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ABSTRACT In this paper, we propose a dynamic unmanned aerial vehicle (UAV) positioning method
to maximize the value of the sensor data information acquired from multiple UAVs in wireless sensor
networks. In operations of UAVs to monitor environmental disasters or perform military missions, the value
of the acquired sensing information depends on the sensor types and the elapsed time after the previous
sensing time. To support real-time sensor data monitoring, the sensed data should be successfully delivered
to the ground base station (or sink node) using a UAV flying ad-hoc network; herein, it is important to
maintain the connectivity between the UAVs and to consider the reliability of the communication links.
In this paper, particle swarm optimization (PSO) is used to derive optimum UAV locations. For a specified
wireless sensor network, at each time instance, new UAV locations are updated that guarantee complete
connectivity of the UAVs and maximize the value of the aggregated sensor data information. In this paper,
we have formulated the UAV location search model as a constrained optimization problem with multi-
objective utility functions using PSO-based bio-inspired algorithm. The simulation results demonstrate that
by maximizing the intended multi-objective utility function, the proposed method can dynamically derive
the optimal locations of multiple UAVs and achieve better sensing information acquisition compared to other
methods.

INDEX TERMS UAV, wireless sensor networks, positioning, bio-inspired algorithm, particle swarm
optimization.

I. INTRODUCTION
Recently, unmanned aerial vehicles (UAVs) have been widely
applied to numerous areas including environment monitor-
ing, mission critical military operations, leisure, delivery of
goods, security and surveillance, precision agriculture, and
remote sensing [1]–[4].

In particular, UAVs can be used successfully in wireless
sensor networks (WSNs), in which sensor nodes are deployed
in a relatively wide region and multiple UAVs acquire sensed
information. Then, the information obtained by each UAV
is delivered to a sink node or ground base station (GBS)
using a UAV flying ad-hoc network (FANET). In conven-
tional WSNs, each sensor node delivers their monitored data
to a sink node via multi-hop transmissions, in which sensor
nodes need to not only transmit their sensed data but also relay
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the other’s. As a result, sensors’ battery may drain quickly
and sensor network can be partially disconnected. Therefore,
to collect sensor data more effectively, UAV-assisted sensor
networks have been considered as a promising technology
to extend network life time, expand network coverage and
provide a faster and reliable data collecting. UAVs are also
very useful to deploy sensors and acquire their data especially
in disaster scenarios. Costa et al. [4] adjust the UAV route
based on the feedback information from sensors deployed on
a crop field, to minimize pesticide wastage. UAVs can play
an important role in natural disaster management, e.g., mon-
itoring and predicting [5] when humans are unable to enter a
disaster area; moreover, they can improve the monitoring per-
formancewhen the communication links between sensors in a
sensor network are unreliable owing to weak signals or relay
node failure [6]. In addition, in [7], a study using UAVs to
deploy WSNs to monitor areas damaged by disasters have
been conducted. Dong et al. [8] studied the efficient use of
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a UAV’s energy in an environment where it acquires sensor
data from a large number of sensors. Because a number of
sensor nodes send their data to the UAV, the energy con-
sumption of the UAV is large. Therefore, in order to reduce
the data concentrated in the UAV, a mobile agent (MA) is
used to collect the data of each corresponding area; moreover,
theUAVobtains the desired information through theMA. The
simulation results of this study demonstrate that the time and
energy required to obtain sensor data under different network
conditions can be reduced.

Although numerous studies have used UAVs to collect
sensor data, it is inconvenient and occasionally infeasible for
UAVs to acquire sensor data from all the deployed sensors
because of the sensors’ random placement in a large area;
moreover, the inadequate battery power of UAVs limits their
operation time. Of particular importance in optimizing the
energy consumption and fast sensor data acquisition of the
UAV network is the UAV positioning or trajectory generation.
Due to the energy and time limits, UAVs are not able to search
the entire WSN area. To maximize the objective function of
the given application at each UAV movement and maintain
theUAVFANET connectivity at time same time, the optimum
positions UAVs should be carefully considered.

In this study, different types of sensors are deployed in a
wide area, where the values of the data sensed by different
sensor types could be different. We assume that the sensor
deployment topology and three-dimensional (3D) geograph-
ical map are obtained in advance. The objective of our study
is to identify the UAV positions where the value of the sensed
data can be maximized by considering the different sensing
information values, which depend on the sensor type and
previously acquired sensor data, the UAV connectivity, and
the location-dependent communication link quality. To derive
real-time dynamic optimal UAV positions, we use the parti-
cle swarm optimization (PSO) algorithm; in this algorithm,
a particle represents candidate multiple-UAV locations. In the
proposed PSO algorithm, we have defined a multi-objective
utility function that incorporates the UAV connectivity, sens-
ing information value, and communication path quality.
By applying PSO at each UAV position-readjustment time,
new multiple-UAV locations are determined. Once sensor
data is obtained from the new positions, the sensing informa-
tion value functions for the different sensor types are updated
based on the sensing data acquisition history.

This paper is organized as follow: In Section 2, we review
the available research on the application of UAVs in WSNs.
In Section 3, the proposed system model is presented. The
multi-objective utility function for evaluating each particle in
the PSO algorithm is described in Section 4. The proposed
optimal location search method using PSO algorithm is pre-
sented in Section 5. The simulation results are presented in
Section 6. The conclusions are presented in Section 7.

