipeline, Meta-SSD learns a pure SSD in the meta-learning
manner without other techniques.

This work solves the FSD problem from a new perspective:
proposing a generalized meta-learning detection framework
to detect objects of newly interested classes, and opens a new
door for the FSD problem.

III. METHODOLOGY
This work aims to address the problem of FSD under the
blessing of meta-learning. We first define the meta-learning
FSD problem, spontaneously, propose a corresponding meta-
leaning methodology which is implemented by integrating
SSD into a meta-learning pipeline to deal with this problem.

A. PROBLEM FORMULATION
The meta-learning detection system acquires strong prior
knowledge on training tasks, then can implement a fast adap-
tation on new tasks with few examples. In the meta-learning
FSD problem, the proposed generalized FSD framework
works in ameta-learning process, composed of ameta-learner
and an object detector. After trained on a series of tasks on
seen classes, the meta-learner should teach the objector how
to adjust its parameters rapidly (updating only once) in new
tasks of unseen classes with few examples.

Different from the supervised-learning methods, the basic
unit for training and evaluating meta-learning system is
‘‘task’’, shown in Fig. 2, which contains a training set and
a test set. Let a meta-learning FSD detector φ can output
predicted categories y and locations t from the given input
i. In order to achieve fast adaptation on new tasks with few
examples, this detector is trained on the distribution p(T ) of
many similar tasks on the principle that the process of training
and test should be consistent. We sample K examples for each
task Ti in theK-shot setting. Themeta-learning usually occurs

on the batches of tasks, where φ is trained on the training set
of Ti and feedback from the detection loss LTi , then tested on
the test set of task Ti. The meta-learner attempts to guide the
detector to update its parameters θ to decrease the test error.
We collect the loss LTi on test sets from a batch of tasks as
meta-info to update the meta-learner. The meta-learning pro-
cess is repeated until the meta-learner can learn how to adjust
the detector φ to get a satisfactory test performance. Once
trained, this meta-learning FSD framework should achieve
a good performance on test sets of new tasks sampled from
p(T ) after learning from K examples.

B. SSD REVISIT
1) SSD
The proposedMeta-SSD utilizes the successful SSD for FSD,
shown in Fig. 3. We will not enter into the details of SSD,
and readers can refer to [8] for more details. SSD is a rep-
resentative one-stage detection method, where a carefully
designed multi-layer bounding box regression architecture
can locate objects with various scales. SSD employs a CNN
as the base network for feature extraction, then adds the extra
convolutional feature layers to the end of base network, which
canmake predictions at multi-scales by decreasing the feature
sizes progressively (extra feature layers in Fig. 3). These fea-
ture layers of the auxiliary structure can output the predictions
of location and category by the followed convolutional layers.
Besides, SSD has a set of default bounding boxes in each
feature map cell for effective detection. In each feature map
cell, the relative offsets to the default bounding boxes and
classification scores can be predicted to implement object
detection. Non-Maximum Suppression (NMS) is performed
to reduce redundant detection boxes.

2) WHY SSD
This work tries to address the FSD problem from the per-
spective of meta-learning and proposes a generalized meta-
learning FSD framework. Then we need to evaluate the
feasibility of the framework by equipping it with an object
detection architecture. The detector should be relatively sim-
ple to reduce the difficulties of meat-learning FSD, causing
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that the two-stage detectors [6], [10], [12] are excluded. For
one-stage detectors, SSD is simple and effective by imple-
menting multi-scale detection with an auxiliary convolu-
tional structure. Others like [5], [7] have lower accuracy and
[43]–[45] have more complex structures. The goal of this
work is to verify the feasibility of meta-learning FSD and
offer a new way for FSD, rather than pursue the accuracy of
FSD. Therefore, we select SSD to implement meta-learning
FSD, called Meta-SSD, and evaluate it by experiments.
It should be noted that other detectors can also be combined
with the proposed FSD framework, which should be explored
in the future.

