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ABSTRACT Insulator segmentation is a critical step for automatic insulator fault diagnosis in high voltage
transmission systems. Existing methods fail to segment insulators when they have a low contrast with the
surroundings. Considering the unique shape and texture characteristics of insulators, a texture-and-shape
based active contour model is proposed for insulator segmentation. The segmentation is achieved by evolving
a curve iteratively by the texture features and shape priors. In the texture-driven curve evolution, a semi-local
region descriptor is used to extract the texture features of insulators and a new convex energy functional is
defined based on the extracted features with the topology-preserving term. The topology-preserving term
keeps the curve’s topology unchanged as the curve topology is determined by the shape template. In the
shape-driven curve evolution, the shape context descriptor is used to align the shape template with the
current curve. The semantic transformation between the shape template and the current curve is obtained by
Procrustes analysis and then adopted to update the current curve to resemble the shape prior. The proposed
method is applied to a set of images, and the experimental results confirm the efficacy and effectiveness of
the proposed method for segmenting insulators in cluttered backgrounds.

INDEX TERMS Active contour model, insulator segmentation, level set, shape descriptor.

I. INTRODUCTION
Insulators are critical equipment in high-voltage power trans-
mission systems for electrical insulation and mechanical
support. The insulator failures in a power system may lead
to significant economic losses and even casualties [1], [2].
Therefore, monitoring the status of insulators is of great
significance for power system safety. Traditional regu-
lar manual inspection is both time-consuming and power-
consuming [3]–[5]. Insulator segmentation from the scene
images is a prerequisite step for automatic fault diagnosis.

Insulator segmentation techniques can be roughly divided
into two categories: patch-labeling methods and curve-
evolution methods. In the patch-labeling methods, a patch
may be just a pixel or a superpixel or a local region generated
by a threshold, sliding window or clustering method. The
features of these patches are then fed into a classifier to judge
whether these patches belong to insulators [6]–[11]. The
k-means clustering method is adopted to establish connected
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regions and then an adaptive neuro-fuzzy inference system
is used to distinguish the insulator area [11]. The local
directional pattern is used to classify the insulator regions
by support vector machines [7]. A multi-scale and multi-
feature descriptor is proposed to generate several spatial order
features for insulator key point matching [8]. A six-layer
convolution neural network is built to distinguish the insulator
regions [9], [12]. A compact end-to-end neural network is
trained by a two-stage training method in the framework
of conditional generative adversarial networks for insulator
segmentation [10], [13], [14]. There are two kinds of train-
ing samples, the roughly labelled position samples and the
finely labelled segmented samples. These methods all need
many labeled training samples to distinguish the insulators.
Furthermore, it is hard to precisely extract insulators when
they have low a contrast with the surroundings.

In the curve-evolution approach, often also referred to
active contour models, some energy functional is defined
to evolve a curve for insulator segmentation [11], [15]. The
energy functional makes the curve-evolution methods an
open framework that can incorporate external constraints
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flexibly [16], [17]. Gray Level Co-occurrence Matrix is
employed as the insulator texture descriptor in a global min-
imization active contour model [18]. A semi-local region
descriptor is used in an active contour model to overcome
the difficulties caused by the texture inhomogeneity [19].
Reference [20] uses the contourlet transformation for insu-
lator texture analysis and then the fuzzy c-means is applied
to cluster the insulator texture feature points to locate the
initial curve. Chan-Vese model is finally used to detect the
insulator boundaries. However, these methods fail to segment
the insulators in the cluttered background where the insulator
boundaries are difficult to distinguish.