II. RELATED WORK
Notwithstanding the substantial interest in UAVs, studies
on aspects such as location and path planning of UAVs

are still in progress. These studies differ in the objective
function and optimization method because they assume var-
ied environments. Zhang et al. [9] presented a UAV path
planning method based on ant colony optimization (ACO).
First, theUAVflight area is divided into grids, and the shortest
distance between the radar and the flight path segment is
considered as the threat intensity. Then, the ACO algorithm
is used to optimize the path between the starting point and
destination point. Theweighted sums of the flight path length,
threat cost, and maximum restriction of the yaw angle are
considered as the evaluation function of the ACO algorithm.
Mittal and Deb [10] presented a 3D offline path planner
for UAVs using multi-objective evolutionary algorithms for
determining solutions corresponding to the conflicting objec-
tives of minimizing the path-length and maximizing the mar-
gin of safety. They used the NSGA-II algorithm to generate a
curved path expressed using a B-spline and addressed cases
where there were no constraints and there were areas that to
be pass. Mishra et al. [11] modeled a coordinated path plan-
ning problem for a team of UAVs within a dynamic mission
scenario; here, the UAVs were required to cooperatively exe-
cute time-critical mission tasks in the presence of a manned
aircraft. The purpose of their study was to synchronize the
UAVs’ arrival time while allowing for loitering en-route to
prevent collisions and for maintaining a safe distance from
the manned aircraft or other obstacles. In another study [12],
the path planning of multiple UAVs by using a genetic algo-
rithm (GA) is presented; the path was smoothed using Bezier
curves.

In addition to the researches on UAV flying route planning
wherein a UAV moves from a starting point to a destina-
tion, there are researches to determine a strategy of UAV
and sensors for acquiring sufficient amount of data reliably
in a specified WSN environment. Ho et al. [13] addressed
the selection of sensor network communication topology for
data gathering with UAV. The topology consisted of a set
of cluster heads that communicate with the UAV; more-
over, PSO is proposed as an optimization method to deter-
mine the optimal topology in order to reduce the energy
consumption, bit error rate (BER), and UAV travel time.
Ergezer and Leblebicioglu [14] proposed a method for path
planning of UAV that can evade prohibited areas, maxi-
mize information collection in the desired area, and reach
the destination in a fixed mission time by using the GA
algorithm. However, they did not consider the link quality;
moreover, the searched path planning is for only one UAV.
Yang and Yoo [15] presented an optimal flight path plan-
ning mechanism using a multi-objective bio-inspired algo-
rithm based on environmental information such as forbid-
den areas, geographical location conditions, flight risk, and
sensor deployment statistics. They defined data acquisition
points in an entire sensor field, in which an UAV com-
municates with sensors to obtain sensor data. Then, they
derived the best flight path between neighboring acquisi-
tion points. The optimal path is selected according to the
sensing, energy, time, and risk utility by using an algorithm
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combining GA and ant colony optimization (ACO). Although
this study considered multiple objective functions for various
constraint environments, it assumed an operation case with
one UAV.

There are some researches on framework and mechanisms
for efficient and reliable sensor data collection using UAVs.
Say et al. [16] proposed a priority-based data gathering
framework in UAV-assisted WSNs, in which sensors inside
the UAV’s coverage are divided into different frames hav-
ing different priorities. For the sensors within the urgent
area, higher priority is given. The contention window size
is adjusted for each frame. This framework can minimize
the number of redundant data transmissions and also provide
reliable data acquisition by UAV. Zhan et al. [17] jointly
optimized the sensor node’s wakeup schedule and UAV’s
trajectory to minimize the maximum energy consumption
of all sensor nodes while ensuring that a target amount
of sensor data is collected reliably. Zhan et al. [18] pre-
sented UAV trajectory design to collect the data from any
many sensor nodes as possible. They proposed a greedy
algorithm with low complexity based on traveling sales-
man problem (TSP) method and convex optimization to
obtain a suboptimal trajectory solution. Gong et al. [19]
aimed minimizing the UAV’s total flight time from a start-
ing point to destination which allowing each sensor to suc-
cessfully upload a certain amount of data using a given
amount of energy. In their research, the data collection inter-
val, UAV’s speed, and sensor’s transmit power are jointly
optimized.

Sánchez-García et al. [20] proposed a solution for effi-
ciently generating trajectories for a UAV network in a search
mission for a disaster scenario using PSO algorithm, in which
it aims to explore the scenario, discover as many victims
as possible and converge towards one of the victim cluster.
Wang et al. [21] proposed a three-dimensional path planning
for UAV based on improved PSO algorithm. For UAV path
planning, they considered three aspects of fuel, threat and
flight altitude. Li et al. [22] applied VND (Variable Neighbor-
hood Descend) enhanced Genetic-PSO algorithm to optimize
the flight paths for a group of multiple agricultural UAVs,
in which the objective is to minimize make-span (i.e., find the
optimum path that minimizes the time difference between the
start and finish of a sequence of jobs).

In this paper, we propose a dynamic multiple UAV posi-
tioningmethod tomaximize the value of sensor data over time
by using PSO bio-inspired algorithm in a WSN. Especially,
while previous PSO-based approaches have focused on UAV
constraints, such as flight distance or flight time of UAVs,
we focus on efficient and reliable data acquisition of sensors
using UAVs. The proposed method can be performed in an
environment in which various types of sensors are deployed
and we consider that the value of the acquired sensor data
can be changed depending on the sensor type and on when
the previous sensor data was obtained (i.e., the freshness of
the acquired data).

FIGURE 1. System model.

FIGURE 2. Sensing area of UAV.

III. SYSTEM MODEL
In this study, we assume that numerous types of sensors are
deployed in a wide area sensor field and that multiple UAVs
are used to acquire sensor data in real-time, as shown in Fig. 1.
Different types of sensors periodically sense the environment
and transmit the sensed data to the UAV (or UAVs) within the
communication range. As shown in Fig. 1, the sensed data
acquired by each UAV is forwarded to its neighbor UAVs
using FANET and eventually delivered to the GBS. It is also
assumed that the sensor topographical map is specified prior
to the proposed UAV operation; here, the map includes sen-
sor deployment location information and location-dependent
expected communication link quality between the UAV and
sensors.

