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ABSTRACT The recent research by deep learning has shown many breakthroughs with high performance
that were not achieved with traditional machine learning algorithms. Particularly in the field of object
detection, commercial products with high accuracy in the real environment are applied through the deep
learning methods. However, the object detection method using the convolutional neural network (CNN) has
a disadvantage that a large number of feature maps should be generated in order to be robust against scale
change and occlusion of the object. Also, simply raising the number of feature maps does not improve per-
formance. In this paper, we propose to integrate additional prediction layers into conventional Yolo-v3 using
spatial pyramid pooling to complement the detection accuracy of the vehicle for large scale changes or being
occluded by other objects. Our proposed detector achieves 85.29% mAP, which outperformed than those of
the DPM, ACF, R-CNN, CompACT, NANO, EB, GP-FRCNN, SA-FRCNN, Faster-R CNN2, HAVD, and
SSD-VDIG on the UA-DETRAC benchmark data-set consisting of challenging real-world-traffic videos.

INDEX TERMS UA-DETRAC benchmark, traffic surveillance, deep learning, machine learning, neural
networks, object detection, scale variation, occlusion, yolo.

I. INTRODUCTION
The demand of intelligent traffic surveillance system has been
increased in order to improve traffic efficiency by preventing
various traffic problems. For intelligent traffic surveillance,
real-time traffic information should be obtain consistent and
accurate information about trajectory of vehicles. Therefore,
computer vision-based effective object detection methods
that extract traffic information automatically from real-time
video camera are very important for the reliable intelligent
traffic surveillance system [1], [2]. Figure 1 shows the scene
complexity of images from traffic security cameras to detect
every vehicles due to large variations on object such as scales,
types, perspectives, occlusion, lighting/brightness conditions
and different weather conditions. In recent years, various
deep learning based object detection models have applied to
increase the reliability of intelligent traffic information acqui-
sition. Among deep neural network based detection methods
such as Faster R-CNN, SSD andYolo-v3 [3]–[5], Yolo-v3 has
a relatively fast and high mAP performance that is robust
to scale variation and occlusion since it employs multiple
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FIGURE 1. Sample images of the UA-DETRAC benchmark data-set [9] that
contain various challenges on vehicle detection such as weather
conditions, varying times, large scale changes and occlusions.

convolution and prediction layers for multi-scale object
detection. Although the Yolo-v3 performs good enough in
both the speed and accuracy, there is still potential for
improvement. Figure 2 shows overall architecture of the
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FIGURE 2. Overall architecture of the conventional Yolo-v3 framework.

Yolo-v3 framework. They provide a Darknet-53 network as
base network that extracts feature from 3 different scales
using a similar concept to feature pyramid network [6].
After through the feature pyramid network, it adds several
2D-convolutional layers as prediction layers. The last
of 3 layers output the result a 3-d tensor encoding bounding
box, objectiveness, and class predictions. However, Yolo-v3
has still a difficulty in detecting various sizes vehicles such
as car, van, bus, and truck in real world image from traffic
surveillance camera because the last layers support only three
different scales of the objects. This paper is an extended
version of work published in [7] that ranked in the 3rd
place of 15th IEEE International Conference on Advanced
Video and Signal-based Surveillance (AVSS 2018) & the
International Workshop on Traffic and Street Surveillance
for Safety and Security (IWT4S) Challenge on Advanced
Traffic Monitoring. In this paper, we present a scale invari-
ant vehicle detection network with spatial pyramid pool-
ing method for more robust vehicle detection as follows.
First, two more object prediction layers were inserted in
the conventional Yolo-v3 framework. More specifically, one
additional prediction layer is between large size object predic-
tion layer and medium. Another additional prediction layer
is between medium size object prediction layer and small
one. Second, the spatial pyramid pooling (SPP) networks [8]
were added before each prediction layer after through feature

pyramid network. Our proposed method clearly outperforms
the previous object detection methods on the UA-DETRAC
benchmark data-set especially in case of crowd conditions.
The remainder of this paper is organized as follows. Section II
describes a brief overview about the background and related
works in the area of deep learning based detection meth-
ods and traffic surveillance data. The proposed multi-scale
vehicle detector with spatial pyramid pooling, a modified
version of Yolo-v3, is presented in Section III. Section IV
performs the experiments and results. Section V then presents
our conclusions.