Since insulators have a unique shape and texture, the shape
constraint may be incorporated into a texture-based active
contour model to capture insulator boundaries. A texture-
and-shape based active contour model is thus proposed in
this paper to segment insulators. A curve is evolved by the
insulator texture features and shape priors alternatively to
segment the insulator. In the texture-driven curve evolution,
a semi-local region descriptor is used to extract the texture
features of insulators in the Beltrami framework to overcome
the difficulties caused by texture inhomogeneity [19], [21].
Based on the Chan-Vese model, a new convex energy func-
tional is defined on the extracted texture features with the
topology-preserving term. The length term and the area term
of Chan-Vese model are omitted for the minimization of
the length term and the area term is not necessary to drive
the contour towards the boundary of the insulator and the
information of length and area has already been consid-
ered in the shape-driven evolution. The topology-preserving
term keeps the curve’s topology unchanged since the curve
topology is determined by the shape template [22]. In the
numerical implementation, the addictive operator splitting
scheme is adopted as it has a linear complexity and is easy
to implement. In the shape-driven curve evolution, a shape
is described by the distribution over relative position of the
sampled points on a quantized log-polar coordinate. One-
to-one point correspondences are built between the points
from the shape template and the points from the current
curve by minimizing a total matching cost to align the shape
template with the current curve. The semantic transformation
between the shape template and the current curve is obtained
by Procrustes analysis and then adopted to update the current
curve to resemble the shape prior. The method is applied
to an insulator image dataset and the experimental results
confirm that the proposed method is capable of segmenting
the insulators in the cluttered background where the insulator
boundaries are difficult to distinguish, outperforming other
existing approaches.

The remainder of this paper is organized as follows. The
related work is reviewed in Section II. A texture-and-shape
based active contour model is proposed for insulator segmen-
tation in Section III. A series of experiments are conducted
on real life insulator images and the results are detailed in
Section IV. Finally, Section V concludes the paper.

II. PRELIMINARIES
A. ACTIVE CONTOUR MODELS
Active contour models partition an image into sub-regions
with continuous boundaries. Active contour models are clas-
sified into parametric active contours [23], [24] and geometric
active contours [25]–[27] according to their representation
and implementation. Parametric active contours are repre-
sented explicitly as parameterized curves in a Lagrangian
formulation [28]. Geometric active contours are based on the
level set theory and represented implicitly as the zero level set
of a higher dimensional function [29]. The level set methods
allow cusps, corners and automatic topological changes and
make geometric active contoursmore flexible than parametric
active contours [30]. Moreover, geometric active contours
do not have to parameterize objects [31]. The image seg-
mentation problem based on the level set methods can be
formulated and solved by the well-established mathematical
theories [32], [33]. The evolving contour C is embedded in
a higher dimensional Lipschitz continuous function 8 and
defined by C = {(x, y) |8(x, y) = 0}. Evolving the curve
C in the normal direction with speed F is equivalent to
solving the following differential equation with the initial
value 80 [34]:

∂8

∂t
= |∇8|F (1)

Let� be the image domain, and I : �→ R be a gray level
image. Mumford-Shah model approximates the image I by
a piecewise smooth function 8 by minimizing the following
energy functional [35]:

EMS (8,C) = µLength (C)+ λ
∫
�

(I (x)−8(x))2dx

+

∫
�\C

|∇8(x)|2dx (2)

where C is the contour that segments the image into subre-
gions and µ and λ are positive parameters. The length term
is used to ensure regularity [36]. Mumford-Shah model is
difficult to solve due to the nonconvexity of the functional.

Chan-Vese model can be regarded as a reduced form of
Mumford-Shah model by restricting 8 as a piecewise con-
stant function [15],

8(x) =

{
c1 where is x inside C,
c2 where is x outside C,

(3)

The energy functional of Chan-Vese model is defined as

ECV (c1, c2,C) = λ1

∫
inside(C)

(I (x)− c1)2dx

+ λ2

∫
outside(C)

(I (x)− c2)2dx

+µLength (C)+νArea (inside (C)) (4)

where λ1, λ1,µ and ν are positive parameters. The area of the
region inside C is added as an regularizing term. The image
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is approximated by the piecewise constant function 8 and is
segmented into two subregions.