In this study, the sensing area of each UAV (shown
in Fig. 1) is defined as the ground area in which sensors
can communicate with the UAV when it is at a specified
location. The sensing area of a UAV (AU ) is determined by
the sensing area radius (rU ) as AU = πr2U ; here, rU can be
calculated using the UAV altitude (h) and the maximum
communication distance (dmaxS−U ) between a UAV and a sen-
sor (Fig. 2). We assume that all the UAVs maintain a pre-
determined altitude h while acquiring sensor data from the
sensors. It should be noted that owing to the limited battery
power of the sensors, the UAVsmay be required to maintain a
lower altitudewhile communicatingwith the sensors than that
while flying between positions. When the UAVs vary their
location, their flying altitudes can be dynamically determined
depending on the geo-location conditions. Related with the
optimal UAV altitude h, [23] presented an analytical solution
to provide maximum radio coverage on the ground, in which
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the optimum h is a function of the maximum allowed pathloss
and of the statistical parameters of the urban environment.
In [24] for the 5G base stations mounted on aerial plat-
forms, the optimum altitude of aerial base station (ABS) was
evaluated from the maximum cell coverage obtained using
ray tracing simulation results. In [25], representative field
trial results on RSRP (Reference Signal Received Power)
and SINR (Signal-to-Interference plus Noise Ratio) between
UAV and ground devices for different UAV altitudes were
presented. For the rural and urban areas, the UAV altitudes
that can provide desired performance were studied.

When data is transmitted from a sensor to a UAV, the power
is reduced according to the path loss. Assuming that the
path loss occurs in free space (path loss exponent = 2) and
without fading effects, the power received by the UAV (PUr )
is expressed as follows in ideal condition:

PUr =
GSt × G

U
r × λ

2
S

(4π)2

(
1

dS−U

)2

Pst (1)

where Pst is the transmission power of the sensor.GSt ,G
U
r ,λS ,

and dS−U represent the transmit antenna gain of the sensor,
receive antenna gain of the UAV, wavelength of the signal
transmitted by a sensor, and distance between the sensor and
UAV, respectively. In order to successfully receive data during
wireless communication, the received power must be equal
to or higher than the minimum decodable power (PU ,minr ).
Therefore, the maximum distance between the UAV and sen-
sor, dmaxS−U , can be calculated as:

dmaxS−U =

√
GSt × GUr × λ

2
S×P

s
t

(4π)2×PU ,minr
(2)

Once the UAV data acquisition altitude h and maximum
distance dmaxS−U are determined, the sensing area of a UAV is
determined as:

AU = π

{
GSt × G

U
r × λ

2
S × P

s
t

(4π)2 × PU ,minr
− h2

}
(3)

The objective of this study is to determine the optimum
positions of multiple UAVs dynamically during their opera-
tion time so as to maximize the total value of the acquired
sensor information. The contributions of this study are as
follows:
• We have defined the value of sensing information (VSI)
for each sensor type; here, the VSI of each type can be
different in accordance with the current UAV mission.
For example, for a fire detection mission in a national
park, the sensing information of temperature sensors and
frame sensors are more important than that of vibration
sensors.

• We consider the duplication effects of the acquired sens-
ing information in terms of temporal and spatial aspects.
At a specified location, the VSI depends on its freshness.
If UAVs acquire sensing data at a location, similar to
that obtained a short time ago, it is not as valuable
as the previous sensing. Alternatively, if at a specified

location, the sensing data of a certain sensor type has not
been acquired for a relatively long time-period, the VSI
of the sensor type at that location should be assigned
a higher value. In spatial domain duplication, multiple
UAVs acquire sensing data from the same sensors when
the sensing areas of multiple UAVs overlap partially;
in such cases, the sensing values should not be dupli-
cated. Moreover, in a narrow area, if a large number of
sensors of the same type send sensing data, the accumu-
lated sensing value should be re-adjusted to capture the
spatial redundancy.

• We take into account the effects of connectivity and
expected link quality on the finally obtained sensing
utility at the GBS. The connectivity between the UAVs
should be maintained to deliver the sensed data to the
sink node; moreover, the link quality between neighbor-
ing UAVs and betweenUAVs and sensors determines the
delivery ratio of the sensed information.

• In a wide sensor field and a scenario wherein the VSI
of each sensor type varies dynamically, the optimiza-
tion of multiple-UAV positions is an NP-hard problem;
therefore, in this paper, we propose a PSO-based multi-
objective positioning algorithm.

• Compared with the conventional PSO-based UAV path
planning methods that considered optimum trajectory
of UAVs to minimize path distance or flight time,
we applied PSO to dynamically locate UAVs and con-
struct UAV FANET that can maximize the acquired
sensor information by defining value of the sensing
information.

IV. UTILITY FUNCTION DESIGN FOR DYNAMIC OPTIMAL
POSITIONING OF MULTIPLE UAVS TO MAXIMIZE
SENSING VALUE
In this section, we design a multi-objective utility func-
tion to dynamically derive the optimal locations of multi-
ple UAVs that can maximize the total VSI. The proposed
multi-objective utility function consists of sensing utility,
communication path quality utility, and network connectivity
utility. The optimal positions of multiple UAVs to acquire
sensed data from the sensors within each UAV’s sensing
area maximize the proposed utility function. Once the UAVs
obtain the sensed data, the subsequent optimal positions
are computed, and all the UAVs shift to the subsequent
positions.

A. VALUE OF SENSING INFORMATION
When a UAV acquires sensed data from the sensors within
the UAV’s sensing area, the VSI of each sensor type can be
different depending on the purpose of the UAV operation,
as mentioned in Section III. The sensed data from the more
important sensor type should have the larger value. In addi-
tion, if the sensing data from certain sensors have not been
acquired for a relatively long time-period, the VSI of these
sensors should be higher than those of the other sensors of
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FIGURE 3. Value of sensing information varies over time.

the same sensor type from whom sensing data were acquired
recently.

In this paper, for each sensor type j, the initial VSI is
defined as V init

j = Vmax
j ; once sensing data from a sensor of

sensor type j is acquired, the VSI of the sensor is set to Vmin
j .