II. RELATED WORKS
Most recent deep learning based detection methods have
been studied in order to overcome the problem of object
detection and the research still keep continuing to improve
performance. Before deep learning based object detection
framework introduced, one of state of the art object detector
was led by approaches exploiting Deformable Part-based
Models (DPMs) [10]. DPMs successfully detects the target
objects by finding the object parts and combining their spa-
tial information. Aggregate Channel Features (ACF) detec-
tor [11] also achieved state of the are result of detecting
scalable objects successfully by using of computing input
image’s multiple channels and sum every block of pix-
els from a multi-scale sliding window. After Alex-net won
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the challenge for visual object recognition called the Ima-
geNet Large Scale Visual Recognition Challenge(ILSVRC)
in 2012 [12], Convolutional Neural Network (CNN) showed
a significant breakthrough in the field of object recognition
and classification. Also, CNN have shown their powerful
feature representative ability in the field of object detection.
Some CNN based object detection approaches have been
presented to aim at learning invariant CNN representations
with respect to different types of transformations such as
scale, rotation and both [13]–[15]. In general, these object
detection based on deep learning frameworks can be divided
into two categories, region proposal based frameworks (two-
stage detector) and regression/classification (one-stage detec-
tor) based frameworks. The first consists of two stages.
First, It candidates regions so called as a region proposal
method and then classifies those regions in a subsequent
classification. The Region proposal based frameworks like
R-CNN [16], Fast R-CNN [17] and Faster R-CNN typically
comprise above two stages. R-CNN began with object region
proposals in an image by selective search [18] or Edge
boxes [19] method and then performed the classification but
led to large time latency. The Fast R-CNN was proposed
to reduce the time consumption related to large number of
region proposals. The feature maps size was reduced using
a Region of Interests(RoI) pooling layer to acquire valid
RoIs. These Region proposals method was still computa-
tionally expensive because of the selective search. Faster R-
CNN introduced Region Proposal Network (RPN) to directly
generate region proposals and predicted object locations.
Based on Faster R-CNN framework, significant improve-
ments have been deployed. For the one-stage object detector,
OverFeat [20] was the earlier work. Among object detec-
tion frameworks such as SSD, Yolo-v1 [21], Yolo-v2 [22],
and yolo-v3 that perform localization and classification at
once are typical one-stage detection methods. SSD employs
VGG-16 [23] as a base network that are applied on multiple
feature maps to account for various object scales. The only
different method of SSD and Yolo-v2 is that only one feature
map is used for prediction and anchor box regression. Instead
of VGG-16, the yolo-v2 authors proposed Darknet-19 as base
network. The Darknet-19 uses mostly convolutional layers
without the large fully connected layers at the end. Thismodel
performs in decreased inference time compared to VGG-16.
To determine the anchor box dimensions, k-means clustering
is employed. Yolo-v3 which is enhanced version of Yolo-v2,
included multi-scale predictions and a better base network
called as Darknet-53. The Darknet-53 has 53 convolutional
lyaers which is significant larger than Darknet-19 and it
consists of successive 3 × 3, 1 × 1 convolutional layers and
several shortcut connections [24].

III. METHOD
In the following section, we describe our strategy which is
to add two more object prediction layers and insert SPP-
networks before each prediction layer to improve accuracy
for the detection of strong scale variations and occlusions.

At first, we describe the whole pipeline of the detection
framework and additional prediction layers in section III.A.
Then, we present the insertion of the SPP-network in
section III.B. Finally, we present the replacement of nonmax-
imum suppression (NMS) to Soft-NMS [25] in the bounding
box merge stage of Yolo-v3 in section III.C.