B. TEXTURE FEATURES IN THE BELTRAMI FRAMEWORK
A geometric way to represent images was proposed in the
Beltrami frame where images can be considered as Rieman-
nian manifolds embedded in a higher dimensional space [37].
For example, a 2-D gray image I : R2→ R can be considered
as a surface

∑
with local coordinates (x, y) embedded in R3

by a mapping: X : (x, y)→ (X1 = x,X2 = y,X3 = I (x, y)).
This manifold-based representation of images has two
main advantages. First, it allows the use of efficient dif-
ferential geometry tools to perform various image pro-
cessing tasks such as denoising or segmentation. Second,
this framework works with arbitrary N dimensional
images.

Reference [21] proposes a semi-local descriptor for image
textures. The textures are represented by the intensity patch
around the current pixel. The representation of textures in the
Beltrami framework is given as follows:

X : (x, y)→
(
X1 = x,X2 = y,X3 = Px,y (I )

)
(5)

where Px,y is the square patch of size τ × τ around the pixel
(x, y). The corresponding metric tensor gxy of (6) is defined
as:

gxy =
(
1+

(
∂xPx,y

)2
∂xPx,y∂yPx,y

∂xPx,y∂yPx,y
1+

(
∂yPx,y

)2 ) (6)

Finally, the intrinsic texture descriptor is defined as follows:

F = e−
det(gxy)
σ2 (7)

where σ denotes a scaling parameter. The Gaussian ker-
nel is adopted as a low-pass filter to control the degree of
details. The semi-local operator can be extended to vector-
valued images directly. Let I = (I1, I2, · · · , Ik) be a vector-
valued image, where k denotes the number of channels. Then,
the semi-local textures in the Beltrami framework are defined
as:

X : (x, y)→ (X1 = x,X2 = y,X3 = Px,y (I1) ,
· · · ,X2+k = Px,y (Ik)) (8)

The corresponding metric tensor gxy of (6) is given as:

gxy

=

(
1+

∑k
j=1

(
∂xPx,y

) (
Ij
)2∑k

j=1 ∂xPx,y
(
Ij
)
∂yPx,y

(
Ij
) ∑k

j=1 ∂xPx,y
(
Ij
)
∂yPx,y

(
Ij
)

1+
∑k

j=1
(
∂yPx,y

) (
Ij
)2

)

III. THE PROPOSED ALGORITHM
A texture-and-shape based active contour model for insulator
segmentation is proposed in this paper. A curve is evolved
by the insulator shape priors and texture features alterna-
tively until the process converges or a fixed number of iter-
ations is reached. The proposed method is detailed in the
Algorithm 1.

Algorithm 1 The Proposed Model
Input: Image I to be segmented and insulator shape prior S;
Output: Final segmentation 8∗

1: manually or automatically initialize the level set function
80;

2: extract the texture feature map F (I )
3: while contour evolution is not converged or the fixed

iterative time is not reached do
4: minimize the combined energy functional (9) to con-

struct the intermediate level set function 8n+ 1
2 ;

5: align the insulator shape prior S with the current
contour Cn+ 1

2 , namely, the zero level set of 8n+ 1
2 ;

6: calculate the semantic shape transformation T and
construct a new curve Cn and a new level set function
8n+1;

7: end while

A. TEXTURE-DRIVEN CURVE EVOLUTION
The texture-driven curve evolution is realized by minimizing
the energy functional defined on the texture features with the
topology-preserving term. The energy functional is defined
as follows:

E (c1, c2,C) = λ[
∫
inside(C)

(F (x)− c1)2dx

+

∫
outside(C)

(F (x)− c2)2dx]

+ET (9)

where F (•) represents the texture feature extraction opera-
tion and ET denotes the topology-preserving term; c1 and c2
are the averages of F (x) inside the contour and outside the
contour, respectively; λ is the weighting parameter, λ ≥ 0.
The length term and the area term of the Chan-Vese model are
omitted for two reasons. One is the information of length and
area has already been considered in the shape-driven evolu-
tion. The other reason is that minimizing the length term and
the area term does not necessarily drive the contour towards
the boundary of the object. Although the ability of handling
topological change is an advantage of the level set techniques,
it is not necessary for insulator segmentation since the curve
topology is determined by the shape priors.

