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ABSTRACT This paper aims at studying the relationship between two rather relevant theoretic fields such
as Graph Theory and Testor Theory, deepening in the unexploited relation between the concepts of Minimal
Transversal and Irreducible Testor. First, the classic definitions of each concept are provided, and then the
relation between them is shown and formalized. Some of the immediate consequences of this relation,
in terms of the duality property of transversals and about the equivalence of the result of two specific
algorithms, one from each field, are discussed. Finally, we also discuss several future research directions
that arise from the relationship between the concepts of Minimal Transversal And Irreducible Testor, and the
way in which those directions can potentially benefit the development of theory and algorithms for solving
different practical problems in both areas.

INDEX TERMS Testor theory, graph theory, irreducible testor, minimal transversal, hitting set.

I. INTRODUCTION
Testor Theory is a useful tool for feature selection and eval-
uation in Pattern Recognition. It has been used for solving a
wide variety of practical problems like medical diagnosis [1],
text categorization [2], document summarization [3], docu-
ment clustering [4], etc. The concept of irreducible testor [5]
has been extended and generalized in several ways, allowing
researchers to develop algorithms which, despite of their high
complexity, have helped tackling new interesting practical
problems with the same theoretical framework [6]–[9].

Graph Theory, on the other hand, has been one of the
most relevant fields of discrete mathematics during the last
decades. Its versatility for modeling a wide range of phe-
nomena has taken it to an elite position among research
areas. A particularly useful concept in this field is that of
minimal transversal [10]. Artificial intelligence, reliability
theory, database theory, integer programming, and learning
theory, are among the relevant areas where this concept has
been applied [11], [12]. However, algorithms for computing
minimal transversals also have a high time complexity and
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therefore, several different algorithms have been proposed for
this task [13], [14].

By deepening in the convergence between these two fields,
we look forward into contributing to a broader and unified
understanding of both. Also, since each field has been devel-
oped independently from each other, we observe that each
field can benefit from some concepts and techniques from the
other one.

II. THEORETICAL FRAMEWORK FROM TESTOR THEORY
LetU be a partition of objects, described by a set of n features
and grouped into k disjoint classes (i.e. a training sample).
By using feasible comparison criteria, a matrix A =

[
aij
]
m×n

can be constructed to hold the information about the compar-
ison of all objects belonging to different classes in U . That
matrix is known as pairwise comparison matrix. Henceforth,
we will refer to it as comparison matrix.

If Boolean comparison functions are used for constructing
a comparison matrix, then each aij ∈ {0, 1}. When an element
aij = 1, it means that objects within pair i have different
values in feature j, while aij = 0 is interpreted as objects
within pair i have similar values in feature j. In that case,
the matrix is called a Boolean difference matrix. In all of the
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following, whenever we use a difference matrix we will be
referring to a Boolean difference matrix.

Let A be a difference matrix,RA = {a1, . . . , am} be the set
of rows in A, and FA = {x1, . . . xn} be the set of features
used to describe objects. Also, let A|T , with T ⊆ FA,the
sub-matrix obtained by eliminating fromA all columnswhose
features do not belong to the set T . Then, we have the
following:
Definition 1: A subset of features T ⊆ FA, is called a testor

in A if the sub-matrix A|T does not have any row composed
exclusively by 0s. The set of all testors in A is denoted byψ(A).
According to the previous definition, a testor is a subset

of features capable of describing all objects in the training
sample, without causing confusion among objects belonging
to different classes.
Definition 2: A testor T is called an irreducible testor in

A if it is minimal with respect to the inclusion relation; that
is, if no proper subset of T is a testor in A. The set of all
irreducible testors in A is denoted by ψ∗(A).
The above definition implies that no feature can be

removed from T without loosing its testor nature. Conse-
quently, for each xj ∈ T , being T an irreducible testor, there
must be at least one row in A|T , such that it has a 1 in the
column of xj and 0 in all other columns in T . Such row is
called a typical row of xj with respect to T , and it seems
evident that all features in an irreducible testor, must have
at least a typical row.

