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ABSTRACT It is a common practice to handle labeled data with classifiers and unlabeled ones with
clusterings. The traditional Bayesian network classifiers (BNCT s) learned from labeled training set T
directly map the unlabeled test instance into the network structure to calculate the conditional probability for
the classification, which neglects the information hidden in the unlabeled data and will result in classification
bias. To address this issue, we propose a novel learning framework, called model matching, that uses the
‘‘clustering’’ strategy to solve the classification problem. The labeled data is divided into several clusters
according to the different class label to learn a set of BNCT s and a corresponding set of BNCps is built
for each unlabeled test instance. To make a classification, the cross entropy method is applied to compare
the structural similarity between BNCT and BNCp. The extensive experimental results on 46 datasets
from the University of California at Irvine (UCI) machine learning repository demonstrate that for BNCs
model matching helps improve the generalization performance and outperforms the several state-of-the-art
classifiers like tree-augmented naive Bayes and Random forest.

INDEX TERMS Bayesian network, model matching, unlabeled data, cross entropy.

I. INTRODUCTION
Classification and clustering are both the basic tasks in
data analysis and machine learning, which have attracted
widespread attention in recent years. Given a set of z labels
of the class variable C, the task of supervised classification
can be defined as the assignment of a label c to an unlabeled
test instance x = (x1, · · · , xn), with the values for the n
attributes X = {X1, · · · ,Xn}. There are numerous classifi-
cation techniques [1]–[7], among which Bayesian network
classifiers (BNCs) have long been a popular tool for graphi-
cally representing the probabilistic dependencies which exist
in a domain. Such BNCs can be learned in a lot of ways, and
discriminative learning [8]–[10] directly models the condi-
tional probability P(c|x), which corresponds to optimizing an
objective function that is highly representative of classifica-
tion error, such as maximizing class conditional likelihood.
Unfortunately, there have been a number of negative results
over the past years, showing that discriminatively learning
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various forms of BNCs is NP hard [11], largely because
the cost functions that are needed to be optimized do not
in general decompose. To address this issue, by applying
Bayes’ theorem, generative learning [12]–[16] approximates
the joint probability P(c|x) according to BNCs with diverse
factorizations and the classification process can be done in
the following way:

argmax
C

P(c|x) = argmax
C

P(c, x)
P(x)

∝ argmax
C

P(c, x)

= argmax
C

P(c)P(x|c). (1)

Naive bayes (NB) [17], which is the simplest BNC,
assumes that all the predictive attributes are independent of
each other given the class variable. Although NB is surpris-
ingly effective, as the amount of data increases, the depen-
dencies between predictive attributes make the performance
of NB degrade dramatically. Researchers have proposed a
lot of prior work that has explored approaches to allevi-
ate NB’s independence assumption. Some restricted BNCs,

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

76227

https://orcid.org/0000-0003-4650-2148
https://orcid.org/0000-0002-1809-8187


Z. Duan et al.: Model Matching: A Novel Framework to use Clustering Strategy

which suppose that each predictive attribute is directly depen-
dent on the class variable C , extend the structure of NB by
adding a bounded number of additional interdependencies
[18]–[20], e.g., tree-augmented naive Bayes (TAN) [21] and
k-dependence Bayesian classifier (KDB) [22]. At the other
extreme, attribute weighting methods [23], [24] have been
widely used as a means of increasing the influence of major
predictive attributes. All the above mentioned BNCs learn
from labeled data in training set T , i.e., BNCT , but the depen-
dencies hidden in unlabeled test instances have received rel-
atively little attention. Scientific dataset can be massive and
labeled training data may account for only a small portion.
That is to say, BNCT can only represent a limited num-
ber of conditional dependencies. Moreover, the structure of
BNCT is definite and can not adjust to diverse unlabeled test
instances automatically, since the dependencies that exist in
different unlabeled test instances may differ greatly.

Most restricted BNCs model the network structure by
mining the dependence relationships between predictive
attributes, which are usually measured by conditional mutual
information (CMI). Given the class variable C , CMI between
predictive attributes Xi and Xj, or I (Xi;Xj|C), can be calcu-
lated as follows [25],

I (Xi;Xj|C) =
∑
xi

∑
xj

∑
c

P(xi, xj, c)log
P(xi, xj|c)

P(xi|c)P(xj|c)

=

∑
c

P(c)
∑
xi

∑
xj

P(xi, xj|c)log
P(xi, xj|c)

P(xi|c)P(xj|c)

=

∑
c

P(c)Î (Xi;Xj|c)

=

∑
xi

∑
xj

∑
c

Î (xi; xj|c) (2)