For the level set formulation of our model, the contour C
is represented by the zero level set of the Lipschitz funtion8
and the variable C is replaced by8. The topology-preserving
term was proposed based on a geometrical observation [22].
Consider two points x and y on the zero level line of 8,
and they are close enough to each other. ∇8(x) and ∇8(y)
denote the unit outward normal vectors to the contour at
x and y. When the contour is about to merge or split,
〈∇8(x) ,∇8(y)〉 ' −1. The topology-constraint term is
defined as follows:

ET (8) = −
∫∫

�×�

[e−
‖x−y‖22
d2 〈∇8(x) ,∇8(y)〉

• Wl (8 (x))Wl (8 (y))]dxdy (10)
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where l denotes a level parameter, {x ∈ � |−l ≤ 8(x) ≤ l };
Wl (8 (x)) = H (8 (x)+ l)H (l −8(x)) confines the
points in a narrow band around the zero level line; H (•)
represents the Heaviside function, defined as

H (z) =

{
1 if z ≥ 0,
0 if z < 0,

(11)

〈∇8(x) ,∇8(y)〉 is weighted by the nearness of x and y,

e−
‖x−y‖22
d2 . Therefore, the energy functional can be reformu-

lated as follows:

E (c1, c2,8) = λ{
∫
�

[(F (x)− c1)2H (8 (x))

+ (F (x)− c2)2H (−8(x))]dx}

−

∫∫
�×�

[e−
‖x−y‖22
d2 〈∇8(x) ,∇8(y)〉

•Wl (8 (x))Wl (8 (y))]dxdy (12)

The minimization of (12) can be realized by solving by the
following gradient flow equation

∂8

∂t
= −

∂E
∂8

(13)

The corresponding evolution equation could be deduced as

∂8

∂t
= λδ (8)

[
(F (x)− c2)2 − (F (x)− c1)2

]
+

4
d2
Wl (8 (x))

∫
�

e−
‖x−y‖22
d2 (x− y)

•∇8(y)Wl (8 (y)) dy (14)

In the numerical implementation, the addictive operator
splitting scheme is adopted for it has linear complexity and is
easy to implement [38], [39]. The addictive operator splitting
scheme decomposes the 2-D problems into two 1-D subprob-
lems. The discretization of (14) is

8n+ 1
2 =

1
2

∑
w∈{x,y}

Bw
(
8(x)n

)−1
{8(x)n + 4

τ

d2
Wl (8 (x))

•

∫
�

e−
‖x−y‖22
d2 (x− y)∇8(y)Wl (8 (y)) dy

+ τλ[(F (x)− c1)2 − (F (x)− c2)2]} (15)

where τ represents the timestep; Bw (8 (x)n) = Id −
2τAw (8 (x)n), w ∈ {x, y}. The entries of Aw (8 (x)n) is
defined by

aijw =



∣∣∇8n
i

∣∣ 2(∣∣∇8n
i

∣∣+ ∣∣∣∇8n
j

∣∣∣) if j ∈ Nw (i)

−
∣∣∇8n

i

∣∣ ∑
m∈Nw(i)

2(∣∣∇8n
i

∣∣+ ∣∣∇8n
m

∣∣) if j = i

0 otherwise
(16)

wherew represents the directions,w ∈ {x, y} andNw (i) repre-
sents the neighboring pixels of i in direction w. Bw (8 (x)n) is

FIGURE 1. Insulator shape (a) Shape 1 (b) Shape 2.

FIGURE 2. Insulator image 1 (a) original image (b) texture image.

tridiagnonal, strictly diagonally dominant that can be solved
efficiently by the Thomas algorithm. The smooth version of
Heaviside function is used in the discretization stage, which
is defined by

Hε (z) =
1
2

(
1+

2
π
arctan

( z
π

))
(17)

B. SHAPE-DRIVEN CURVE EVOLUTION
Shape is an important factor to control the motion of the curve
in insulator segmentation since insulators have the unique
shape, as shown in Figure 1. The shape-driven curve evolution
is realized by building a semantic transformation to make the
evolving curve resemble the shape prior.