The information needed for finding irreducible testors in a
differencematrix can be shrunk into amuch smaller structure.
A row rp in a difference matrix is considered a sub-row of
another row rq if each position of rp has a value less than
or equal to the corresponding value in rq and there is at
least one position where rp has a value strictly less than the
corresponding one in rq.
Definition 3: A row rp in a difference matrix A is called a

basic row if there is not another row in A being a sub-row
of rp. A matrix B is called a basic matrix from a difference
matrix A if it contains all and exclusively all the basic rows
of a difference matrix without repetition.

Evidently, a basic matrix B has equal or less rows than the
original difference matrix A. However, the set of irreducible
testors embedded within a basic matrix B, ψ∗(B), is exactly
the same as the one embedded within the difference matrix A,
ψ∗(A); this is proved in [15] through the following theorem.
Theorem 1: Let A be a difference matrix and B its corre-

sponding basic matrix, then ψ∗ (A) = ψ∗ (B).
Since a basic matrix has fewer rows but the same irre-

ducible testors, this explains whymost of algorithms for com-
puting irreducible testors are run on basic matrices instead of
difference matrices.

III. THEORETICAL FRAMEWORK FROM
HYPERGRAPH THEORY
In graph theory, a hypergraph is a generalization of the tradi-
tional graph concept. A hypergraph is defined as follows:

Definition 4: A hypergraph H is an ordered pair H =
(V, E), where V = {v1, . . . , vn} is a finite set of objects, and
E = {E1, . . . , Em} is a covering of V , i.e. a family of subsets
of V such that Ei 6= ∅ (i = 1, . . . ,m) and

⋃m
i=1 Ei = V .

The elements of V are called vertices or nodes, while the
elements of E are called hyperedges of the hypergraph H.
From the above definition it is clear that a hypergraph can

be seen as a generalization of a graph, but without the restric-
tion of an edge (hyperedge) connecting only two vertices.
Definition 5: The incidencematrix A ofH is an n×mmatrix

A =
[
aij
]
n×m whose rows and columns correspond to the

vertices and the hyperedges of H respectively, in such a way
that aij = 1 if vi ∈ Ej and aij = 0 otherwise.
Definition 6: A hypergraph H = (V, E) is called simple if

for every pair (Ei, Ej), Ej ⊆ Ei ⇒ j = i.
When a hypergraph H is simple the sets of vertices repre-

sented by the hyperedges of H form a Sperner family, (i.e.
A family of sets in which none of the sets is contained in
another one).
Definition 7: LetH = (V, E) be a hypergraph. A set τ ⊆ V

is called a transversal (or, hitting set) ofH, if it intersects all
its hyperedges, i.e., (∀Ei ∈ E) τ ∩ Ei 6= ∅. A transversal τ
is called minimal if no proper subset τ ′ of τ is a transversal
ofH.
Definition 8: The transversal hypergraph Tr(H) of a

hypergraphH is the family of all minimal transversals ofH.

IV. RELATION
The previous sections present self-explained concepts about
both testor and hypergraph theories. By analizing definitions
of basic matrix, incidence matrix and simple hypergraph,
we first established the following auxiliar theorem:
Theorem 2: A transposition over the incidence matrix of a

simple hypergraph, results in a matrix that fulfills all required
properties to be a basic matrix.

The proof of this theorem is immediate from definitions 3,
6 and 7. However, the result it enunciates is very important,
since the resulting basic matrix can then be used to find
irreducible testors, and the complete set of irreducible testors
from that matrix turns out to be the transversal hypergraph of
the original hypergraph.

We now formalize the relation between the concepts of
Minimal Transversal and Irreducible Testor with the follow-
ing theorem:
Theorem 3: Let ψ∗(B) = {τ1, . . . , τs} be the complete

family of irreducible testors from a basic matrix B. Let Tr(H)
be the transversal hypergraph for a simple hypergraph H
whose incidence matrix is exactly the transposed matrix of
B, Bt , then ψ∗(B) = Tr(H).