However, for unlabeled instances, because of their uncer-
tain class labels it is unsuitable to use CMI to measure
the dependence relationships between attribute values, which
may result in classification bias. Clustering [26]–[28] is the
task of grouping a set of objects in such a way that objects in
the same group are more similar to each other than to those
in other groups, which is one common practice to handle
unlabeled instances. Model-based clustering combines clas-
sification and clustering strategies and defines a cluster as
a component in a mixture model, which has received much
attention [29]–[31]. To mine the dependence relationships
hidden in unlabeled test instance with respect to different
possible class labels, in this paper we propose a novel learning
framework, called model matching, which first divides the
training set into z clusters according to different class labels,
where z is the number of class labels. For each cluster, a gen-
eral Bayesian model BNCT is built. Corresponding to the
unlabeled test instance x = (x1, · · · , xn), by pre-assigning
class label to it we can build a ‘‘pseudo’’ training set P
where P = {(x, c1), (x, c2), · · · , (x, cz)}. For each ‘‘pseudo’’
instance in P , a specific Bayesian model BNCp is built
independently in classification phase. Based on ‘‘clustering’’

method, the cross entropy is applied to compare the structure
similarity of BNCT and BNCp to make the final prediction.
Through extensive experiments on 46UCI (University of Cal-
ifornia at Irvine) datasets, we prove that the model matching
framework can alleviate the potential misclassification prob-
lem without causing too many offsetting errors or incurring
very high computation overhead.

The rest of this paper is organized as follows. Section II
introduces some state-of-the-art restricted BNCs. Section III
explains the basic idea of the model matching in detail.
Section IV compares experimental results on datasets from
the UCI Machine Learning Repository. Section V draws
conclusion.

II. RESTRICTED BAYESIAN NETWORK CLASSIFIERS
The restricted BNCs [32] are a way to graphically repre-
sent the dependencies in a probability distribution 2 by the
construction of a directed acyclic graph G. Nodes in G rep-
resent the attributes X or class variable C , and arcs denote
the probability dependencies between child nodes and their
parent nodes. Parameter 2 uses conditional probability to
quantitatively describe the conditional dependencies for each
node in G, namely P(xi|5i, c), where 5i is a set of parent
attributes of Xi. Nodes with no parents simply represent the
prior probability for that attribute. As shown in Figure 1a,
the full Bayesian network classifier (FBC) [33] completely
reflects the dependencies between predictive attributes and
thus will achieve optimal performance. By using the chain
rule of joint probability distribution, P(c, x) can be calculated
as follows:

P(c, x) = P(c)
n∏
i=1

PFBC (xi|c,5i), (3)

where 5i = {X1, · · · ,Xi−1}. However, it is very time con-
suming to learn a FBC, since the computational complex-
ity grows exponentially until it becomes NP hard with the
increasing number of attributes and arcs in the structure.
To simplify the network structure, researchers have proposed
numerous state-of-the-art classification algorithms [34]–[36].

As shown in Figure 1b, NB represents the most restric-
tive extreme in the spectrum of probabilistic classification
techniques, which assumes that all the predictive attributes
are conditionally independent given the class variable C .
Although the conditional independence assumption rarely
holds in the real world, NB has achieved competitive clas-
sification performance, especially when the data quantity is
small [37].

TAN is an extension of NB, which imposes a tree structure
to alleviate the NB’s conditional independence assumption.
As can be seen in Figure 1c, each predictive attributes in
TAN has the class variable and at most one other attribute
as parents. TAN constructs maximum weighted spanning
tree (MWST) to represent dependence relationships between
predictive attributes, which are measured by CMI. The learn-
ing procedure of TAN is depicted in Algorithm 1.
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FIGURE 1. Example of (a) full Bayesian network classifier, (b) Naive Bayes and (c) Tree augmented naive Bayes.

Algorithm 1 The TAN Learning Procedure
Input: Training set T , attribute set {X1, · · · ,Xn} and class

variable C.
Output: TAN classifier.

1. Calculate I (Xi;Xj|C) (i 6= j) between each pair of
attributes by Equation 2.

2. Build a complete undirected graph in which the nodes
are the attributes. Annotate the weight of an arc
connecting Xi to Xj by I (Xi;Xj|C) (i 6= j).

3. Build the maximum weighting spanning tree.
4. Transform the resulting undirected tree to a directed
one by choosing a root variable and setting the
direction of all arcs to be outward from it.

5. Construct a TAN classifier by adding a class variable
C and adding an arc from C to each Xi.

6. Return TAN classifier.

Although TAN is always regarded as the optimal one-
dependence classifier [38], there is still a lot of prior work
that has explored approaches to improve the classification
performance of TAN. One approach is to optimize the struc-
ture of TAN by using other evaluation criterion. Ruz and
Pham [39] proposes a method that a Bayesian criterion con-
trols the likelihood of the data and the complexity of the
TAN structure, which results in a predictor subgraph that
minimizes the Kullback-Leibler (KL) divergence between
the real joint probability distribution and the approxima-
tion given by the model. For handling with the imprecise
probabilities estimation, Zaffalon and Fagiuoli [40] proposes
the tree-based credal classifier algorithm which can induce
credal Bayesian networks with a TAN structure. At the other
extreme, bagging-type metaclassifiers use bootstrap samples
and generate diverse results from the different classifiers.
The bagging randomTAN [41] takes randomTAN, which ran-
domly selects the arcs between predictive attributes whose
CMI surpasses a fixed threshold, as base classifiers in a
bagging scheme. The averaged TAN (ATAN) [36] takes each
predictive attribute as a root node and then builds a set of
TANs. In ATAN, the posterior probabilities produced by
different TAN classifiers are directly averaged to make a
prediction.