For any i and j sensor types, if the importance of sensor
type i is higher than then that of sensor type j, the following
relations hold:

Vmax
i > Vmax

j , Vmin
i > Vmin

j (4)

For each sensor type j, a different VSI recovery interval
Rj is defined depending on the importance of the sensor type
and the required sensing data monitoring interval for the
specified application. We define the VSI of sensor k of sensor
type j at time t , vj,k (t), as in (5):

vj,k (t) =

{
a× exp

(
t − tpj,k

)
+ b, if t − tpj,k ≤ Rj

Vmax
j , otherwise

a =
Vmax
j − Vmin

j

eRj − 1
, b = Vmin

j − a (5)

where tpj,k is the time of previous data-acquisition from sensor
k of sensor type j.

Fig. 3 shows an example scenario of VSI variations for
three sensor types over time using Eq. (5). In this exam-
ple, Vmax

1 > Vmax
2 > Vmax

3 ;Vmin
1 > Vmin

2 > Vmin
3 ;R3 >

R2 > R3. It is assumed before the each sensor’s data
acquisition time tpj,k , its VSI value was V

max
j . As is evident,

when each sensor’s sensing data is acquired by UAVs, its
VSI decreases to the minimum VSI of all the sensors of
its sensor type (Vmin

j ). The sharp decrease in the VSI after
sensor data acquisition is to consider the duplication of the
time domain. As time elapses, the VSI increases exponen-
tially; furthermore, after the VSI recovery time (Rj), it attains
Vmax
j . After a sensor’s VSI attains the maximum value,

it is maintained until data from the sensor is again acquired
by UAVs.

B. SENSING UTILITY
The sensing utility of UAV u at time t , U s

u(t), is defined as
the total VSI acquired from all the types of sensors within the
sensing area of UAV u as follow:

US
u (t) =

∑NT

j=1
U s(j)
u (t) (6)

where NT is the number of sensor types in the entire sensor
field andU s(j)

u (t) is the sensing utility of sensor type j acquired
by UAV u at time t .

It should be noted that multiple UAVs can obtain sensed
data from a sensor when their sensing areas overlap partially
and the sensor is located in the overlapped region. In this
case, the sensing utility for the sensor can be countedmultiple
times so that we define the solitary index of each sensor
within the sensing area of UAV u at time t as in (7):

Iuj,k (t) =
1

NU
j,k (t)

(7)

where Iuj,k (t) is the solitary index of sensor k of sensor type
j within the sensing area of UAV u and NU

j,k (t) is the total
number of UAVs that can acquire information from sensor k
of sensor type j at time t .

In numerous sensor network applications, for a specified
area, if the sensor node density is higher than a desired
level, the sensed data from the sensors exhibit spatial domain
duplication. In this paper, we have defined U s(j)

u (t) as the
sensing utility of UAV u for the sensors of type j at time t
as in (8):

U s(j)
u (t) = c× log10


∑N u

j (t)
k=1

[
vuj,k (t)× I

u
j,k (t)

]
d

+ 1

 (8)

where N u
j (t) is the number of sensors of type j within the

sensing area of UAV u and vuj,k (t) is the VSI of sensor
k of type j within the sensing area of UAV u. c and d are
the constant parameters for determining the desired level of

sensing utility. The desired level of
∑N u

j (t)
k=1

[
vuj,k (t)× I

u
j,k (t)

]
(effective total VSI) for a UAV at a given area is determined
by the sensor network operator depending on the operation
purpose.

When the threshold xT (the desired effective total VSI)
is set by the operator, the parameter c and d in (8) can be
determined to satisfy the following equation. Suppose that
U s(j)
u (t) = αx is the reference linear utility function while

x =
∑N u

j (t)

k=1

[
vuj,k (t)× I

u
j,k (t)

]
· c× log10

(xT
d
+ 1

)
= αxT

(9)

In Fig. 4, we assume that xT = 175 and α = 50
400 =

1
8 .

Then any (c, d) combinations that satisfy Eq. (9) can be used
for desired utility function curve of Eq. (8). In our simulation
studywe used c = 30 and d = 40. If the threshold is changed,
then the sensing utility value from each UAV can be different.
However, because the proposed method derives optimal UAV
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FIGURE 4. Comparison of proposed sensing utility function with the
linear function.

positions that maximize the total utility, the tendency of the
performance analysis result remains unchanged.

Fig. 4 shows a comparison of the proposed sensing utility
function U s(j)

u (t) with a simple linear function, with respect

to the increase in the value of
∑N u

j (t)
k=1

[
vuj,k (t)× I

u
j,k (t)

]
.

As shown in Fig. 4, in region (1), when the acquired VSI
of a certain type of sensors is less than the predetermined
threshold, the proposed sensing utility function makes the
value higher than that with the linear function. Meanwhile,
when the acquired VSI is higher than the threshold, the pro-
posed function makes the value smaller than that with the
linear function, as in region (2) of Fig. 4.

C. COMMUNICATION PATH QUALITY UTILITY
During the transmission and reception of sensing data in
WSNs, packet errors can occur depending on the quality
of each link on the path from a sensor node to the GBS.
Links can be defined as either ‘‘between a sensor and
a UAV’’, ‘‘between UAVs.’’, or ‘‘between a UAV and GBS’’.
In this paper, the link quality is represented by the packet
transmission success ratio. If we locate UAVs in the positions
that provide better link qualities, we can acquire sensing
data of sensors at the GBS more reliably. Link quality is
affected by the communication channel between the trans-
mitter and the receiver. Recently, various studies have been
made on the channel model between UAVs and between UAV
and ground devices [26]. Navuday Sharma et al. extracted
the main parameters (path loss exponent and the standard
deviation of the shadowing) used in the channel models and
the Line of Sight (LoS)/Non Line of Sight (NLoS) proba-
bilities as a function of the transmitter height and elevation
angle using a commercial 3D ray-tracing simulator [27].
Bae et al. [28] presented the research results on multipath
channels and mobility influences in UAV based broadcasting,
in which they combined the Rayleigh and Rician channel
criterion with the multipath channel profiles of DVB-T2.
Depending on the operation conditions such as urban/rural

FIGURE 5. Likely sensing-data delivery paths from sensors to ground
base station.

area and LoS/NLoS, different channel models can be applied,
including Rician and Rayleigh models. A detailed UAV chan-
nel model study is out of the scope of this paper.