Proof: Let FA = {x1, . . . xn} be the set of features in a
basic matrix B, and let ψ∗(B) = {τ1, . . . , τs} be the family
of irreducible testors in B. By definition, all rows in B must
be basic rows, it means that they are pairwise incomparable.
Since B is a Boolean matrix, Bt can also be interpreted as
the incidence matrix for some hypergraph H. When doing
so, it immediately comes to mind the fact that, since B is
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formed exclusively by incomparable rows, then H must be
a simple hypergraph. Now, by definition, each τj is a subset
of features such that, B|τj contains no zero rows. Therefore,
when interpreting B as an incidence matrix, it seems evident
that all hyperedges in H are incident on at least one vertex,
consequently each τj ∈ ψ∗(B) must be a transversal of
H. Also, τj is minimal, since irreducible testors are always
minimal. In conclusion, since ψ∗(B) contains all minimal
transversal of H, by definition it is precisely the transversal
hypergraph ofH. Now, by definition, Tr(H) = {τ1, . . . , τs} is
the family of all minimal transversals inH, which means that
each τj ∈ Tr(H) is a subset of hyperedges always incident
on at least one vertex of H. Within the incidence matrix of
H, each set τj determines a sub-matrix that has no zero rows,
which is precisely the required condition so that τj is a testor
in H. Since all transversals are known to be minimal, then
each τj is an irreducible testor inH, and Tr(H) is the complete
family of irreducible testors in the incidence matrix ofH. �

The last theorem expresses the equivalence between com-
puting minimal transversals of a simple hypergraph H and
computing irreducible testors from the transposed incidence
matrix of H (i.e., the corresponding basic matrix).

A. SOME IMPLICATIONS OF THE RELATION
The most immediate implication of Theorem 3 is the fact
that both tasks, the computation of irreducible testors and
the computation of minimal transversals, can be performed
by any known algorithm originally designed for one task
or the other. Algorithms from both fields can be compara-
tively tested under the same conditions. However, for really
exploiting the relation between the concepts of Minimal
Transversal and Irreducible Testor, a deeper analysis should
be performed. Concepts, techniques and even application
areas known to one field but not explored by the other are the
cornerstone for building new fields with unified frameworks.

Another rather relevant consequence of the relation lies on
the duality property [16] which states that Tr (Tr (H)) = H,
and has the following implications:

1) The transversal hypergraph of a simple hypergraph is
also a simple hypergraph (which we will identify as the
dual hypergraph).

2) The transversal hypergraph of the dual hypergraph is
the original hypergraph.

Based on duality property, two important properties (lem-
mas 12 and 13) in the field of Testor Theory emerge immedi-
ately as follows.

If a basic matrix B and its complete family of irreducible
testors ψ∗(B) = {τ1, . . . , τs} are known, then a matrix can be
constructed with all the irreducible testors written in standard
notation (i.e. each row i is a binary sequence where an entry
1 at position jmeans that feature xj ∈ τi and an entry 0 means
the opposite). Such matrix will be called the irreducible testor
matrix of B and will be denoted as

[
ψ∗(B)

]
. Rows in

[
ψ∗(B)

]
represent irreducible testors in B, while columns represent
descriptive features for the studied objects. Observe that

[
ψ∗(B)

]
has a row for each irreducible testor in B, and exactly

the same number of columns than B. Since by definition all
irreducible testors are minimal, then all rows in the testor
matrix are incomparable, and therefore the following lemmas
are true:
Lemma 1:

[
ψ∗(B)

]
is also a basic matrix.

Lemma 2:
[
ψ∗

([
ψ∗(B)

])]
= B, except for some row

rearrangement.
The aforementioned implications, emerged from

Theorem 2, can potentially benefit the field of Testor Theory
by suggesting a proved method for validating algorithms for
computing irreducible testors. Also, a complete benchmark
for these algorithms can be defined with a carefully studied
family of test matrices [17].

Following the opposite view, in the field of Testor The-
ory it is common knowledge that algorithms for computing
irreducible testors follow two main strategies: internal and
external. The general strategy for internal algorithms is to
iteratively select some entries from the basic matrix and using
them to construct irreducible testor candidates [18].