To choose suitable distributions for the probabilities, given
the training data by T = (x̂i1, · · · , x̂in, ĉi), i ∈ {1, · · · ,N },
whereN is the number of training instances, ĉi ∈ {c1, · · · , cz}
is the class label of the i-th training instance, i.e., there are
z class labels, the prior and joint probabilities in the above
equations will be calculated as follows,

P(c) =
1
N

N∑
k=1

δ(c, ĉk )

P(xj) =
1
N

N∑
k=1

δ(xj, x̂kj)

P(xj, c) =
1
N

N∑
k=1

δ(〈xj, c〉, 〈x̂kj, ĉk 〉)

P(xi, xj, c) =
1
N

N∑
k=1

δ(〈xi, xj, c〉, 〈x̂ki, x̂kj, ĉk 〉)

(4)

where δ(·) is a binary function, which is zero if its two
parameters are different and one otherwise.< · > denotes the
combination of attribute values. Then, P(xj|c) and P(xi, xj|c)
can be calculated as follows,

P(xj|c) =
P(xj, c)
P(c)

P(xi, xj|c) =
P(xi, xj, c)
P(c)

(5)

The joint conditional probability, P(xi|c,5i), in Equation 3
can reflect the probabilistic dependence between attribute
values given different class label c. However, from the view-
point of information theory, CMI in Equation 2 can only
measure the conditional dependence implicated in training
set between predictive attributes given the class variable C ,
whereas cannot weigh the probabilistic dependence condi-
tioned on the specific class label c. We argue that the dif-
ference between conditional dependence and probabilistic
dependence may result in classification bias. In the following
discussion, we explain the basic idea of model matching by
using TAN as the base classifier and extend CMI to address
this issue.

III. THE MODEL MATCHING FRAMEWORK
As Figure 1 shows, these classic BNCs mentioned above,
like FBC and TAN, which learn from training data T and
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apply different strategies to build the network structure,
may represent different conditional dependencies between
attributes. However, most of these strategies model the struc-
ture by describing the conditional dependencies between
predictive attributes given the class variable C . Actu-
ally, from Equation 2, we can find that the value of
Î (Xi;Xj|c) may differ greatly for different class labels and
CMI =

∑
c P(c)Î (Xi;Xj|c). Thus, it may be unsuitable to

use CMI to measure the dependence relationships between
attributes Xi and Xj given specific class label c. This may
result in the classification bias for BNCs, and we argue that
it is a viable solution to model a set of network structures by
mining the conditional dependencies between attributes given
different class labels.

Clustering is the organization of a collection of unlabeled
instances into clusters based on similarity [42]. The clus-
tering problem has been addressed in many contexts and
by researchers in many disciplines. Inspired by its success,
the ‘‘clustering’’ strategy is applied in our algorithm to solve
the classification problem and we first divide the training
set into z subsets according to different class labels, where
z is the number of class labels. To measure the dependence
relationships existed in different subsets, the label based CMI
is proposed and defined as follows,
Definition 1: The label based CMI (LCMI) is defined to

measure the amount of information shared between two pre-
dictive attributes Xi and Xj given a specific class label c; that
is,

I (Xi;Xj|c) =
∑
xi

∑
xj

P̂(xi, xj|c)log
P̂(xi, xj|c)

P̂(xi|c)P̂(xj|c)
. (6)

The Equation 6 is derived from the second step of Equation 2.
For different training subsets, the dependence relationships in
TAN will be measured by LCMI instead of CMI for model
construction. We refer to a set of improved TAN as TANT

ẑ ,
where ẑ ∈ {1, · · · , z}.
Given a particular unlabeled test instance p =

(x1, · · · , xn,C =?), from the viewpoint of clustering,
we need to consider the clusters which it belongs to.
To assign the class label to p, only a small number of
dependencies, which are set in TANT , are necessary. The
other dependencies in TANT may counteract the effect of
the necessary dependencies. The proposed approach aims
to give high priority the dependencies that related to the
elements in p. Corresponding to TANT

ẑ , a set of TANp
ẑ is

built independently. To describe the probabilistic dependence
existed in p, instance-based CMI is proposed and defined as
follow,
Definition 2: The instance-based CMI (ICMI) is defined

to measure the amount of information shared between two
predictive attribute values xi and xj given a specific class label
c; that is,

I (xi; xj|c) = P̂(xi, xj|c)log
P̂(xi, xj|c)

P̂(xi|c)P̂(xj|c)
. (7)

where

P̂(c) =
1

N + 1
[
N∑
k=1

δ(c, ĉk )+
1

z+ 1
]

P̂(xj) =
1

N + 1
[
N∑
k=1

δ(xj, x̂kj)+ 1]