C. META-LEARNING FSD
The effective methods commonly used in supervised learning
(such as optimizers and learning rate strategies) with suffi-
cient examples may not work well under the few-shot regime.
The initialization of detector φ is crucial for FSD due to the
limited information from few examples. Hence, acquiring a
good set of initialized parameters θ as strong prior knowledge
is reasonable. Furthermore, the way to update networks is
also non-trivial for avoiding overfitting. This meta-learning
FSD system is proposed by considering these key issues
mentioned above. Inspired by the meta-learning methods
[26], [38] in few-shot learning image classification, the pro-
posed framework is designed to learn both good initializa-
tions and suitable learning rates, shown in Alg. 1.
In supervised learning object detection, models are updated

by gradient descent:

θ t = θ t−1 − α∇LT (θ t−1) (1)

here, α denotes the learning rate and the lossLT usually con-
tains cross-entropy loss `cls for classification and smoothL1
loss `reg for bounding box regression, usually computed by:

LT =
1
|T |

∑
(i,y∗,t∗)

(`cls(φθ (i), y∗)+ `reg(φθ (i), t∗)) (2)

where y∗ and t∗ are the labels for classification and location
regression respectively.

In the proposed generalized FSD framework, we employ a
meta-learner to learn the learning rate α, such that updating
the parameters θ is just right, neither overfitting nor underfit-
ting. Therefore, Equation. 1 can be rewritten as:

θ t = θ t−1 − α∗∇LT (θ t−1) (3)

The learning rate α∗ is not predefined but can be learnt by a
meta-learner from the distribution p(T ). We set a learnable
learning rate α∗ for each parameter of the detector.

With the above definition, the objective of meta-learning
is:

min
θ

∑
Ti∼p(T )

LTi (φθ ′ ) =
∑

Ti∼p(T )

LTi (φθ−α∗∇LTi (φθ )
) (4)

Different from supervised-learning detection, the goal of
meta-learning FSD is to adjust the detector’s parameters θ
to θ ′ for fast adaptation on new tasks. Hence, the objective

should be computed on the updated parameters θ ′ as the
above equation. The losses LT from the updated parameters
θ ′ are collected as meta-info to update the meta-learner by
stochastic gradient descent (SGD) as follows:

(θ, α∗) = (θ, α∗)− β∇
∑

Ti∼p(T )

LTi (φθ ′ ) (5)

We set a meta-learning rate β for the meta-learner so that the
meta-learning process can be executed just like in supervised
learning.

Algorithm 1Meta-Learning for FSD
Input: FSD task distribution p(T ), meta-learning rate β
Ensure: detector’s parameters θ , detector’s learning rate α∗

1: Initialize θ , α∗

2: while not end do
3: Sample n tasks from p(T )
4: for all j = 1; j ≤ n do
5: LTjtrain =

1∣∣∣Tjtrain∣∣∣
∑

i∈Tjtrain
`(φθ (i))

6: θ ′ = θ − α∗∇LTjtrain
7: LTjtest =

1
|Tjtest |

∑
i∈Tjtest

`(φθ ′ (i))

8: end for;
9: (θ, α∗) = (θ, α∗)− β∇

∑
j∈(1,n)

LTjtest

10: end while

D. IMPLEMENTATION
Meta-SSD is implemented with an end-to-end neural net-
work. Although any supervised learning object detection
models can be adopted in the proposed FSD framework the-
oretically, the goal of this work is trying to achieve FSD with
meta-learning, not pursuing higher performance. We imple-
ment the generalized FSD framework by combing the rela-
tively simple and effective SSD300 [8] with a meta-learning
process [38].

VGG16 [2] is used as the base network. We set learnable
learning rates for all parameters. Therefore, the meta-learning
system can learn the good initialization as well as the fast
adaptation strategy. The optimizer of meta-learning is SGD,
such that we can train meta-learner in the supervised learn-
ing manner. In the training phase, SSD is adjusted with the
learning rates from meta-learner, then tested on the test set.
The losses from a batch of tasks are collected as the meta
info to update the meta-learner. During test, we employ the
same way as in training, except that the object classes are
different from those in the training phase. Non-Maximum
Suppression (NMS) is performed to reduce redundant detec-
tion boxes.