On the other hand, external algorithms induce an order over
the power set of features used to describe objects, and then use
some strategy, guided by the logical properties of that order,
to find the family of irreducible testors [19].

After a thorough review in state of the art research works,
it seems that the concept of external algorithm is not present
at all into Graph Theory, consequently it represents a new
strategy that can be followed by trnansversal-computing
algorithms.

V. COMPARATIVE EXAMPLE
In this section, we select a representative well-known algo-
rithm from each field, we briefly analyze their fundamental
strategies, and then re-write them both to fit into a unified
framework. The general structure of this framework is a
search algorithm over the power set of hypervertices (or
descriptive features), and in both rewritten algorithms a list
is used as the main data structure to traverse the search space.
The required input is a binary matrix, which represents the
incidence matrix of a simple hypergraph (for the transversal
algorithm), or the transposition of a basic matrix (for the
irreducible testor algorithm). By presenting both algorithms
rewritten in this unified framework, we hope to contribute
to the understanding of some of the most immediate conse-
quences of the presented the relation between the concepts of
Minimal Transversal and Irreducible Testor.

A. THE KAVVADIAS-STAVROPOULOS ALGORITHM (KS)
The Transversal Hypergraph Generation Problem, as known
in the field of Graph Theory, is the problem of generat-
ing the set Tr(H) of all minimal transversals of a given
hypergraphH.

Several algorithms are known for the above problem.
For example, in [10], Berge proposed an algorithm that has
been a reference point for most of the subsequent propos-
als. Khachiyan [20] proposed another algorithm that notably
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outperforms Berge’s algorithm. Truly remarkable because its
performance enhancement is the well known algorithm pro-
posed byKavvadias and Stavropoulos [16], whose incorpora-
tion of the generalized vertex concept allows it to successfully
handle larger data problems.

The Kavvadias-Stavropoulos algorithm (KS algorithm) is
based on a hyperedge wise incremental computation of the
transversal hypergraph. Given a hypergraph H = (V, E)
with E = {E1, E2, . . . , Em}, the KS algorithm starts by con-
structing Tr((V, E1)) and then, incrementally complements
the result with the transversals obtained from each subsequent
hyperedge. The algorithm ends when the transversals from
Em have been generated and incorporated to the final result.
Following that strategy, all the hyperedges of H need to
be analyzed before the final result (the transversal hyper-
graph of H), can be delivered, and to overcome the poten-
tially exponential memory requirement of other algorithms,
Kavvadias-Stavropoulos heavily rely on the following defi-
nition of a generalized vertex:
Definition 9: Let H = (V, E) be a hypergraph. The set

χ ⊆ V is a generalized vertex ofH if all vertices in χ belong
to exactly the same hyperedges ofH.
By appropriately exploiting the concept of generalized ver-

tex, and by structuring its algorithm in a depth-first manner,
the KS algorithm achieves high performance. Also, since the
KS algorithm operates in a generate-and-forget fashion, its
memory requirements are greatly reduced. To avoid hav-
ing to wait until the algorithm ends to see some results,
Kavvadias-Stavropoulos reshape their algorithm to define a
tree of minimal transversals in a depth-first fashion. In order
to accomplish that, they incrementally analyze each hyper-
edge and label all generalized vertices according to the ele-
ments that the currently analyzed hyperedge has, under the
exact columns of that generalized vertex. Consequently, when
analyzing a new incidencematrix row, each previously known
generalized vertex χ is assigned a label as follows:

• type α if the new row has only 0s under all columns of
χ

• type β if the new row has only 1s under all columns of
χ

• type γ if the new row has any combination of 0s and 1s
under the columns of χ .