P̂(xj, c) =
1

N + 1
[
N∑
k=1

δ(〈xj, c〉, 〈x̂kj, ĉk 〉)+
1

z+ 1
]

P̂(xi, xj, c) =
1

N + 1
[
N∑
k=1

δ(〈xi, xj, c〉, 〈x̂ki, x̂kj, ĉk 〉)

+
1

z+ 1
]

(8)

Conditional probability can be calculated as follows,
P̂(xj|c) =

P̂(xj, c)

P̂(c)

P̂(xi, xj|c) =
P̂(xi, xj, c)

P̂(c)

(9)

Similar to the Laplace correction [43], themain idea behind
Equation 8 is equivalent to creating a ‘‘pseudo’’ training set
P by adding to the training set T a new instance (x1, · · · , xn)
with multi-label by assuming that the probability that this
new instance is in class c is 1/z for each c ∈ {c1, · · · , cz}.
To make a fair comparison of the structure of TANT and
TANp, the same learning strategy is applied to build them.
The learning procedures of TANT

ẑ and corresponding TANp
ẑ

are depicted in algorithms 2 and 3, respectively.

Algorithm 2 The TANT Learning Procedure
Input: Training set T , attribute set {X1, · · · ,Xn} and class

label {c1, · · · , cz}.
Output: a set of TANT

ẑ classifier.
Let ẑ = 1, for ẑ ≤ z:

1. Calculate I (Xi;Xj|cẑ) (i 6= j) between each pair of
attributes by Equation 6.

2. Build a complete undirected graph in which the nodes
are the attributes. Annotate the weight of an arc
connecting Xi to Xj by I (Xi;Xj|cẑ) (i 6= j).

3. Build the maximum weighting spanning tree.
4. Transform the resulting undirected tree to a directed
one by choosing a root variable and setting the
direction of all arcs to be outward from it.

5. Construct a TANT
ẑ classifier by adding a class label cẑ

and adding an arc from cẑ to each Xi.
6. Return a set of TANT

ẑ classifier.

Then, after training the classifiers, traditional BNCs usu-
ally map the attribute values into the network structure to
calculate joint probability for classification. It is based on the
fact that for one single BNC the value of P(x) in Equation 1
is the same. However, for different BNCs, the value of P(x)
may differ greatly and this leads to the joint probability
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Algorithm 3 The TANp Learning Procedure
Input: Training set T and test instance p.
Output: a set of TANp

ẑ classifier.
Let ẑ = 1, for ẑ ≤ z:
1. Calculate I (xi; xj|cẑ) (i 6= j) between each pair of

attribute values by Equation 7.
2. Build a complete undirected graph in which the nodes

are the attribute values. Annotate the weight of an arc
connecting xi to xj by I (xi; xj|cẑ) (i 6= j).

3. Build the maximum weighting spanning tree.
4. Transform the resulting undirected tree to a directed one

by choosing a root attribute value and setting the
direction of all arcs to be outward from it.

5. Construct a TANp
ẑ classifier by adding a class label

cẑ and adding an arc from cẑ to each xi.
6. Return a set of TANp

ẑ classifier.

in Equation 1 cannot be directly compared for classifica-
tion. Thus, since we get a set of TANT

ẑ s, the traditional
estimation method cannot apply to our algorithm and may
result in classification bias. Inspired by the clusteringmethod,
we address this issue by comparing the structure similarity
between TANT and TANp. The cross entropy method [44] is
a new generic approach to combinatorial and multi-extremal
optimization and rare event simulation. In this paper, the cross
entropy is applied to penalize the deviation between the actual
output and the expected output, and is calculated by

H (q, q̂) = −
∑
x

q(x)log q̂(x), (10)

where both q and q̂ represent a set of probabilities. Since
TANT is learned from the labeled training set, we con-
sider that TANT can reflect higher degree of conditional
dependencies and represent the actual probability distribu-
tion, while TANp is built for each unlabeled test instance and
can represent the expected output. Thus, in our algorithm,
the conditional probabilities calculated by TANT

ẑ and TANp
ẑ

are considered as q and q̂, respectively. The TANT
ẑ with the

minimum value of cross entropy is selected to make the final
prediction.

For learning the network structure of TANT , it requires
O(n2zNv2) time that is dominated by the computations of
LCMI, where n is the number of predictive attributes, N is
the number of instances, z is the number of class labels, and
v is the maximum number of discrete values that an attribute
may take. For building the corresponding TANp, it takes only
O(n2zN ) time which is dominated by the computations of
ICMI. The small computational complexity makes the model
matching framework very suitable for data mining domains.