IV. BENCHMARKS
A. DATA ORGANIZATION
The whole NIST-FSD dataset can de divided into two sets:
meta-train and meta-test sets (Fig. 4). Meta-train set only
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FIGURE 4. The 5-way 1-shot FSD setup. The whole dataset is divided into meta-train and meta-test sets. In each task (denoted by green box), there are
training and test subsets sampled from meta-train or meta-test set, and they have same classes. One image per class is randomly selected for training,
test subsets of meta-train and training subset of meta-test, while fifteen images per class are randomly selected for test subset of meta-test. Note that
the classes of meta-train set are not present in meta-test set.

contains the objects of seen classes, while meta-test set only
contains the objects of unseen classes. Furthermore, in each
meta-train or meta-test set, there are two subsets: training
and test subsets. The object detector is trained on the training
subset, then updated under the guidance of meta-learner. The
test subset is used for evaluating the updated detector and col-
lecting the loss to update meta-learner. We employ 4 different
partitions as [46] and more details about the data organization
is shown in Table. 2. The images of meta-train set are from
the VOC 2007 train&val and VOC 2012 train&val datasets,
and the images of meta-test set are from the VOC 2007 test
dataset.

B. TASK DEFINITION
In the meta-learning setting, we define the task according to
the number of detection categories and examples per class.
A N-way K-shot meta-learning task is to detect N class
objects with K examples per class.

In this work, we evaluate the proposed framework in 4
different settings: 3-way 1-shot, 3-way 5-shot, 5-way 1-shot,
and 5-way 5-shot. For example, in a 3-way 1-shot meta-
training task, we first sample 3 categories, then randomly
select one example per class, resulting in 3 images for training
set. Similarly, 3 images are selected from the remaining as test

TABLE 1. The settings of 4 different N-way K-shot FSD. There are N × K
images for each subset except N × 15 images for test set of meta-test.

set. We execute the meta-test task in the same way as meta-
training except that the number of test images is 15 per class.
For details, refer to Table. 1.

V. EXPERIMENTS
A. BASELINE
We compare Meta-SSD with two baselines. The first is to
train SSD on seen classes with sufficient labelled examples,
and finetune it on unseen classes with few examples. It is an
appropriate baseline for a fair comparison due to SSD is the
detector of Meta-SSD.

The second baseline is transfer-learning FSD method
LSTD, which transfers knowledge from seen classes to
unseen classes. But this is not a fair comparison, because that
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TABLE 2. Detection results of different meta-learning settings. S1 − S4 denote different class partitions and K-N denotes the K-way N-shot setting. In each
FSD setting, there are 500 randomly generated tasks for evaluation. Note that we just train 3-way 1-shot and 5-way 1-shot FSD due to the limitation of
graphic memory. The 3-way 5-shot and 5-way 5-shot FSD are evaluated based on the trained 3-way 1-shot and 5-way 1-shot models respectively.

LSTD is a two-stage detector with higher performance by
combining SSD with Faster R-CNN, while both Meta-SSD
and SSD employ the one-stage detection pipeline.

B. EXPERIMENTAL SETTING
For effectively evaluating the performance of Meta-SSD,
we design 4 different class partitions with 4 few-shot settings,
leading to 16 experiments shown in Table 2. Where S1 − S4

denote different class partitions and K-N denotes the K-way
N-shot setting. It should be noted that we just train Meta-SSD
for 3-way 1-shot and 5-way 1-shot FSD, because there is not
enough graphic memory for training 3-way 5-shot and 5-way
5-shot FSD. However, we still evaluate 3-way 5-shot and
5-way 5-shot FSD based on the trained 3-way 1-shot and
5-way 1-shot models respectively. The 5-shot performance on
seen and unseen classes will be better if we train Meta-SSD
in the 5-shot setting.

In each experiment, we evaluate Meta-SSD on 500 meta-
test sets (that is 500 random tasks) and compute the mean
performance (average precision) of each category on the test
set from each task. Besides, we update the parameters only
once in each task for training and test.

Meta-SSD is optimized by SGD optimizer for
30000 episodes. There are 4 tasks in each episode. Learning
rate α∗ is 10−3 and β is from 10−3 to 10−6. The threshold for
NMS is 0.45 and the threshold for classification is 0.01.

C. PERFORMANCE
The experiment results of different settings are shown
in Table 2. Meta-SSD achieves a promising effect, indicat-
ing it is a feasible avenue for meta-learning FSD. During
training and test, Meta-SSD can implement fast adaptation
(updating only once) successfully with few examples. In each
task, we randomly select new classes and shuffle them. This
operation increases the difficulties of FSD, especially for
object classification due to the parameters for classification

FIGURE 5. Comparison in different updating steps for 5-way 1-shot on
unseen classes of S1.

on the previous task are useless for the current task. Thus,
recognizing the novel classes rapidly is a challenge for
Meta-SSD.