Lastly, to avoid testing generalized vertex combi-
nations that will not produce a minimal transversal,
Kavvadias-Stavropoulos rely on the following
definition:
Definition 10: LetH = (V, E) be a hypergraph and let τ be

a minimal transversal of the partial hypergraphHi (i.e. up to
row i of the incidence matrix). A generalized vertex v ⊆ V\τ
is an appropriate vertex for τ , at level i, if no other vertex in
τ ∪ {v} except v can be removed and the remaining set is still
a transversal ofHi.
Let Kα,Kβ and Kγ denote the number of generalized

vertices of each respective type. The KS algorithm uses the
following auxiliary functions:

– Label (vi, j) assigns an α, β or γ label to vertex vi according
to the analysis of the jth row in the incidence matrix.
– α(vi), β(vi) and γ (vi) are predicate functions that identify
vi as an α, β or γ vertex.
– Split (v) separates a vertex vi of type γ into its two parts:
the generalized vertex containing all columns with 0’s in
the currently analyzed row of the incidence matrix, and the
generalized vertex containing all columns with 1’s.
– Recombine(V) receives a set of γ -type generalized vertices,
which were already procesed by the function Split and returns
a set with all possible combinations of their parts. Note that
one, and only one, of the resulting combinations will only
contain parts with 0s, that element is called the Zero vertex.
–GetZero(T ) receives a set of generalized vertices and returns
the Zero vertex.
– Complete(T1,T2) receives two sets of generalized vertices
and returns a new set where the whole set T1 is treated as a
γ -vertex part and it is combined with all the vertices in T2.
– Appropriate(T , i) returns a set with all the appropriate
vertices for T in hyperedge ei.
– Refine(T ) receives a set of generalized vertices and returns
a set containing all possible vertex unions in distinct gen-
eralized vertices; in some sense, the Cartesian product of
generalized vertices in T .
The KS algorithm and its associated auxiliary function

KSDescendants are outlined in Algorithm 1 and Function 1,
respectively. For more detailed explanation of this algorithm,
the reader should refer to [13], [16].

Algorithm 1 Kavvadias-Stavroupoulos
Input: The incidence matrix of a simple hypergraph H
Output: Tr(H)
Let T be the set of all generalized vertices of hyperedge e1
Push [T,1] into Stack
While Stack not empty do

[T, j] = Pop(Stack)
Reverse Push all KSDescendants(T, j+1) into Stack

endWhile
Final answer is stored in Transversals

B. THE BINARY-RECURSIVE ALGORITHM (BR)
As it has been established, traditional external algorithms for
computing irreducible testors search within the power set of
features used to describe objects. However, the search process
is not an exhaustive search over the power set. Some proper-
ties of each tested subset allow the algorithm to infer which
other successive subsets, following the established order, are
not irreducible testors, and therefore they are not worth be
tested. The act of bypassing the test of some subsets is com-
monly referred to as jumping. In general, the order selected to
traverse the power set of columns, along with the magnitude
of the jumps (the number of non-tested subsets), and the
specific procedure applied over a subset to test whether it is an
irreducible testor or not, determine the behavior of an external
algorithm.
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Function 1 KSDescendants (T , j)
Input: A set T of generalized vertices
Output: The set of all descendants of T
Let Temp1, Temp2 and Zero be auxiliary empty sets
Label(T, j)
Push all α and β vertices into Temp1
Push all γ vertices into Temp2
Temp2 = Recombine(Split(Temp2))
If Kβ 6= 0 then

Temp1 = Complete(Temp1, Temp2)
else

When Kγ 6= 0 do
Zero = GetZero(Temp2)
Temp2 = Complete(Temp1, Temp2 \

Zero)
endWhen
Zero = Zero ∪ Temp1
Zero = Complete(Zero, Appropriate(Zero))
Temp1 = Temp2 ∪ Zero

endIf
If j = m then

Push Refine(Temp1) into Transversals and
Return(∅)
else

Return([Temp1, j])
endIf

The BR algorithm [19] starts by inducing the �BR order
over the power set of features as follows:

Let T1, T2, and X be ordered sets such that T1,T2 ⊆ X .
Also, let the function first(T ), which returns the first element
in T , and finally let �lex be the lexicographic order. Then,

T1 �BR T2 if


first(T1) � first(T2),
first(T1) = first(T2) but |T1| ≤ |T2|,
first(T1) = first(T2) and |T1| = |T2|

but T1 �lex T2.