In [29], the average packet error rate (PER) over a Rayleigh
fading channel, p̄E (γ̄ ) is computed as:

p̄E (γ̄ ) = 1− e−
aN
γ̄ 0

(
1+

bN
γ̄

)
(10)

aN =
log10 (N × cm)

km
, bN =

1
km

(11)

where γ̄ is the average signal-to-noise ratio (SNR); 0 (·) is
the standard gamma function; N is the packet length in
bits; cm and km are the modulation specific constants, with
values according to the modulation methods (e.g., for FSK
cm = 1

/
2 and km = 1

/
2; for BPSK cm = 1 and km = 2). For

a specified transmission power, the average SNR in a UAV-
based network in free space depends mainly on the distance
between the communication pair. In this paper, we assume
that the average SNR between the sensors and a UAV and
among the UAVs can be estimated when the locations of the
UAVs are specified.

In a UAV-based network, when there is a packet error,
re-transmission can be performed.When the maximum trans-
mission counter for a packet is Q, the average packet trans-
mission success rate over the link between nodes u and v at
time t , P̄Su,v(t), is computed as:

P̄Su,v (t) = 1−
{
p̄E
(
γ̄u,v(t)

)}Q (12)

where γ̄u,v(t) is the average SNR between node u and v at
time t . The node pair (u,v) can be ‘‘sensor and UAV’’, ‘‘UAV
and UAV’’ or ‘‘UAV and GBS’’.

Fig. 5 shows the sensing data delivery paths from the
sensors within the sensing area of UAV u to the GBS. Any
routing algorithm can be used to deliver the sensing data
acquired from UAV u to the GBS. In this study, we use the
path, path∗u−GBS (t), as the optimum routing; it maximizes the
successful packet-delivery rate from UAV u to the GBS at t
as follow:

path∗u−GBS (t) = arg max
pathu−GBS (t)

∏
(v,w)∈pathu−GBS (t)

P
S
v,w(t) (13)

Finally, the communication-path-quality utility of UAV u is
determined as in (14); it represents the successful-packet-
delivery rate from the sensors within the area of UAV u to
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the GBS:

UP
u (t) =

[
1−

{
p̄E
(
γ̄Su,u(t)

)}Q] ∏
(v,w)∈path∗u−GBS (t)

×

[
1−

{
p̄E
(
γ̄v,w(t)

)}Q] (14)

where γ̄S,u (t)is the average SNR of the links between UAV
u and the set of sensors Su within the area of UAV u.
Packet length effects on the average packet error rate (PER)
as in Eq. (10) and it impacts on the link quality between
UAVs or between UAV and sensors. As shown in Eq. (10),
the larger packet length results in the higher PER so that
finally the communication path quality utility of Eq. (14) will
decrease.

D. NETWORK CONNECTIVITY UTILITY
In WSNs, the sensing data should be delivered to the
GBS (or sink node) within an appropriate time. Therefore,
although UAVs may successfully acquire sensing data from
sensors, if they cannot connect from the UAV FANET to the
GBS, the sensing data may be inconsequential. For specified
UAV positions at time t , for a pair of UAVs u and v, the con-
nectivity index Cu,v(t) is determined as in (15):

Cu,v(t) =

{
1, du,v(t) ≤ dmaxU−U

0, else
(15)

where dmaxU−U is the maximum communication range between
UAVs. To decode the signal transmitted from other UAVs,
the received signal strength should be equal to or higher than
the minimum decodable power of a UAV (PU ,minr ). Because
UAV-to-UAV communication is performed in free space,
dmaxU−U can be calculated as:

dmaxU−U =

√
GUt × GUr × λ

2
S×P

U
t

(4π)2×PU ,minr
(16)

where GUt , G
U
r , λU and PUt represent the transmit antenna

gain, receive antenna gain, wavelength and transmission
power, respectively, of a UAV.

From the GBS, if we sequentially connect UAVs with
connectivity index one, we can construct a mesh-type UAV
network topology. Finally, the network connectivity utility of
UAV u at time t can be represented as:

UC
u (t) =

∏
∀(v,w)∈path∗u−GBS

(t)
Cv,w(t) (17)

E. TOTAL UTILITY
In this study, to determine the optimum positions of all the
UAVs at time t , we have defined the total utility function as
in (18); herein, the sensing utility, communication path utility,
and network connectivity utility of each UAV are considered:

UT (t) =
NU∑
u=1

US
u (t)×U

P
u (t)× U

C
u (t) (18)

where NU is the number of UAVs.

FIGURE 6. Updating the optimum uav positions and sensing data delivery
using dynamic uav networks.

Fig. 6 shows the overall UAV-assisted sensor network oper-
ation. At the GBS, all the acquired sensing data is integrated
and analyzed. Based on the acquired data, the GBS updates
the VSIs of the sensors in the sensor field. After a prede-
fined position update interval, Tu, the GBS determines the
next UAV positions that can maximize the total utility (as
expressed in (18)). As shown in Fig. 6, at time t, the GBS
derives the new optimum UAV positions and delivers the
position information to each UAV through the UAV FANET
that was constructed at (t − Tu). When the UAVs receive the
new-position information at time t , theymove to the indicated
positions and start to acquire the sensing data from the sensors
in each UAV sensing area. The acquired sensing information
is delivered to the GBS through the updated UAV FANET
network topology.

V. PSO-BASED UAV POSITIONING OPTIMIZATION
In this section, we propose a PSO-based multiple-UAV posi-
tioning algorithm that can maximize the proposed total utility
at each position-update time. PSO is capable of iteratively
searching the global optimum for large and complex spaces
and has the advantage of shorter convergence time. In aWSN
field, when the number of UAVs isNU and the size of the sen-
sor area is (N ×M) unit size, the number of sets of feasible
positions of multiple UAVs required to search is (N ×M )NU .
The PSO algorithm optimizes the problem by using sets
of candidate UAV locations called particles. A swarm of
particles that represent potential solutions are evolved in the
search space, and each of them has its position, velocity, and
fitness value. A particle moves to the next position using
the best position the particle has experienced and the best
position that all the particles have experienced; moreover, the
PSO algorithm solves the optimization problem by iteratively
updating particles [30]–[32].