A. ADDITIONAL PREDICTION LAYERS
We employ a Darknet-53 network as a base network for
feature extraction. The Darknet-53 has deeper convolution
layers(53 convolution layers) than Yolo-v2 (19 convolution
layers) and it also has residual blocks, shortcut connections,
and up-sampling. From the Darknet-53 network, the feature
maps are generated and then sent to the Feature Pyramid
Network (FPN). Our proposed multi-scale vehicle detection
architecture is based on the conventional Yolo-v3 detection
framework. Figure 2, 3 shows the conventional yolo-v3 and
our proposed architecture, respectively. From Figure 3, The
multiple different things of the conventional Yolo-v3 and our
proposed architecture are that 2 more prediction layers and
5 more SPP-networks with batch normalization [26] are used
to account for various object scales. By adding 2 more pre-
diction layers, our proposed architecture have the robustness
to vehicle scale with a wide scale range of anchor. After
customizing the scale of anchor box size using K-means
clustering method, we design the 15 anchor boxes from 5 to
400 pixels based on the effective receptive field. The anchor
boxes on early stage feature maps cover a smaller receptive
field to detect objects at a smaller scale, but the anchor boxes
on later stage feature maps cover a larger receptive field to
detect objects with larger scale. The early stage convolution
layers of a deep neural network have weak object information
that only high-level features of an input image. To com-
pensate lack of the object information, we combine features
from different layers of early stage convolution and later
stage convolution network. However, since featuremaps from
layers at different stages have different dimensions, we apply
a up-sampling operation to combine them effectively. Then
the combined feature maps is again subjected a few 1 × 1
convolutional layers to fuse the features from the earlier stage
layer. A batch normalization layers is followed to receive the
final feature map. The final feature map, which up-sampled
layers concatenated with the previous layers, helps preserve
the fine grained features helping in object detection.We apply
this procedures on feature pyramid network before each pre-
diction layers.

B. SPATIAL PYRAMID POOLING NETWORKS
Pooling layer is used to progressively reduce the dimension
of feature representation from convolution layer, inserted in-
between successive convolution layers. Typically three types
of pooling layers are commonly observed (general pooling,
overlapping pooling and SPP). The typical ways of gen-
eral pooling includes max pooling and average pooling. The
overlapping pooling usually set larger filter width than the
stride. SPP can produce a single high-level feature vector of
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FIGURE 3. Proposed multi-scale detector for accurate vehicle detector based on Yolo-v3 model.

TABLE 1. Feature map concatenation from our proposed network.

images with any size, into the fixed size of dimensions. This
advantage of SPP enables that the input image does not need
to be cropped. Hence it can avoid the information loss caused
by cropping and warping. In object detection field, the SPP-
network preforms an input feature map with filters or pooling
operations at different rates. These executions can generate
multiple effective field-of-views. Table 1 shows where we
apply SPP-network and how we concatenate feature maps
in our proposed architecture. Since the feature values from
different layers are quite different, a normalization step is
needed before feature map concatenation. We applied batch
normalization at each filters before concatenation.

C. SOFT-NMS
Non-maximum suppression (NMS) is widely used as a post-
processing step in object detection frameworks to merge

the nearby detection bounding boxes around one object.
However, when two objects are highly overlaped each other,
the detection bounding box with the lower score will be
excluded, which harms the performance of object detection.
Soft non-maximum suppression (Soft-NMS) treats the detec-
tion scores of all other objects as a function of IOU that pos-
sesses maximum score. So the detection bounding box with
lower score would not be deleted directly. Hence, we apply
the soft-NMS to replace the conventional NMS used in object
detection to discount the confidence score of predicted boxes
rather than completely discarding them. Also, Soft-NMS
shows the better AP scores than conventional NMS for several
benchmark.