As shown in Table 2, Meta-SSD has good generalization
ability and yields a similar performance on unseen classes
to the seen classes. Note that the 5-shot experiments are
evaluated based on the trained 1-shot models, resulting in the
slight improvements except for unseen classes on S3.

D. COMPARISON WITH BASELINES
For a fair comparison, we train and evaluate Meta-SSD, SSD
and LSTD in a same setting as much as possible. Based
on S1, we train Meta-SSD with 5-way, 1-shot and test it
on unseen classes, and train LSTD, SSD on seen classes
and finetune them on unseen classes. We update meta-SSD
only once as [38] and finetune LSTD, SSD from 1, 10, 100,
to 1000 steps on unseen classes, shown in Fig. 5.
Even thoughMeta-SSD updates only once, it performs bet-

ter than SSD. It’s difficult for a detector like SSD with a large
number of parameters to converge well in one updating step,
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FIGURE 6. Performance of the trained 3-way 1-shot Meta-SSD with
different number of training images per class on unseen classes of S1.

but Meta-SSD can implement this fast adaptation process due
to the carefully designed meta-learning pipeline.

Although LSTD employs the two-stage detection pipeline,
Meta-SSD also outperforms LSTD with few iterations (less
than 100). The experiment results indicate the effectiveness
of Meta-SSD and meta-learning is a promising method for
FSD.

E. FEW-SHOT LEARNING
In Table 2, Meta-SSD is evaluated in the 5-shot setting.
The trained 1-shot model can yield better performances after
providing more examples (5-shot). We further explore the
performance ofMeta-SSDwith different number of examples
in few-shot setting (less than 15 examples per class), shown
in Fig. 6.We train the 3-way 1-shotMeta-SSD on seen classes
of S1 and evaluate it in different K-shot settings on unseen
classes. With the increase of examples, the performance can
be further improved and tends to be stable. The results show
that the meta-learning FSD framework is a rather challenging
but promising method. Therefore, how to improve the upper
bound of fast adaptation for meta-learning FSD methods
should be researched in the future.

F. LEARNING RATE ANALYSIS
We visualize the learning rates of each layer in Meta-SSD to
qualitatively analyze the learnable learning rates and further
understand it in principle, shown in Fig. 7. Here, we compute
the arithmetic mean along the output channel and just select
the learning rates from the first 64 input channels in each
layer.

The learning process of the proposed Meta-SSD can be
viewed as finding an appropriate sensitivity factor (learning
rate) for each parameter of the detector. These parameters
are the learned knowledge from the distribution p(T ) of
FSD tasks. Some parameters represent the general knowledge
across different tasks which are insensitive to the change of
tasks, and they should be given smaller sensitivity factor (the
light blue areas in Fig. 7). Whereas a few parameters are the
specific knowledge corresponding to a task, which are sen-
sitive to the change of tasks and enable the detector to adapt

FIGURE 7. Learning rates of different layers. Here, we visualize the
learning rates of the first 64 channels from each layer. Best viewed in
color.

rapidly for a new task. These parameters should be assigned
larger sensitivity factor (the dark blue areas in Fig. 7).

It is interesting to note that there are some yellowy areas
which should be more insensitive to the change of tasks. It’s
reasonable that few parameters in the lower layers used to
extract general image features should be more insensitive.
However, some parameters in the higher layers are also more
insensitive. These learning rates are hard to set well manually,
indicating the effectiveness of the meta-learning strategy.

VI. CONCLUSION
This work proposes a generalized FSD framework based on
meta-learning and implements it by the carefully designed
Meta-SSD, aiming to overcome the drawbacks of the cur-
rent object detection advances when faced with the few-shot
regime.Meta-SSD, consisting of a meta-learner and an object
detector (SSD), can learn the general knowledge and proper
fast adaptation strategies with the learnable learning rate set
for each parameter. The proposed framework is trained on a
distribution of similar FSD tasks, where the detector must
achieve good performance for every task with few images.
Then, the meta-learner can teach the detector how to adjust
parameters rapidly from few examples. Besides, a benchmark
NIST-FSD for FSD is built based on Pascal VOC dataset to
evaluate meta-learning FSD methods. Experiments show that
meta-learning is a promising approach for FSD. This work
can give some suggestions to the future research and serve as
a baseline for meta-learning FSD.
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