To determine the optimal solution, each particle adjusts
its flight according to its own flying experience and com-
panion’s flying experience. A swarm of particles is devel-
oped, and the initial particles are randomly generated in the
search space. Particles retain their best positions in their
memory. We should ensure that all the particles stay inside
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FIGURE 7. Particle structure of proposed PSO algorithm.

the search space. If a particle is outside the search space, it is
moved back inside randomly. Finally, it is compelled to stay
at the border. Based on its searchingmechanism, the primitive
position denotes the solution, and the velocity denotes the
mutative direction the solution may adopt.

The particle of the proposed PSO algorithm represents the
positions of the multiple-UAVs at each UAV-position-update
time. Fig. 7 shows the structure of particle i. A particle is a
candidate position of multiple-UAVs, and a UAV position is
represented by a certain point (x and y coordinates) in the
sensor field. In a D-tuple searching space, the position and
velocity of particle i are denoted by Xi =

[
xi1, xi2, · · · , xiNU

]
and Vi =

[
vi1, vi2, · · · , viNU

]
, respectively. xij represents

the position of the j-th UAV for the i-th particle;
(
xxij, x

y
ij

)
represents the x and y coordinates of the UAV. Our fitness
function is for evaluating each particle to determine the local
best solution Pi = [pi1, pi2, · · · , piNU ]. The PSO algorithm
can also be used to determine the global best optimum solu-
tionPg= [pg1, pg2, · · · , pgNU ] that maximizes the total utility
(equation (18)). The velocity and position of the j-th UAV of
particle i are updated as in (19) and (20), respectively, until
the total utility converges or the PSO iteration count k attains
a predefined number.

vij (k + 1) = ωvij (k)+ c1r1
[
pij(k)− xij (k)

]
+ c2r2

[
pgj(k)− xij (k)

]
(19)

xij (k + 1) = xij (k)+ vij (k + 1) , j = 1, · · · ,NU (20)

where ω denotes the inertia weight factor. {c1 and c2} are
position acceleration constants, and {r1 and r2} are random
numbers uniformly distributed in the interval [0, 1]. The role
of ω is to regulate the impact of the previous history of veloc-
ity on the current velocity; this is considered to be crucial
for convergence. Thus, it regulates the tradeoff between the
global and local exploration for the swarm. A large ω causes
the searching to escape from the local minima and facili-
tates global searching; meanwhile, a small ω facilitates local
searching and convergence. When the particles are entrapped
in the local optima, the inertia weight is augmented. Mean-
while, when they are dispersive, the weight is decreased.
In PSO optimization, two search components (exploration
and exploitation) have to be balanced. Exploration is needed
for the swarm to search the whole space roughly whereas
exploitation is the focusing on certain potentially good areas.
With the asymptotic statistical analysis [33], to converge the

FIGURE 8. PSO convergence toward optimum solution.

optimal value, criteria to be satisfied are −1 < ω < 1, c1 +
c2 < 4(1+ω). Depending on the objective function, different
optimum values for (ω, c1, c2) are obtained. Literature sug-
gests several different ranges, ω = (0.5 ∼ 0.75) , (c1, c2) =
(0.9 ∼ 1.7) . The velocity interval [vmin, vmax] and UAV posi-
tion range ([xmin, xmax] , [ymin, ymax]) are to limit the search-
ing to the required domain. The above velocity renewal
in (19) comprises three parts.

The first part is dominated by the current velocity and
contributes to the tradeoff between the global searching and
local searching; meanwhile, the second part embodies a cog-
nitive pattern and is to adjust the direction based on its
recollection to prevent local minima. The third part reflects
the social effects that the shared information contributes to
the collaboration. The PSO convergence toward the optimum
best solution is illustrated in Fig. 8.

Algorithm 1 illustrates the overall procedure of the pro-
posed optimal UAV positioning method using PSO. After
UAVs move to the optimum positions (line 1), they acquire
sensing data from sensors located inside the each UAV sens-
ing area (line2) and the information is delivered to the GBS
using the optimum UAV FANET routing path computed as
in Eq. (13) (line3). If UAV position update time is attained,
then the GBS derives the new optimum UAV positions using
PSO algorithm after updating VSI values of sensors. For each
particle, based on the total utility function of Eq. (5) of the
current PSO iteration time, particle’s local best and global
best are stored (line 6-16). If the PSO iteration number is
greater than predetermined max or the difference of the total
utility from the previous one is less than the threshold ε, then
PSO is terminated (line 6). The new UAV position informa-
tion is delivered to all the UAVs using the current FANET
network (line 20) and the UAVs move to their new positions.

VI. SIMULATION RESULTS
In this section, we evaluate and analyze the performance
of the proposed optimal UAV positioning mechanism. First,
we evaluate the convergence performance and graphical UAV
positioning procedure. Then, we describe a comparison of the
obtained utility with other methods. Table 1 lists the param-
eters and values used in this simulation study. The sensors
were deployed in the sensor field in several geo-locational
clusters; herein, the cluster centers are randomly selected, and
in a cluster, sensors are deployed with Gaussian distribution.

We implemented the UAV-assisted sensor network simu-
lator using the MATLAB GUI (Fig. 9). The simulator can
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Algorithm 1 Proposed UAV Positioning Method Using PSO
1: UAVs move to the (new) optimum positions.
2: UAVs maintain the proper altitude h and acquire sensing
data from the sensors within each UAV sensing area AU .