The shape context descriptor is used to align the shape
template with the current curve and to calculate the semantic
transformation [40], [41]. It is assumed that the shape of
an object is essentially represented by a finite set of points
sampled from the contour of the objects. These points do not
need to correspond to key-points such as the maxima of a
curvature. The shape context descriptor is generated by the
distribution over relative positions of these sampled points.
Given n points sampled from the shape contour, the shape
context of a point pi is defined by a histogram hi:

hi (k) = # {q 6= pi : (q− pi) ∈ bin (k)} (18)

hi counts the number of the sampled neighbor points of pi
on a quantized log-polar coordinate that make the descriptor
more sensitive to the nearby sampled points than to the points
farther away.

As the shape context descriptor is represented by the dis-
tribution histograms, χ2 test is used to measure the cost of
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FIGURE 3. The process of the proposed method.

FIGURE 4. Insulator segmentation results for image 1 (a)initial contour (b) CV (c) T-CV (d) S-CV (e) TS-CV.

matching two points. Given two points pi and qj, the matching
cost is defined as the following:

Cij ≡ C
(
pi, qj

)
=

1
2

K∑
k=1

[
hi (k)− hj (k)

]
hi (k)− hj (k)

(19)

Consider two sets of points sampled from the shape template
and the current contour, respectively. To align the shape
template with the current curve, one-to-one point corre-
spondences are computed by minimizing the total matching
cost [42],

H (π) =
∑
i

C
(
pi, qπ(i)

)
(20)

FIGURE 5. Insulator image 2 (a) original image (b) texture image.

where pi represents a point on the current contour; qπ(i)
denotes a point on the shape template; π represents a per-
mutation operator.
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FIGURE 6. Insulator segmentation results for image 2 (a)initial contour (b) CV (c) T-CV (d) S-CV (e) TS-CV.

Procrustes analysis is adopted to estimate the transfor-
mation TXt ,Yt ,s,θ from the current curve Cn+ 1

2 to the shape
template S [43]. For a single point (x, y),

TXt ,Yt ,s,θ

(
x
y

)
=

(
s cos θ s sin θ
−s sin θ s cos θ

)(
x
y

)
+

(
Xt
Yt

)
,

where s is a scaling parameter, θ the rotation angle, (Xt ,Yt)
the translation parameter. GivenN correspondences of points,
the transform parameters are obtained by minimizing the
following equation (21):

J (T ) =
N∑
i=1

∣∣xi − TXt ,Yt ,s,θ (x ′i)∣∣2, (21)

where xi and x ′i denote the points of the shape template
S and the corresponding points of the current contour
Cn+ 1

2 , respectively. The new curve Cn is represented by{
T−1Xt ,Yt ,s,θ (x1) , · · · ,T

−1
Xt ,Yt ,s,θ (xN )

}
and used to con-

struct a level set function 8n.

IV. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of the proposed method,
a series of experiments have been conducted on an
insulator image dataset. The insulator image dataset consists
of 100 arial images. Four methods are used to segment
insulators, i.e. Chan-Vese model (CV) [15], Texture-based
Chan-Vese model (T-CV) [19], Shape-based Chan-Vese
model (S-CV) [17], Texture-and-shape-based Chan-Vese
model (TS-CV). The segmentation error rate (ER) are
adopted to evaluate these segmentation methods. ER is
defined as the ratio of misclassified image pixels over the
total image pixels. The test platform of the algorithm used
Windows 7 Ultimate, the configuration of test PC is 1.87 GHz

FIGURE 7. Insulator image 1 (a) original image (b) texture image.

frequency with 6 GB memory, and the algorithms are per-
formed in MATLAB R2015a.