Starting with the first non-empty subset in that order, each
currently analyzed subset Ti is tested. If it is an irreducible
testor, then it is added to the final result and all its supersets
are excluded from subsequent testing.
Otherwise (e.g. Ti is not an irreducible testor), all subsets

that can be constructed as Ti∪{xj} are analyzed. Those subsets
are called Ti’s descendants, and they can fall into one of two
possible groups:
The first group contains those features that do not reduce

the number of zero rows in the submatrix defined by Ti∪{xj},
or that ruin the typicality of any feature in Ti (see discussion
after Definition 2). These features are labeled as exclusive.
The second group contains all remaining features that nei-

ther form an irreducible testor, nor ruin the typicality of any
feature in Ti. Those features are labeled as candidate. Only
features into this last group are considered as suitable candi-
dates to become an irreducible testor and they are recursively

analyzed in the same fashion. For a more detailed explanation
of the operation of this algorithm, the reader should refer
to [19].
Let start(T ) be a function that returns a set with all ele-

ments in T , except the last one, and let last(T ) be the func-
tion that returns precisely that last element in T . Also, let
TypicalTestor(T ) be a predicate function that returns true if T
is an irreducible testor in the basic matrix B and false other-
wise. Finally, let Candidate(T ) be another predicate function
that returns true if last(T ) is non-exclusive with respect to
start(T ) and false otherwise. The BR implementation, whose
pseudocode is shown in Algorithm 2, works with an auxiliary
pseudo-stack structure managed with the classic function
Pop() for extracting the last element in the structure, but
with insertion of multiple elements in reverse order and at
diverse positions. Given a set T , all its supersets following
the lexicographic order are called its descendants.
The Binary-Recursive algorithm and its associated

auxiliary function Analyze are outlined in Algorithm 2 and
Function 2 respectively.

Algorithm 2 Binary-Recursive Algorithm
Input: A basic matrix B.
Output: The set ψ∗(B) of all irreducible testors in B.
Reorder B placing the row with least and left-most 1s at the
top
Let ψ∗(B) = ∅ and Stack empty
Reverse push into Stack all features with a value 1 on the
first row of B
ψ∗(B) =Analyze(Stack)

Function 2 Analyze (List)
Input: A list with feature sets of B.
Output: The set ψ∗(B).
If Empty(List) then return ∅
else
T = Pop(List)
If TypicalTestor(T ) then

remove all its super-sets from List and return
T∪Analyze(List)

else
If Candidate(T ) then reverse push into List all its

descendants,
starting from the position prior to the next element

with just one
feature
else

remove all its super-sets from List
endIf
return Analyze(List)

endIf
endIf
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TABLE 1. Binary matrix used for illustrating the strategies followed by
the KS and BR algorithms.

C. COMPARING STRATEGIES
The goal of this subsection is to illustrate the similarities
and differences between the strategies for computingminimal
transversals / irreducible testors followed by the algorithms
previously described. For this purpose, we will use the same
binary matrix for both algorithms. This binary matrix is
interpreted as the incidence matrix (transposed) of a hyper-
graph by the KS algorithm, and as a basic matrix by the
BR algorithm.

As stated previously, both analyzed algorithms were
redesigned to use a list as data structure for representing
the set of vertices or features pending from revision. Since
the KS algorithm was defined as a depth-first traversal in
the search tree, its list is strictly used as a LIFO (Last In -
First Out) structure. On each iteration, all the descendants of
the currently analyzed set are generated and they are pushed
in reverse order into the LIFO structure (called Stack), thus
resulting in the expected depth-first transversal.

On the other hand, the searching order followed by the
BR algorithm does not exactly fit neither a depth-first nor a
breadth-first traversal, so its list allows direct access inser-
tions, but always extracts the first element of the list.

The binary matrix selected for illustrating the strategy
each algorithm follows for computing irreducible testors or
minimal transversals is shown in Table 1.

In order to help the reader to follow the example, each
column of Table 2 shows only the contents of the main data
structure of each algorithm, as well as the element extracted
from it in each iteration. From Table 2, it can observed that
both algorithms follow completely different search strategies,
however they yield the exact same answer.