IV. EXPERIMENTS
In this section, we evaluate the detection performance of
our proposed detector. First, we introduce the UA-DETRAC
benchmark data-set that is used for our experiments and
describe the training details. Finally, we compare our detec-
tion accuracy and speed to state-of-the art detector results
in traffic surveillance field. To evaluate the performance of
our proposed approaches in the experiments, we used the
mean average precision (mAP) score by taking precision-
recall curve over intersection over union (IOU) at 0.7 thresh-
old as given by the UA-DETRAC benchmark data-set
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TABLE 2. Evaluation results of the proposed architecture trained by a different number of SPP-network.

FIGURE 4. Implementation of spatial pyramid pooling on the proposed
architecture. Before we concatenate two feature maps, we applied
SPP-network in our base network.

Evaluation Protocol. Test data-set includes 10 easy
sequences, 20 medium sequences, and 10 hard sequences.

A. UA-DETRAC BENCHMARK DATA-SET
The UA-DETRAC benchmark data-set consists of 100 video
sequences. The data-set is divided by 60 video sequences
for train and 40 video sequences for test. The videos have
25 FPS and are taken at 24 different locations at Beijing
and Tianjin in China including four categories of weather
conditions(cloudy, night, sunny, and rainy), four categories of
vehicle(car, bus, van, and others), large variation with scale
and pose. The UA-DETRAC benchmark data-set contains
1.21million labeled bounding boxes of vehicles. The train and
test video sequences comprise 83,791 and 56,340 frames with
an resolution of 960 × 540 pixels respectively. Annotations,
which include four categories of vehicle(car, bus, van and
other), are only available for the train sequences. However,
We can observed that 10 hard video sequences are signifi-
cantly different from most train video sequences. Hard video
sequences includes more complex traffic scenes that have
large number of small and heavy occluded vehicles than easy
and medium one.

B. TRAINING DETAILS
For vehicle detection tasks, we use MS-COCO [27] pre-
trained Yolo-v3 model to initialize our backbone Darknet-
53 network. The our proposed architecture with 608 × 608
resolution is trained in the end-to-end manner with Stochastic
Gradient Descent (SGD) [28], where batch size is 64, subdi-
visions is 32, momentum is 0.9, weight decay is 0.0005, and
on four NVIDIA GeForce GTX TITAN XP GPU with 12GB
memory. We uses dual IOU thresholds and truth assignment

FIGURE 5. Sample images of the UA-DETRAC benchmark training-set that
includes ignore regions.

similar as Faster R-CNN. If the IOU between a prediction
and a ground truth bounding box is over 0.7, it is as a positive
example. The learning rate is set of 0.001, and reduces from
10-3 to 10-5 by 10-1. With each learning rate, we trained 40K,
5K, and 5K iterations respectively. We change the network
resolution every 10 batches with fixed input image. The
network selects from the following multiples of 32: 544, 572,
608, 640, 672 as similar manner of Yolo-v2 and Yolo-v3
[5], [22]. The network is resized by that dimension and
continue training. The experiments were done with cuDNN
v7.1 and CUDA 9.1.

C. EFFECT OF NUMBER OF SPP-NETWORK
To explore the effectiveness of SPP-network, the performance
of our proposed 2 more prediction layers Yolo-v3 model
trained by a different number of SPP-network is investigated.
Table 2 illustrates the results which show the effectiveness
of the different number of SPP-network. We can observe
that as the number of SPP-networks increases, the overall
mean average precision increases. One possible reason for
this observation is that the SPP-network accepts variable
sizes as input with multiple pooling layers to increase the
robustness of the network performance. However, with the
increase of the number of SPP-network, the run-time speed
become slower. The proposed detector with 5 SPP-networks
outperforms that by model with none SPP-network with gaps
of 2.92% on the UA-DETRAC benchmark test-set.

D. DETECTION ACCURACY & SPEED
Table 3 and Figure 6 shows the results of our pro-
posed architecture with the current state-of-the-art vehicle
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TABLE 3. Comparison to current leader of the UA-DETRAC detection challenge and to the top-performing detectors of the IWT4S Challenge on Advanced
Traffic Monitoring 2017. Our proposed approach outperformed our baselines and all other approaches on the leader-board in the UA-DETRAC benchmark
test-set suite.