In the experiments, three types of contours are used to
initialize the level set function, i.e. a rectangular, a small
circle and a big circle. In the numerical implementation,
the weighting parameter λ is set to 1; the topology-preserving
term parameters d and l are set to 4 and 1, respectively,
according to [44]; the timestep τ is empirically chosen in the
range of [0.1,1] in step of 0.1 and is set to 0.1.

The insulator image 1 and its texture image are shown
in Figure 2. Figure 1a is used as the insulator shape prior.
Figure 2 shows the process of the proposedmethod. The insu-
lator segmentation is achieved by texture-driven curve evolu-
tion and shape-driven curve evolution alternatively. A rect-
angle is used to initialize the level set function. The second
column shows the intermediate curves Cn+ 1

2 by minimizing
the equation (9). The curves are aligned with the insulator
template by finding point correspondences, as shown in the
third column. Then the curves are updated by the semantic
transform from the intermediate curves to the shape template.
The forth column shows the contours Cn after the shape-
driven curve evolution. The process reveals the areas of
texture similarity could be segmented by the texture-driven
curve evolution and the shape prior could help to segment the
insulators from the similar texture regions.
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FIGURE 8. Insulator segmentation results for image 3 (a) initial contour (b) CV (c) T-CV (d) S-CV (e) TS-CV.

The segmentation results of image 1 are shown in Figure 4.
Figure 4a shows the initial contours. Figure 4b illustrates the
segmentation results of CV. The insulator is segmented but
the grass is also segmented as part of the insulator. Figure 4c
shows the segmentation results of T-CV and most of the grass
is eliminated. Figure 4d and Figure 4e show the segmentation
results of S-CV and TS-CV, respectively and insulators are
accurately segmented from the original image 1 by S-CV
and TS-CV. The segmentation results show that the texture
features and the shape prior can improve the segmentation
results and the initial contours have no influence on the final
results. Comparing Figure 4c to Figure 4d, we can conclude
that the shape is a very effective characteristic for insulator
segmentation.

The insulator image 2 and its texture feature are shown
in Figure 5. Figure 1b is used as the shape prior. The seg-
mentation results are shown in Figure 6. Figure 6a shows the
initial contours and Figure 6 b∼e shows the segmentation
results of CV, T-CV, S-CV and TS-CV, respectively. For
the insulator image 2, the segmentation results of CV also
contains many background objects. The segmentation results
of T-CV contains less background but still unsatisfactory.
S-CV and TS-CV both achieve satisfactory results.

Figure 7 shows the insulator image 3 and its texture feature.
The background of the insulator image 3 is more complex
and the insulator has low contrast with the surroundings.
Figure 1b is used as the shape prior and the segmentation
results are shown in Figure 7. Figure 8a shows the initial
contours and Figure 8 b∼e illustrate the segmentation results
of CV, T-CV, S-CV and TS-CV, respectively. Figure 8b, 8c
and 8d reveal that CV, T-CV and S-CV fail to drive the
contour to approximate the boundaries of the insulator. The
proposed method is capable of distinguishing the insulator
boundaries as shown in Figure 8e. The segmentation results

TABLE 1. Comparison of the computational time.

also show that the initial contours have no influence on the
final segmentation result.

The computational time and ER of these four methods
are listed in Table 1. Although TS-CV achieves the best
segmentation results, it is the most time-consuming method.
Compared the computational time of CV with T-CV and
S-CV, we can conclude that the shape-driven curve evolution
approach however would take much more time.

V. CONCLUSION
In the paper, a texture-and-shape based active contour model
is proposed for segmenting insulators in the cluttered back-
ground. Shape constraint is incorporated into a texture-based
active contour model to capture the insulator boundaries. The
experiments on the insulator image dataset confirm that the
proposed method can segment the insulators in the cluttered
background where the boundaries of insulators are difficult to
be distinguished and it outperforms other related methods. As
the shape-driven curve evolution process is time-consuming,
future work will focus on speeding up the shape-driven curve
evolution process and extending the proposed method for
real-time detection applications.
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