3: The sensing data acquired by each UAV u is delivered to
the GBS using the optimum routing path path∗u−GBS (t)

4: if (UAV position update interval TU is attained.)
5: GBS updates the VSI of the sensors in the entire

sensor field based on their sensing history using
Eq. (5).
/* Perform the following PSO algorithm to derive the
next optimum positions of the multiple UAVs. */

6: while (iteration k ≤ max or
∣∣UT (k)− UT (k − 1)

∣∣
≥ ε)

7: for (each particle i of the swarm)
8: calculate the total utility function (Eq. (18));
9: if(UT (k) of particle i > local best of the particle)
10: local best Pi = the current position of the

particle;
11: end if
12: if(UT (k) of particle i > global best of the

swarm)
13: global best Pg = the current position of the

particle;
14: end if
15: update velocity and position of particle i;
16: end for
17: increase iteration number k = k+ 1;
18: end while
19: end if
20: GBS delivers the new UAV position information to all

the UAVs using the current UAV ad-hoc network.
20: Go to step 1;

import 3D maps and deploy the desired number of sensors in
the sensor field. It also includes the PSO optimizer to derive
the optimum UAV positions and UAV FANET routing proto-
col using equations (18) and (13). The routing algorithm used
for simulation is to select a path that maximizes the successful
packet-delivery rate fromUAV u to GBS using Eq. (13). Once
the UAVmesh network topology was constructed, a link state
routing algorithm with Eq. (13) was applied.

In this simulation study, for performance comparison,
we have implemented three UAV positioning methods apart
from the proposed one: ‘‘Sequential PSO’’ uses the proposed
utility function and PSO algorithm; however, it derives the
UAV positions sequentially. ‘‘Max sensor node position with
connectivity’’ computes the optimum UAV positions to max-
imize the number of sensors from which a UAV can acquire
sensing data. ‘‘Random position with connectivity’’ locates
UAVs randomly but guarantees UAV connections.

For Fig. 10∼ Fig. 16, the number of clusters is 10; the
total number of sensors is 300; the UAV transmission power
is 250mW; the sensor transmission power is 5mW.

TABLE 1. Simulation parameters.

Before we compare the sensing information gathering per-
formance with the three other methods, we illustrate the
operation behaviors and results of the proposed method.
Fig. 10 shows an example sensor network topology; herein,
sensors of three types are deployed in a 2 × 2-km sensor
field. The GBS is located at (0,0). Fig. 11 shows the variations
in the total utility as the PSO iteration number increases for
Fig. 10 sensor topology. For this simulation we used four
UAVs. As is evident from Fig. 11, the total utility increases
as the iteration number increases, and its value converges to
the optimum after approximately 150 iterations. Furthermore,
a larger PSO particle size results in a higher total utility
because UAVs can then search more areas.

Fig. 12 shows the variations in the optimal positions of
multiple UAVs over time. The number of UAVs is four,
and the particle size of PSO is 30. The colored circles indicate
the sensing area of each UAV, and the dotted lines represent
the feasible communication links between UAVs or between
a UAV and the GBS. Fig. 12 (a) shows the optimal locations
at the initial state so that the VSI values of all the sensors in
the sensor field are set to each sensor type’s initial maximum
values. At the second position-update time (after Tu) the PSO
algorithm determines a different set of UAV locations that can
maximize the proposed total utility; this is because after the
first UAV positioning, the VSI values of the sensors whose
sensing data has been delivered to the GBS are adjusted as
in Eq. (5). As is evident in Fig. 12 (a)–(f), UAV1 is always
connected to the GBS, and its sensing area is overlapped
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FIGURE 9. Simulator implementation.

FIGURE 10. Example simulation topology.

with the previous ones to the least feasible extent. Fig. 12 (e)
represents the optimal locations of the UAVs at the ninth
position-update time. It is evident that the locations of the
UAVs are similar to those of Fig. 12 (c). This is because most
of the sensors that delivered their sensing data to the GBS at
the third UAV-reposition time have not been covered by any
UAV until the eighth UAV-reposition time, so that their VSI
values are recovered to the initial values.

Fig. 13 shows the total utility variations for each UAV
position update time Tu for the scenario in Fig. 12. It is
observed that the total utility at the initial state (at the first
positioning time) is the highest; thereafter, the total utility
fluctuates accordingly. It should be noted that the total utility
curve does not exhibit a periodic feature; this is because for
certain updated UAV position times, a few of the sensors that

FIGURE 11. Variation in total utility with respect to PSO iterations.

were previously covered but not recovered to the initial VSI
values yet, can be included again in UAV sensing areas.

The following describes a comparison of the performance
of the proposed PSO method with the compared methods.
In the simulation study for Fig. 14 ∼ Fig. 16, the number of
UAVs is three, and the particle size is 30. The utility of each
UAV at 10 position-update times was measured for 10 sensor
deployment topologies.

As explained earlier, ‘‘Sequential PSO’’ is a variant ver-
sion of the proposed PSO algorithm with regard to the
determination of the multiple UAV-positions; the exception is
that in the former, each UAV-position is determined sequen-
tially. The location of the first UAV is the position where
the total utility is the maximum by using the PSO algorithm
within the area that can be connected to the GBS. Moreover,
the second UAV-position is where the total utility is the
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FIGURE 12. Optimum UAV positions at different update times. (a) First time. (b) Second time. (c) Third time. (d) Fourth time. (e) Ninth
time. (f) Tenth time.

maximum using the PSO algorithm in the range that can
be connected to the first UAV. The next UAV-position is
determined similarly after the previous UAV-position is fixed.
‘‘Max sensor node position with connectivity’’ computes the

optimum UAV positions to maximize the number of sen-
sors from which the UAVs can acquire sensing data; herein,
the connectivity between all the UAVs should be guaran-
teed. ‘‘Random position with connectivity’’ locates the UAVs
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FIGURE 13. Total utility over time.

FIGURE 14. Total utility convergence comparison at initial state.

randomly while guaranteeing their network connectivity with
the GBS.

Fig. 14 shows the variation in the total utility according to
the iterations at the initial state (i.e., at the first multiple-UAV
positioning time). Because ‘‘Random position with connec-
tivity’’ does not require PSO iterations, it is not included in
this comparison. In terms of the convergence speed, ‘‘Sequen-
tial PSO’’ was the first to converge to a stable value. This is
because in ‘‘Sequential PSO,’’ the search area to determine
the next UAV-position is limited to the communication range
of the previous UAVs (or GBS). In the case of the proposed
method and ‘‘Max sensor node position with connectivity’’
method, the search area is the entire sensor field. In terms
of obtained total utility, the proposed method achieved the
highest after it converged.