FIGURE 6. Qualitative detection results of out proposed method on the UA-DETRAC benchmark test-set. The result bounding boxes are dense
around heavy occluded vehicles and correctly detected for hard traffic scene.

detection approaches of the 2018 UA-DETRAC detection
challenge track 2, the winner detectors of the IWT4S
challenge on Advanced Traffic Monitoring 2017 [29] and

baseline detectors. From Table 3, we can see that the
overall mean average precision of our proposed archi-
tecture is 85.29 on UA-DETRAC benchmark test-set,
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FIGURE 7. Precision-recall curves of different vehicle detection algorithms on the full UA-DETRAC benchmark
test-set. Clockwise from top left: Overall; easy; medium; hard; cloudy; night; rainy; sunny sequences of the
UA-DETRAC bench-mark test-sets.

which is 59.59%, 38.94%, 36.34%, 26.84%, 39.46%,
22.28%, 32.06%, 17.33%, 15.42%, 7.33%, 4.78%,and 2.61%
higher than that of, DPM, ACF, R-CNN, Faster R-CNN2,

SA-FRCNN, NANO, CompACT [30], EB [31], R-FCN,
GP-FRCNN [32], HAVD, SSD-VDIG respectively. Proposed
approach clearly outperforms all other detectors on the full
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test-set(overall). Compared to GP-FRCNN which is the win-
ner detector of 2017 Challenge track 2, Proposed detector
is improved by 7.33 percentages. As mention it before, the
UA-DETRAC benchmark data-set consists of three levels of
difficulty (easy, medium, hard). We clearly improve the mAP
for hard sequences. Figure 7 shows precision-recall curves
of object detection methods on overall, easy, medium, hard,
cloudy, night, rainy, sunny sequences of the UA-DETRAC
benchmark test-sets. The gap between ours and baseline
methods was not significant on easy and sunny sequences,
but it was more noticeable on hard and rainy sequences.
The Speed was measured by using the forward path of the
network with a batch size 1. The run-time speed is 9-10 FPS
on a single NVIDIA GeForce GTX TITAN XP GPU. The
conventional Yolo-v3-608 model has 20-25 FPS. Our model
is about 3 times slower than the conventional one, slightly
slower than the Faster R-CNN2 (11.11 fps) but faster than
CompACT (0.22 fps), ACF (0.67 fps) and DPM (0.17 fps).
The current top-performing detectors(SSD-VDIG, HAVD) of
the UA-DETRAC challenge are more than 2 times slower
than ours.

E. QUALITATIVE RESULTS
Figure 6 depicts qualitative evaluations of our approach on
the UA-DETRAC benchmark test-set. We successfully detect
most of the vehicles in different appearances, especially when
heavy and partial occlusions are occurred, also the vehicles
that are far away from the camera for challenging scene
such as high traffic density and various lightning conditions.
We zoomed in detection results (Three images at the bottom)
to verify that even heavily occluded vehicles are correctly
detected by our proposed detector.

V. CONCLUSION
In this paper, we proposed a multi-scale vehicle detection
with spatial pyramid pooling method when improves the
conventional Yolo-v3 for robust detection to the scale change
of the vehicle and the occlusion. The contribution of the paper
is as follows. First, it adds two more object prediction layers
based on the conventional Yolo-v3 model to detect vehi-
cles effectively in different scales. One additional prediction
layer creates between lager size object perdition layer and
medium. Another additional prediction layer creates between
medium size object prediction layer and small. Second,
the SPP-networks were implemented before each prediction
layer after feature pyramid network to improve accuracy by
increasing the number of features without much time over-
head. The our proposed architecture shows a state-of-the-
art mAP detection ratio against the others vehicle detection
approaches with reasonable run-time speed (9-10 FPS).
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