IV. EMPIRICAL STUDY
To illustrate the effectiveness of our proposed model match-
ing framework, we conduct experiments on 46 datasets from
the UCI machine learning repository [45]. The structure

TABLE 1. Datasets.

of the experimental Section is as follows: To begin with,
Section 4.1 compares our TANm (TAN that performs the
model matching framework) algorithm with two state-of-
the-art machine learning algorithms, Random forest [46]
and Logistic regression [47]. Section 4.2 includes compar-
isons with three classic BNCs, that are NB, TAN and KDB.
Section 4.3 presents a global comparison of all learners
considered by applying the Friedman and Nemenyi tests.
When two learners are compared, Win/Draw/Loss (W/D/L)
record is applied to count the number of datasets for which
one algorithm performs better, equally well or worse than
the other on a given measure. We consider there exists a
significant difference if the output of a one-tailed binomial
sign test is less than 0.05. The detailed characteristics of each
dataset are shown in Table 1 in ascending order of their sizes.
These datasets are categorized in terms of their sizes. That
is, datasets with instances < 1000, ≥ 1000 and < 10000,
≥ 10000 are denoted as small size, medium size and large
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size, respectively. We will report results on these sets to
discuss suitability of a classifier for datasets of different
sizes. For each dataset, we use MDL (Minimum Description
Length) discretization [48] to discretize numeric attributes.
Missing values are regarded as a distinct value. Each algo-
rithm is tested on each dataset using 10-fold cross validation.
The base probabilities of each algorithm are estimated using
m-estimation (m = 1), since some researchers report that
them-estimation leads to more accurate probabilities than the
Laplace estimation [49].

A. TANM VS TWO STATE-OF-THE-ART LEARNERS
In order to know how much predictive capacity is get pro-
moted by using our model matching framework, it is useful to
compare TANm to the state-of-the-art learners, e.g., Random
forest and Logistic regression.

1) RANDOM FOREST
Random forest (RF) is considered as one of themost powerful
learning algorithm [46]. It uses bagging methods to aggregate
multiple decision trees that are trained on data selected at
random but with replacement from the original data. Each
decision tree is grown to its largest possible size and no
pruning is done. When dealing with medium and large size
datasets, RF containing 100 trees (RF100) is used in our
experiments. Moreover, note that RF with 10 trees (RF10) is
applied to handle small datasets, since the 100 decision trees
are complex and tend to overfit the training data. To compare
the classification accuracy of RF and TANm, zero-one loss
function, which is the most common loss function to measure
the misclassification rate, is applied in our experiments. The
detailed results for each dataset in terms of zero-one loss
can be found in Table 2. Table 3 presents the W/D/L records
TANm and RF in terms of zero-one loss. Note, it is unable to
get results for RF on our largest dataset Poker-hand due to
main memory constrains. Thus, this dataset will be removed
in the following discussion in this section. Table 3 shows the
W/D/L records when compared with RF. The results show
that TANm achieves better classification performance than RF
on 21 datasets out of 45 datasets, providing solid evidence for
the effectiveness of our proposedmodelmatching framework.

To further show the performance of TANm when compared
with RF over datasets of diverse size, the goal difference (GD)
function [50] is applied in the following experiments. Given
two classifiers A and B, GD is computed as follows:

GD(A;B|T ) = |win| − |loss|, (11)

where T represents a set of datasets, |win| and |loss| are the
number of datasets on which A performs better or worse
than B, respectively. Figure 2 shows the fitting curve of
GD between TANm and RF in terms of zero-one loss. The
X-axis denotes the index number of datasets, referred to
as r̂ , which corresponds to that described in Table 2, and
the Y-axis denotes the value of GD(A;B|Si), where Si is a
set of datasets {D1, · · · ,Dî|î < r̂}. It can be seen from
Figure 2 that there exists an obvious positive correlation

TABLE 2. Detailed zero-one loss results of all BNCs.

TABLE 3. Win/draw/loss comparison results between TANm and RF in
terms of zero-one loss.

between the values ofGD(TANm
;RF |Si) and the dataset size.

While dealing with small datasets, such as Lung-cancer,
Labor and Wine, TANm enjoys a significant advantage over
RF10, and the maximum value of GD reaches 7. A notable
case is Labor dataset, where the zero-one loss result of
TANm is 0.0175 while that of RF10 is 0.0939. In general,
we argue that the advantages for TANm on small datasets
can be attributed to that the model matching mechanism
helps to fully mine the dependence relationships, especially
those hidden in unlabeled test instances. With respect to the
medium size datasets, TANm also has a little advantage over
RF100, and GD(TANm

;RF100|Si) reaches a maximum of 9
when the data quantity is 4601 (Sick dataset). As referred
to large datasets, RF100 provides competitive results with
TANm. The 100 decision trees and more complex structures
make RF100 obtain a better model fitting with the increase
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FIGURE 2. The fitting curves of GD between TANm and RF in terms of
zero-one loss.

TABLE 4. Win/draw/loss comparison results between TANm and LR in
terms of zero-one loss.

of data. However, the computational cost in terms of memory
and time is much higher than that of TANm.

2) LOGISTIC REGRESSION
In this section, we compare the classification performance of
TANm with popular discriminative classifier Logistic regres-
sion (LR). LR in [47] is implemented for our experiments.
The detailed results for each dataset in terms of zero-one loss
can be found in Table 2. Table 4 compares the zero-one loss
results of TANm with respect to LR. It is encouraging to see
that TANm has lower zero-one loss than LR winning on 24,
drawing on 8 and losing only on 14 datasets.