Fig. 15 shows the average total utility during ten position-
update times. The proposed method resulted in the highest
performance, whereas ‘‘Random position with connectivity’’
yielded the lowest utility. In ‘‘Max sensor node position
with connectivity,’’ the UAVs maintain their positions after
the optimum positions for the UAVs is determined so that
the VSIs of the sensors within the UAV areas decrease and
are not recovered to the initial values at each TU . In the

FIGURE 15. Total utility comparison.

FIGURE 16. Utility comparison for each UAV.

case of ‘‘Sequential PSO’’, it utilizes the same optimization
mechanism with the proposed method except for the UAV
positions that are sequentially determined. Therefore the total
utility is a little lower than that of the proposed one. As we
can see in Fig. 15, the total utilities of the ‘‘Sequential PSO’’,
‘‘Max sensor node position with connectivity’’ and ‘‘Random
position with connectivity’’ are about 91%, 33% and 24% of
that of the proposed method, respectively.

Fig. 16 shows the average utility for each UAV. The pro-
posed method generally provides higher utility for each UAV
compared with other three methods. In ‘‘Sequential PSO,’’
only the first UAV connected to the GBS obtained higher
utility compared with that of the proposed method because
it tries to find the first UAV position that maximizes only its
utility and then sequentially determines the next UAV posi-
tions. On the other hand, the proposedmethod simultaneously
considers all UAV positions that maximize the total utility.

For Fig. 17 ∼ Fig. 20, we compared the average acquired
total utility by changing some simulation parameter values.
The default parameter values are the same with the above
simulation studies. Fig. 17 shows the average total utility for
the cases having different number of UAVs. As we can see,
the larger number of UAVs results in the higher acquired total
utility due to the fact that UAVs could cover larger sensor
network area at a given time. If there are twoUAVs, the region
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FIGURE 17. Total utility comparison for the different number of UAVs.

FIGURE 18. Total utility comparison for the different number of clusters.

that can be searched is limited so that the total utility would
be about 50% of that of four UAV case. When there are
five UAVs, most areas can be searched using the proposed
mechanism. Therefore, the difference between the ‘Proposed
PSO’ and the ‘‘Sequential PSO’’ is very small. It should be
noted that the ‘Sequential PSO’ is a simplified variant of the
‘Proposed PSO’.

Fig. 18 shows the average total utility when the number
of clusters is changed. In this simulation, the number of
clusters is 6, 8, 10 and 12. As the total number of deployed
sensors in the sensor field is the same for all cases, the larger
number of clusters indicates lower sensor density in a cluster.
For all compared methods, the total utility decreased as the
number of clusters increased. The ‘Proposed PSO’ achieved
the highest total utility for all different cluster sizes.

In Fig. 19, we increased the number of sensors and fixed
the number of clusters to 10. The total utility increases as
the number of sensors increase in all methods. However,
when comparing 540 sensors with 1080 sensors, even though
the number of sensors is doubled, the average acquired total
utility is not. This is because the sensing utility function is
not linearly proportional to the number of sensors covered
byUAVs. As in Eq. (8) and Fig. 4, the sensing utility increases
slowly if the acquired VSI is greater than the threshold.

FIGURE 19. Total utility comparison for the different number of sensors.

FIGURE 20. Total utility comparison for the different transmission power.

In Fig. 20, we changed the transmission power of UAV
and sensor. For UAV transmission power, 150mW, 200mW,
250mW and 300mW are used; for sensor transmission power
3mW, 4mW, 5mW and 6mW are used. Since higher trans-
mission power results in longer communication distance,
a UAV can get a larger sensing area. As shown in Fig. 20,
if we double the transmission power of UAV and sensors
(from 150mW to 300mW for UAV and from 3mW to 6mW
for sensors, respectively), then the total utility is more than
doubled for the ‘Proposed PSO’.

VII. CONCLUSION
In this paper, we propose a PSO-based optimization algorithm
to derive dynamic multiple-UAV-positions that can acquire
maximum sensor data information in UAV-assisted WSNs.
We first defined the VSI functions for different sensor types.
The defined VSI function can express the importance of dif-
ferent sensor types as well as the variation in the value of the
sensed data depending on the time and spatial domain redun-
dancy. Then, we proposed the total utility function that repre-
sents the total VSI actually determined by the multiple UAVs.
We considered sensing utility, communication path utility,
and network connectivity utility. For the specified positions
of multiple UAVs, we can compute the total VSI from the
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sensor field; herein, the spatial duplication of the sensing
data is removed, and successful sensing-data delivery rate on
the UAV routing path and each UAV’s network connectivity
are considered. At each UAV-position-update time, the VSI
statistics for the sensor field are updated, and the optimum
next positions of the multiple UAVs are determined using the
proposed PSO-based positioning algorithm. In the proposed
method, there is no additional overhead such as the extra
exchange of messages between sensors and UAVs to track the
status of the sensor. However, it is necessary to update each
VSI value at the GBS according to the proposed VSI update
function based on the reporting form each sensor.

For the simulation study, we implemented a GUI-based
simulator that could set various sensor network topologies
and simulation conditions. We demonstrated the convergence
performance of the proposed PSO algorithm and how the
total acquired VSI varied over time when the UAVs changed
their positions at each position-update time.We compared the
performance with three other positioning methods. We have
verified that the performance of the proposed algorithm is the
highest in terms of total acquired utility.

In this paper, to apply the proposed PSO-based UAV
positioning method, we assume that the geographical map
and sensor deployment are known in advance. For the fur-
ther research, we will study the cooperative UAV operations
when we cannot or only partially obtain this information
in advance. Currently we implement the proposed method
using drones and various types of sensor in out-door sensor
network test-bed and will perform additional supplement by
comparing empirical results with the simulation results.
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