As previouslymentioned the strategy in theKS algorithm is
to construct minimal transversals by testing only the entries in
the input matrix. The depth-first search strategy used by this
algorithm outperforms the breadth-first strategy previously
proposed by Berge [10] since it does not need to wait until the
last input matrix row is processed to know the set of minimal
transversals found.

On the other hand, regarding BR, as the pseudocode in
Algorithm 2 states, the reordering of the input matrix places
the row with fewer ones on the top. Rows 1 and 3 have both
only two 1s, but since row 1 has its leftmost 1 on the first
column, then it is selected. Then, the 1s on the selected row
must be placed in contiguous columns, placing column ‘e’
in second place. Following this ordering the final position
for the input matrix columns is ‘a, e, b, c, d, f ’. This final
position is used as the base for subsequent lexicographic
ordering of column subsets, and that is why subset {a, e}
is analyzed before subsets {a, b}, {a, c} and {a, d} (see
row 3 on Table 2).

Once the matrix has been reordered, and the columns with
a 1 on the first row have been pushed into the main list
(subsets {a} and {e}), only descendants of candidate subsets
will be pushed into that same list. Since those descendants
are placed before the last element with just one feature (see
the first else block in pseudocode on Function 2), the BR-
order is preserved, effectively creating a depth-first traversal
of a tree composed of all subsets extracted from the main list.

TABLE 2. Contents of the main data structures used by the KS and BR algorithms.
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Each time an irreducible testor or an exclusive subset is
extracted from the list, all its supersets are removed from the
list to avoid unnecessary further tests.

VI. CONCLUDING REMARKS
In this paper, the relation between the concepts of irreducible
testor and minimal transversal was identified. Although these
concepts have different semantics and applications in each
theory, and derived from the equivalence between a basic
matrix and the incidence matrix of a simple hypergraph, they
both share the same mathematical properties. As a conse-
quence, an expanded perspective and a wider opportunity
scenario is available to both fields, giving rise to diverse and
potentially useful joint research lines.

As it was shown, the first and obvious benefit from the
relation between the concepts of irreducible testor and mini-
mal transversal lies in the possibility of choosing algorithms
designed within one of the two fields and seamlessly use it to
solve problems stated within the other. Each field has plenty
of different algorithms based on diverse approaches; some
of them have not been explored on one field or the other.
Although covering all the possible future studies is out of the
scope of this paper, we do want to at least sketch some of the
immediate and rather promising ones.

Given differences in the strategies for computing irre-
ducible testors and minimal transversals, it seems reasonable
to assume the convenience of finding a unified, maybe hybrid,
strategy, which takes the best from both fields for computing
irreducible testors or minimal transversals. Although in both
fields prevails some theoretical clarity about the impossibil-
ity of finding the absolute best algorithm for any problem
instance (a No-Free-Lunch region), it would be very useful
to unify the evaluation criteria used for current algorithms
and building a generalized benchmark for all currently pub-
lished algorithms. An interesting possibility for doing so is a
somewhat novel strategy which has recently emerged from
the testor theory arena, that postulates the convenience of
creating synthetic basic matrices with controlled parameters
for benchmarking purposes [17].

Testor Theory can be benefited from the possibility of
exploiting the duality property for the design and valida-
tion of new testor-finding algorithms. On the other hand,
graph theory can be benefited from several extensions made
to the original concept of irreducible testor, that widen the
spectrum of practical applications allowing a more versa-
tile modeling process. For example, it would seem quite
useful to explore the relationship between the concept of
fuzzy hypergraph [21] and the concept of irreducible fuzzy
testor [6].

Finally, it should be noted that the theoretical concepts
of minimal transversal and irreducible testor have both been
used for solving a rather disjoint set of practical problems.
Irreducible testors, for instance, are generally associated with
feature selection, as well as supervised classification; while
transversal hypergraphs have been used mainly for data min-
ing and associative network modeling. A unified approach

that merges the fundamental strategies used by both fields
would greatly improve the possibilities for tackling new prac-
tical problems efficiently.
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