To make the experimental results more intuitive, Figure 3
presents the scatter plot of zero-one loss, where the X-axis
and Y-axis represent the zero-one loss results of LR and
TANm, respectively. As can be seen, there exist numerous
scatters under the diagonal line, such as Lymphography
dataset and Poker-hand dataset, which means that TANm

achieves significant advantages than LR on those datasets.
A notable case is Poker-hand dataset where TANm

achieves a 83.8% zero-one loss reduction comparingwith LR.
Moreover, there are only three points that are clearly above
the diagonal line, that is Sonar, Bupa and Kr-vs-kp
dataset, which means that LR has a clear advantage over
TANm on these three datasets. That is to say, for the rest 11 of
14 datasets where TANm losses, the classification accuracy
of TANm is close to that of LR. The experimental results
show that, in fact, TANm can beat LR on most datasets.
As a classic discriminative algorithm, LR needs mass data
to model the conditional probability P(c|x) and learn the
model parameters through maximising the conditional like-
lihood [51]. Although maximum conditional likelihood has
desirable asymptotic properties, it may often lead to over-
fitting on training data, which may result in failure of fit-
ting additional data or predicting unlabeled test instances

FIGURE 3. The scatter plot when comparing the zero-one loss results
between TANm and LR.

TABLE 5. Win/draw/loss comparison results of zero-one loss on all
datasets.

reliably [52], [53]. In contrast, by learning a set of submod-
els for each unlabeled test instance, TANm can better mine
the significant dependence relationships implicated in test
instances, which may help to alleviate the negative effect
caused by overfitting.

B. TANM VS CLASSIC BNCS
This set of experiments compare TANm with three classic
BNCs, that is NB, TAN, and KDB (k = 2). Tables 5 presents
W/D/L records summarizing the zero-one loss results of
the different approaches, according to the detailed results
in Table 2. The results indicate that NB performs the worst
among these BNCs. As the dependence degree or structure
complexity increases, KDB achieves lower error than TAN
on 11 datasets. It can be seen that TANm has significantly
better zero-one loss than all other BNCs. For example, TANm

achieves superior performance to NB, which shows 31 wins
and 8 losses. When compared with KDB, TANm achieves
significant advantages and results in 30 wins. Most of all,
TANm achieves lower zero-one loss results more often than
TAN (30 wins and only 2 losses).

For further analysis, given classifiers A and B, the relative
zero-one loss ratio (RZR) [54] is applied to compare the
performance and defined as follows,

RZR(A/B) = 1−
ξ (A)
ξ (B)

, (12)
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where ξ (·) represents the zero-one loss results. Obviously,
a higher value of RZR(A/B) indicates the better performance
of classifier A. Figure 4 compares TANm with NB, TAN and
KDB in terms of RZR. Each figure is divided into three parts
by comparing dataset size. In diverse parts, different symbols
and colors are applied to show different situations. From
Figure 4(a), we can find that NB is competitive compared
to TANm, when handling with small datasets. The reason
lies in that the precise estimation of CMI is determined by
probability estimation, which is affected greatly by dataset
size and the robustness of network structure will be affected
negatively by imprecise probability estimation. For instance,
for Promoters dataset with 106 instances and 57 predictive
attributes, it is almost impossible to ensure that the basic
causal relationships learned are of a high confidence level,
which causes that a simple structure can beat a compli-
cated one. When compared with TAN, it can be seen from
Figure 4(b) that there are only four points under the X-axis,
which illustrates that the model matching mechanism did not
reduce the classification error on these four datasets. How-
ever, the minimum value of RZR(TANm/TAN) is−0.1302 on
Sonar dataset, which means that there is only a very small
gap between TANm and TAN on the four datasets where TAN
outperforms TANm. Surprisingly, it has been shown from
Figure 4(c) that the prediction accuracy of TANm compares
very well with KDB, especially when the data quantity is
large, although KDB is a 2-dependence BNC. A notable case
is our largest dataset Porker-hand where the value of
RZR(TANm/KDB) reaches 0.7551.

1) BIAS AND VARIANCE
Kohavi and Wolpert [55] presented a bias-variance decom-
position of zero-one loss from sampling theory statistics for
analyzing different learning scenarios. In this part we show
a set of experimental comparison of TANm with the three
BNCs in terms of bias and variance. Table 6 and 7 present the
detailed results of bias and variance on all datasets. The cor-
responding W/D/L comparison results are shown in Table 8.
We can observe that in terms of bias TANm performs better
than NB (26/9/11) and TAN (20/16/10). Due to its higher
degree of dependence, KDB performs the best among all the
BNCs. However, the advantages of KDB are not significant
when compared with TANm (19/12/15). In terms of variance,
without a doubt, NB performs the best among all BNCs due
to its definite network structure regardless of the change of
training data. TANm beats KDB in 37 datasets and losses
in 7. This superiority is more obvious when comparing TANm

with TAN (38 wins and 2 losses). Thus the advantage of
TANm over other three BNCs in terms of zero-one loss can be
attributed to the change in variance. The variance increases as
the algorithm becomesmore sensitive to the change in labeled
training data. Obviously, the model matching mechanism
helps to alleviate the negative effect caused by overfitting.

2) MATTHEWS CORRELATION COEFFICIENT
Since the model matching framework is proposed to alleviate
the negative effect of the prior probability, one can expect

FIGURE 4. The experimental results of relative zero-one loss ratio. (a) vs.
NB. (b) vs. TAN. (c) vs. KDB.

that TANm achieves better performance on skewed datasets,
where the class distribution is highly unbalanced. To ver-
ify this point, the Matthews correlation coefficient (MCC),
which provides a balanced measure for skewed datasets by
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TABLE 6. Experimental results of average bias.

taking into account the class distribution [56], is applied in
this part of experiments. Since there are many multi-class
datasets in our experiments, we regard MCC as the extended
MCC [57] in the following discussion. The classification
results can be shown in the form of a confusion matrix as
follows: N11 · · · N1m

...
. . .

...

Nm1 · · · Nmm

 (13)

Each entry Nii of the matrix gives the number of instances,
whose true class was Ci, that were actually assigned to Ci,
where 1 ≤ i ≤ m. Each entry Nij of the matrix gives
the number of instances, whose true class was Ci, that were
actually assigned to Cj, where i 6= j and 1 ≤ i, j ≤ m. Given
the confusion matrix, the extended MCC can be calculated as

TABLE 7. Experimental results of average variance.

TABLE 8. Win/Draw/Loss comparison results of bias and variance on all
datasets.

follow,

MCC

=

∑
mij NiiNjm − NijNmi√∑

i(
∑

j Nij)(
∑

j′,i′ 6=i Ni′j′ )
√∑

i(
∑

j Nji)(
∑

j′,i′ 6=i Nj′i′ )

(14)

Note, the MCC reaches its best value at 1 which represents
a perfect prediction and worst value at −1 which indicates a
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TABLE 9. Experimental results of average MCC.

total disagreement between the predicted and observed clas-
sifications. Table 9 shows the average results of MCC on all
datasets and the 23 datasets with data skewness are annotated
with the symbol ‘‘*’’. The corresponding W/D/L comparison
results are presented in Table 10. With respect to balanced
datasets, we can easily find that TANm always performs
best. TANm performs much better than TAN (5/18/0) and
KDB (5/18/0). This superiority shows more obvious when
comparing TANm with NB (9 wins). For skewed datasets,
as expected, we can see that TANm still has the best MCC
results among all the BNCs. For instance, when compared
with NB, the TANm wins on 7 datasets. TANm also provides
higher MCC results on the skewed datasets than TAN (5 wins
and 1 loss) and KDB (5 wins and 2 losses). Hence, we can
conduct that the model learning framework helps TANm to
have capacity to cope better with skewed datasets than other
BNCs.

TABLE 10. Win/Draw/Loss comparison results of MCC on all datasets.

FIGURE 5. Time comparisons of NB, TAN, KDB and TANm. (a) Training
times. (b) Classification times.

3) TIME COMPARISONS
In this part, we compare TANm with other classic BNCs in
terms of time consumption. Figure 5 shows training and clas-
sification time comparisons of NB, TAN, KDB and TANm.
All experiments are conducted on a desktop computer with
an Intel(R) Core(TM) i3-6100 CPU @ 3.70 GHz, 64 bits
and 4096 MB of memory. Each bar represents the sum of
time on 46 datasets in a 10-fold cross-validation experiment.
No parallelization techniques have been used in any case.
Figure 5(a) indicates that TANm requires a bit more time
for training than NB and TAN, since a set of TANT must
be built in the training phase. Moreover, it is obvious that
TANm enjoys a significant advantage over KDB in terms of
training time. With respect to classification time, TANm takes
a little more time than the other three BNCs. The reason lies
in that TANm learns a set of submodels for each unlabeled
test instance, while other BNCs only need to directly calculate
the joint probabilities. In general, model matching framework
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helps to significantly improve the classification performance
of its base classifier at the cost of a small increase in time
consumption, which is perfectly acceptable.

C. GLOBAL COMPARISON OF ALL LEARNERS
In this section we analyze how all the learners explored in
this paper perform when they are compared as a set. First,
we apply the Friedman test for comparison of all learners.
Friedman test [58] is a non-parametric measure, which is
used to assess the whole classification performance of diverse
algorithms. It ranks the algorithms for each dataset sepa-
rately: algorithm that has the best performance getting the
rank of 1, the second best rank 2, · · · . In case of ties, average
ranks are assigned. Table 11 shows the detailed results of rank
on all datasets. Note that, although we can not get the results
of RF on the Poker-hand dataset, it still ranks 1 due to
its superior performance on the large datasets. The Friedman
statistic can be calculated as follows,

zF =
(D− 1)χ2

F

D(g− 1)− χ2
F

, (15)

where

χ2
F =

12D
g(g+ 1)

(
∑
i

R2i −
g(g+ 1)2

4
), (16)

g is the number of algorithms being compared, D is the
number of datasets and Ri is the average rank of the i-th
algorithm. The null hypothesis of Friedman test is that there is
no significant difference in average ranks. With 6 algorithms
and 46 datasets, the Friedman test is distributed according
to the F distribution with 6 − 1 = 5 and (6-1) × (46-1) =
225 degrees of freedom. The critical value of F (5,225) for
α = 0.05 is 2.2541. The result of Friedman test for zero-one
loss, zF = 27.73 > 2.2541 with ρ < 0.001. Hence, the null
hypotheses is rejected. Figure 6 plots the average ranks across
all datasets, alongwith the standard deviation for each learner.
When assessing performance using zero-one loss, TANm

obtains the lowest average rank of 2.4348, followed by LR
with 3.4674 and RF with 3.0978. The average ranks of KDB,
TAN and NB are very close, that is 3.9457, 4.0000 and
4.0543, respectively. Surprisingly, we can find that the largest
standard deviation is observed for NB, which usually ranks
either very well or rather poorly among the datasets. From
Figure 6, we can finally conduct that the advantage of TANm

is proved from the perspective of Friedman test.
To identify where exactly these differences are found,

we run a set of posterior Nemenyi tests [59], which help
to evaluate the significant difference between each pair of
algorithms. Let dmn be the difference between the average
ranks of the m-th algorithm and n-th algorithm. If dmn > crit-
ical difference (CD), we consider the difference between the
algorithms is significant. The value of CD can be computed
as follows,

CD = qα

√
g(g+ 1)

6D
, (17)

TABLE 11. Ranks of different algorithms on all datasets.

FIGURE 6. Average ranks in terms of zero-one loss for all algorithms.

where the critical value qα for α = 0.05 and g = 6 is
2.850 [60]. The CD for α = 0.05 with 6 algorithms and
46 datasets is CD = 2.850 ×

√
6× (6+ 1)/(6× 46) =

1.111. The learners in Figure 7 are plotted on the red line
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FIGURE 7. The results of Nemenyi test in terms of zero-one loss for all
algorithms.

TABLE 12. Datasets.

on the basis of their average ranks, which are corresponding
to the red nodes on the top black line. If two algorithms has
no significant difference, they are connected by a line. From
Figure 7, we can easily find that the average rank of TANm is
significantly lower than those of NB, TAN and KDB. TANm

also achieves lower average rank than RF and LR, but not
significantly so.

FIGURE 8. The fitting curve of GD between TANm and TAN in terms of
zero-one loss.

D. DISCUSSION
To further explain the effectiveness of our proposed model
matching framework, we compare the zero-one loss results
of TANm and its base classifier (TAN) on datasets with
various z class labels. Figure 8 shows the fitting curve of
GD between TANm and TAN in terms of zero-one loss.
Note that the X-axis represents the index number of datasets
ordered by z and dataset size. The details of each dataset are
shown in Table 12. Two dotted lines divide the figure into
three parts, each part is associated to datasets with z = 2,
3 ≤ z < 10 and z ≥ 10. When z = 2, the advantage of
TANm over TAN is not obvious. That is, TANm draws on
9 out of 21 datasets compared with TAN. With respect to
datasets with 3 ≤ z < 10, it is encouraging to see that TANm

shows a significant advantage over TAN, winning on 14 and
drawing on 3 datasets. With the increase of z, on 7 datasets
with z ≥ 10, TANm exhibits significantly higher accuracy
than TAN on 6 datasets. It also can be seen from Figure 8
that TANm never loses on any datasets when z ≥ 4. Finally,
the maximum value of GD(TANm

;TAN |Si) reaches 28.
Especially, there are 4 datasets with more than 20 class

labels in our experiments, that are Thyroid, Audio,
Letter-recog and Phoneme. Most importantly, TANm

enjoys a significant advantage over TAN with 3 wins and
only 1 draw. On Phoneme dataset with 52 class labels,
it is worthmentioning that RZR(TANm/TAN) reaches 0.2133,
which is much higher than the average of RZR, i.e. 0.1333.
To conclude, the model matching framework helps BNCs
have capacity to cope better with multiclass problem than its
base classifiers.

V. CONCLUSIONS
In machine learning, most research has focused primarily on
dealing with labeled data with classifiers and unlabeled ones
with clusterings. In this paper, we propose a novel framework,
called model matching, that attempts to use ‘‘clustering’’
strategy to handle the classification problem. A set of BNCT s
is built for different clusters in each of which the instances
are assigned with the same class label and the corresponding
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set of BNCps is learned for each unlabeled test instance.
The cross entropy method is applied to compare the structure
similarity of BNCT and BNCp to make the final prediction.
Extensive experimental results show thatmodelmatching sig-
nificantly improves the generalization performance of base
classifiers. Exploration of application of model matching in
other kinds of machine learning techniques, e.g., decision tree
or support vector machine, is a further area for future work.
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